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Networks are constantly dynamic because of various types of faults (e.g. link failures)

and maintenance (e.g. device upgrades). Such network dynamics could result in severe

congestion which significantly undermines the performance of latency sensitive applica-

tions, such as search engines, online retail, online games, live streaming and so forth.

This dissertation asks a fundamental question – how does one efficiently protect la-

tency sensitive applications against network dynamics? The solution it proposes, reasons

out, and realizes is to plan traffic strategically in networks and applications.

Specifically, this dissertation provides systematic understandings on the motivations

and methodologies of strategic traffic planning. First, for network providers, it shows

why they should, and how they could, spread traffic over their networks tactically so that

spare capacity in the networks can be efficiently utilized to accommodate rerouted pack-

ets and traffic spikes under network dynamics. Second, for application owners, it shows

why they should, and how they could, allocate traffic loads among multiple infrastruc-

tures (e.g. clouds) adaptively to boost their robustness to uncertainties within individual

infrastructures. Moreover, this dissertation designs, implements, and evaluates practical

algorithms and systems based on the preceding understandings to achieve strategic traf-

fic planning at different levels: intra-infrastructure (intra- and inter-datacenter) and inter-

infrastructure.

Around the theme of strategic traffic planning, this dissertation makes the following

three main contributions. First, to handle the network dynamics caused by faults, we pro-

pose and practically realize a concept – Forward Fault Correction (FFC) – which requires
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a traffic engineering (TE) that guarantees no congestion without reconfiguring the network

as long as the number of faults is under k. The challenges to realize FFC lie in the overhead

in network throughput and the computational complexity to prepare for a huge number of

fault cases. We develop an efficient and uniform method to obtain a TE with FFC under

diverse kinds of faults on both control- and data-plane.

Next, to make sure the network dynamics aroused by maintenance cause no harm, we

introduce a concept – Smooth traffic Distribution Transition (SDT) – which means that

a network is configured in a congestion-free way to achieve some traffic distribution that

is needed by specific maintenance. For example, before rebooting a switch, an operator

will drain the traffic on switch first. SDT provides a common functionality that is needed

during various types of network maintenance. The key challenge to realize SDT stems

from the inherent difficulty in synchronizing the changes to many devices, which may

lead to unforeseen transient link load spikes or even congestion. We present one primitive,

zUpdate, which performs SDT via a multi-step and progressive network re-configuration

scheduling.

While FFC and SDT are designed for avoiding congestion on network links, conges-

tion inside overloaded servers is also crucial especially for applications that are both traffic

intensive and latency sensitive, e.g. live streaming and video on demand. Therefore, we

finally present a framework – Content Multihoming Optimization (CMO) – which uses

multiple infrastructures, e.g. clouds and/or content delivery networks (CDNs), and adap-

tive download scheduling among these infrastructures from client-side to protect users’

quality of experience (QoE) against performance fluctuations in individual infrastructures.

The key challenge to realize CMO resides in the expensive and complex usage prices of

infrastructures and the overhead of establishing connections to multiple servers. We show

how these applications can use joint optimizations and algorithms with both global and lo-

cal views to minimize the cost for utilizing multiple infrastructures and reduce overhead.



Traffic Planning under Network Dynamics

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Hongqiang Liu

Dissertation Director: David H. Gelernter

December, 2014



Copyright c© 2014 by Hongqiang Liu

All rights reserved.

ii



To my parents, my brother and my wife



Acknowledgements

The last four years at Yale were an incredible journey in my life. Along this journey, I

encountered dilemmas and breakthroughs, depressions and endeavors, explorations and

discoveries, and failures and successes. After all, I did not only become stronger in ability

and mind, but also got to know many brilliant people who will be my friends for life.

I could never have been more fortunate to have Prof. David Gelernter as my advisor.

David’s trust in me and in my research efforts is the spring of my confidence and dedica-

tion to accomplish this dissertation. His acknowledgements and suggestions on my work

and my capabilities always motivate me to become a better researcher and person. More

importantly, from David I learnt that a real scholar should be wise, optimistic, outstanding

and brave not only for research but also for the rest of life. I wish I could preserve these

qualities for my life and pass them onto my students and children.

I also had a wonderful experience working with Prof. Bryan Ford and Dr. David Wolin-

sky. They are superb system researchers and hackers from whom I learnt much on how to

think about ideas from system and security angles. I also thank them for sitting through

countless practice talks and giving me valuable advice. David also spent a lot of time

teaching me how to improve my written English.

I will always appreciate the academic and financial support from Prof. Yang Richard

Yang in my first two years at Yale. He was the first one who told me I had potential to

become a good scholar, even though then I was only a fresh student who did not know

iv



how to proceed. He helped me to get rid of my bad habits in thinking and working and led

me through the gate of research. It was an unforgettable experience that I could work with

Richard and his students Ye Wang, Chen Tian and Hao Wang side by side, day and night

to submit the CMO paper to SIGCOMM’12. Without their help, I had no way to push this

project into SIGCOMM in my second year.

I spent two happy and productive internships in Microsoft Research. In the summer

of 2012, under the mentoring of Ming Zhang and with the help from Lihua Yuan, Roger

Wattenhofer and Dave Maltz, I finished the zUpdate project and got it published in SIG-

COMM’13. Ming’s high standards on research and presentation quality let me know the

direction to become a first-class Ph.D. student. I also spent half a year in 2013 at Mi-

crosoft Research with Ratul Mahajan as my mentor. I finished the FFC project which I am

proud of the most by now. Ratul and I experienced a long and arduous process from an

initial idea which seems to be infeasible to a practical concept and a systematic algorithm

design. Ratul often gave me a golden suggestion at each key turning point of this project,

and discussions with him were consistently enjoyable and fruitful.

I am so lucky to have Prof Vladimir Rokhlin and Prof Holly Rushmeier as my DGS

and Department Head. I had the great pleasure of sharing my journey through Yale grad-

uate school with Dongqu Chen, Ronghui Gu, Jiewen Huang, Michael Nowlan, Ewa Syta,

Xueyuan Su, Minghui Tan, Huan Wang, Weiyi Wu, Hongzhi Wu, Xiongnan Wu, Su Xue,

and Ennan Zhai. I am also honored to have collaborations with scholars outside Yale:

Xin Jin, Peng Sun and Prof. Jenifer Rexford from Princeton, Xin Wu from Duke, Rohan

Gandhi and Prof. Y. Charlie Hu from Purdue, Hongyi James Zeng from Stanford.

Finally, I would like to express my earnest gratitude to my parents who made numerous

sacrifices to raise and educate me. Also, I could not have my current achievements without

my wife Wei’s persistent support and love. This thesis is dedicated to them.

v



Previously Published Material

Chapter 2 revises a previous publication [59]: H. H. Liu, D. Gelernter, S. Kandula, R. Ma-

hajan, M. Zhang. Traffic Engineering with Forward Fault Correction,

in Proc. ACM SIGCOMM, 2014.

Chapter 3 revises a previous publication [61]: H. H. Liu, X. Wu, M. Zhang, L. Yuan,

R. Wattenhofer, D. Maltz. zUpdate: Updating Data Center Networks with Zero Loss,

in Proc. ACM SIGCOMM, 2013.

Chapter 4 revises a previous publication [60]: H. H. Liu, Y. Wang, Y. R. Yang, H. Wang,

C. Tian. Optimizing Cost and Performance for Content Multihoming,

in Proc. ACM SIGCOMM, 2012.

vi



Contents

1 Introduction 1

1.1 Strategic Traffic Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Proactive fault handling in traffic engineering . . . . . . . . . . . 3

1.1.2 Congestion avoidance in network maintenance operations . . . . 6

1.1.3 Adaptive download scheduling in content services . . . . . . . . 7

1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Traffic Engineering with Forward Fault Correction 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Impact of data plane faults . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Impact of control plane faults . . . . . . . . . . . . . . . . . . . 15

2.2.3 Slow reaction to faults . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 FFC Overview and Challanges . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 FFC for control plane faults . . . . . . . . . . . . . . . . . . . . 19

2.3.2 FFC for data plane faults . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 Challenges and overview of techniques . . . . . . . . . . . . . . 20

2.4 Basic FFC Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Basic TE (without FFC) . . . . . . . . . . . . . . . . . . . . . . 22

vii



2.4.2 Modeling control plane faults . . . . . . . . . . . . . . . . . . . 23

2.4.3 Modeling data plane faults . . . . . . . . . . . . . . . . . . . . . 25

2.4.4 Robust tunnel layout . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.5 Efficiently solving FFC constraints . . . . . . . . . . . . . . . . 29

2.4.6 Combined FFC for both faults types . . . . . . . . . . . . . . . . 34

2.5 Extending Basic FFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.1 Traffic with different priorities . . . . . . . . . . . . . . . . . . . 35

2.5.2 Congestion-free updates . . . . . . . . . . . . . . . . . . . . . . 35

2.5.3 Optimizing for fairness . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.4 TE without flow rate control . . . . . . . . . . . . . . . . . . . . 37

2.5.5 Control plane faults for rate limiters . . . . . . . . . . . . . . . . 38

2.5.6 Uncertainty in current TE . . . . . . . . . . . . . . . . . . . . . 39

2.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Testbed Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.8 Data-Driven Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8.1 Experimental methodology . . . . . . . . . . . . . . . . . . . . . 43

2.8.2 Microbenchmarks . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.8.3 Single-priority traffic . . . . . . . . . . . . . . . . . . . . . . . . 47

2.8.4 Multi-priority traffic . . . . . . . . . . . . . . . . . . . . . . . . 50

2.8.5 Congestion-free network updates . . . . . . . . . . . . . . . . . 52

2.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 zUpdate: Updating Data Center Networks with Zero Loss 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Datacenter Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

viii



3.3 Network Update Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.1 Abstraction of traffic distribution . . . . . . . . . . . . . . . . . . 67

3.5.2 Lossless transition between traffic distributions . . . . . . . . . . 69

3.5.3 Computing transition plan . . . . . . . . . . . . . . . . . . . . . 74

3.6 Handling Update Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6.1 Network topology updates . . . . . . . . . . . . . . . . . . . . . 75

3.6.2 Traffic matrix updates . . . . . . . . . . . . . . . . . . . . . . . 77

3.7 Practical Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.7.1 Implementing zUpdate on switches . . . . . . . . . . . . . . . . 79

3.7.2 Limited flow and group table size . . . . . . . . . . . . . . . . . 79

3.7.3 Reducing computational complexity . . . . . . . . . . . . . . . . 82

3.7.4 Transition overhead . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.7.5 Failures and traffic matrix variations . . . . . . . . . . . . . . . . 84

3.8 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.9 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.9.1 Experimental methodology . . . . . . . . . . . . . . . . . . . . . 85

3.9.2 Testbed experiments . . . . . . . . . . . . . . . . . . . . . . . . 88

3.9.3 Large-scale simulations . . . . . . . . . . . . . . . . . . . . . . 90

3.10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Optimizing Cost and Performance in Content Multihoming 96

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Background and Notations . . . . . . . . . . . . . . . . . . . . . . . . . 99

ix



4.3 Control Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Problem Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4.1 Passive client . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4.2 Active client . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5 Computing Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5.1 Optimal content multihoming as object partitioning . . . . . . . . 108

4.5.2 Efficient optimal partitioning . . . . . . . . . . . . . . . . . . . . 110

4.5.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.6 Active Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.6.1 Adaptation problem statement . . . . . . . . . . . . . . . . . . . 122

4.6.2 Adaptation algorithm: window AIMD and priority assignment . . 124

4.7 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.7.1 Evaluation methodology . . . . . . . . . . . . . . . . . . . . . . 127

4.7.2 Publishing cost optimization . . . . . . . . . . . . . . . . . . . . 131

4.7.3 Client QoE adaptation . . . . . . . . . . . . . . . . . . . . . . . 132

4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5 Conclusions 140

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

x



List of Figures

2.1 Congestion due to faults in L-Net. . . . . . . . . . . . . . . . . . . . . . 15

2.2 Congestion due to a data plane fault. . . . . . . . . . . . . . . . . . . . . 16

2.3 Congestion due to a control plane fault. . . . . . . . . . . . . . . . . . . 16

2.4 FFC for link failures (k = 1) . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 FFC for conntrol plane faults. . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Switch update latencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 A concreate example of the algorithm to construct robust tunnels. . . . . . 28

2.8 An example sorting network. . . . . . . . . . . . . . . . . . . . . . . . . 31

2.9 A network to find the largest-2 elements. . . . . . . . . . . . . . . . . . . 32

2.10 The network topology emulated in our testbed. . . . . . . . . . . . . . . 40

2.11 Traffic distribution before link s6-s7 fails. . . . . . . . . . . . . . . . . . 41

2.12 Events with and without FFC during link failures. . . . . . . . . . . . . . 42

2.13 Throughput overhead of FFC. Bars show the 90th %-ile value and error

bars show the 50th and 99th %-iles. . . . . . . . . . . . . . . . . . . . . 46

2.14 Throughput and data loss ratio for FFC with single traffic priority. . . . . 48

2.15 The tradeoff of data loss and throughput. . . . . . . . . . . . . . . . . . . 49

2.16 FFC with multiple priorities. . . . . . . . . . . . . . . . . . . . . . . . . 50

2.17 Update time for congestion-free updates. . . . . . . . . . . . . . . . . . . 52

3.1 Transient load increase during traffic migration. . . . . . . . . . . . . . . 60

xi



3.2 This example shows how to perform a lossless firmware upgrade through

careful traffic distribution transitions. . . . . . . . . . . . . . . . . . . . . 62

3.3 This example shows how to avoid congestion by choosing the proper traf-

fic split ratios for switches. . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 The high-level working process of zUpdate. . . . . . . . . . . . . . . . 66

3.5 Two-phase commit simplifies link load calculations. . . . . . . . . . . . . 70

3.6 Implementing zUpdate on an OpenFlow switch. . . . . . . . . . . . . . 78

3.7 zUpdate’s prototype implementation. . . . . . . . . . . . . . . . . . . 85

3.8 The link utilization of the two busiest links in the switch upgrade example. 87

3.9 The link utilization of the two busiest links in LB reconfiguration example. 88

3.10 Comparison of different migration approaches. . . . . . . . . . . . . . . 91

3.11 Why congestion occurs in switch onboarding. . . . . . . . . . . . . . . . 91

3.12 Comparison under different traffic loads. . . . . . . . . . . . . . . . . . . 92

4.1 Edge server distributions of three CDNs. . . . . . . . . . . . . . . . . . . 101

4.2 Charging structures of CloudFront and MaxCDN. . . . . . . . . . . . . . 103

4.3 Content multihoming control framework (shaded components include our

contributions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Example illustration: Q can be formulated as a partition problem. . . . . 109

4.5 An example illustrating the basic idea to solve problem Q. . . . . . . . . 110

4.6 An example illustrating the charging-intersections. . . . . . . . . . . . . 111

4.7 A downloading state transition diagram. . . . . . . . . . . . . . . . . . . 123

4.8 Statistics of object size, number of requests to each object, and total traffic

for each object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.9 Cost and traffic distributions in the 6 months with different CDN assign-

ment algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

xii



4.10 Stress tests of client adaptation in CDN server failure cases. . . . . . . . . 133

4.11 Per-view QoE in PlanetLab experiments. . . . . . . . . . . . . . . . . . . 136

xiii



List of Tables

2.1 The key notations in FFC formulations. . . . . . . . . . . . . . . . . . . 22

2.2 TE computation time with and without FFC. . . . . . . . . . . . . . . . . 47

3.1 The common update scenarios in production DCNs. . . . . . . . . . . . . 60

3.2 The key notations of the network model. . . . . . . . . . . . . . . . . . . 68

3.3 Comparison of transition overhead. . . . . . . . . . . . . . . . . . . . . . 93

4.1 Summary of key notations. . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 Measured CDN performance pai,k (3 content objects at streaming rates

1/2/3 Mbps). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Summary statistics of content objects. . . . . . . . . . . . . . . . . . . . 127

4.4 Traffic distribution across major geo regions. . . . . . . . . . . . . . . . 129

xiv



Chapter 1

Introduction

“There is nothing permanent except change. ”

——– Heraclitus

Latency sensitive, cloud-based applications, e.g. search engines, online retail, adver-

tisements, online games, live streaming, etc., play an increasingly important role in our

lives. Studies show that the traffic from such applications will increase by multiple orders

of magnitudes over the next few years [52]. This trend is driven by the IT reforms being

undertaken in traditional industries and markets. It is also emphasized by users’ ease of

accessing Internet with various kinds of devices and networks.

An essential requirement from latency sensitive applications is to guarantee stable and

short delays in the interactions between users and backend servers. For instance, web

search and online shopping typically require an interaction latency that is within 200-300

ms [75,83], and missing this soft-deadline could cause substantial loss in users and service

revenue [79]. For another example, even though live video streaming is not sensitive

to occasional packet delays, large jitters in packet arrival latency could result in a large

playing buffer that magnifies the time gap between videos and real events.

Nevertheless, it is a big challenge to satisfy the delay requirement from latency sen-
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sitive applications. One of the major reasons is that communication delay is difficult to

ensure, since networks are constantly dynamic because of various types of faults (e.g. link

failures) and maintenance (e.g. device upgrades). Such network dynamics can easily

cause congestion which ultimately results in significant packet in-network queuing de-

lays or even packet drops. Therefore, nowadays network providers are forced to over-

provision their networks, which results a low (30-40%) bandwidth resource utilization on

average [42, 44] and still cannot provide any congestion-free guarantee. Despite of some

efforts like prioritizing latency sensitive traffic in networks [42, 44], the protection to the

application performance is still far from satisfactions [59].

This dissertation conducts a systematic study on how to prevent congestion and ap-

plication performance degradation caused by network dynamics. It provides two founda-

tional insights:

• If network providers carefully spread traffic over networks, they can efficiently uti-

lize the spare capacity existing in the networks to accommodate rerouted packets

and traffic spikes under network dynamics. As a result, congestion can be avoided.

• In applications which are not strictly sensitive but still impacted by long interaction

delays (e.g. content services), users’ quality of experience (QoE) could be further

enhanced if the applications adaptively utilize multiple infrastructures. As a result,

the impact to QoE from performance fluctuations in individual infrastructures can

be minimized.

Overall, this dissertation aims to achieve strategic traffic planning which protects la-

tency sensitive applications from network dynamics at different levels – intra-infrastructure

(intra- and inter-datacenter) level performed by network providers, and inter-infrastructure

level performed by application owners.
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1.1 Strategic Traffic Planning

Around the theme of strategic traffic planning, this dissertation includes mainly three

pieces of work which are summarized in the following of this section:

• Traffic engineering which is robust to network dynamics caused by faults.

• Congestion-free network re-configurations for network maintenance.

• Traffic load allocation and adaptive download scheduling in content services.

1.1.1 Proactive fault handling in traffic engineering

One cause of network dynamics is faults that happen commonly in production networks.

Such faults include not only failures on data-plane, such as link failures and switch failures,

but also failures on control-plane like long delays or failures to configure some network

devices.

These faults significantly limit network providers’ ability to protect traffic on networks,

because they make both the input and output of traffic engineering (TE) systems inaccu-

rate. On one hand, network providers need current network topology to figure out a TE

solution which plans the traffic to avoid congestion and makes the network highly utilized.

However, frequent data-plane faults usually lead to mismatch between TE solution and

network topology, which creates congestion.

On the other hand, all TE solutions need to be implemented by configuring switches

to update routing rules. However, because of the existence of control-plane faults, new

routing rules might not be able to installed in all of the switches successfully at once.

Such partial TE implementation or inconsistent configurations in network can also trigger

severe congestion.

The biggest challenge to handle the preceding faults is that it is difficult to predict
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where individual faults will happen, despite there are likely to be any because faults are

generally prevalent. A straightforward way to address this challenge is that instead of

predicting specific faults, the network only reacts when some faults happen via computing

and installing a new TE which fixes existing congestion over networks. Nonetheless, such

reactive approach to handling faults is not efficient for mainly three reasons:

• Reactions always happen after faults and congestion. How much a network suffers

from congestion depends on how fast a reaction can be finished.

• It could take a long time to finish a reaction. It takes time to detect faults, to compute

a new TE and to update switch configurations to realize the new TE. Overall it could

take from seconds to minutes to accomplish a reaction in a large-scale production

network.

• Control-plane faults could block a reaction. If configuration failures happen on some

switches during the installation of the new TE, a reaction could be postponed, and

so that the existing congestion could not be eliminated.

Therefore, we argue that it is necessary for network providers to have a proactive approach

to handling common network faults.

Network providers typically update the TE in their networks periodically to adapt to

changes in traffic demands. Proactive approach means that each time network providers

compute a new TE for a network, they require the TE is not only congestion-free in cur-

rent situation, but also robust to fault cases that could happen in the following TE update

interval. Hence, there is no need to update TE within a TE update interval due to faults,

because current TE can eliminate congestion automatically.

To make a TE robust to most potential fault cases that can happen in a TE update in-

terval, this dissertation proposes and practically realizes the concept Forward Fault Cor-

rection (FFC) which requires a traffic engineering (TE) that guarantees congestion-free
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without reconfiguring the network if only the number of faults is under k. This guarantee

should hold for arbitrary combinations of faults. Since there are multiple categories of

faults, we have a parameter k for each type of faults. For instance, a FFC-TE should be

robust to kc configuration failures, ke link failures and kv switch failures. The definition

of FFC is from the intuition that the probability of a single fault is small, so that the total

number of faults in a typical TE update interval (2-5 minutes) should be statistically small

and stable. By picking a proper parameter k, a TE satisfying FFC can be robust to almost

all potential faults that can happen before next TE update.

There are two challenges to realize FFC in TE. First, in a number of fault cases a

FFC-TE needs to be prepared for could be huge – with n possible faults, the number of

combinations up to k faults is
∑k

i=1

(
n
i

)
. Including all possible fault cases in TE formu-

lations will make the computation of FFC-TE intractable. Second, the loss of network

throughput due to FFC robustness should be minimized. Essentially, the robustness of

FFC comes from the spare capacity left in the network which can accommodate re-routed

traffic during faults. FFC should consume spare capacity as little as possible for a given

robustness level (k), so that FFC’s overhead on the network throughput can be insignificant

or negligible.

In Chapter 2, we elaborate how we develop and evaluate an efficient and uniform

method to obtain a TE with FFC under diverse kinds of faults on both control- and data-

plane. The key idea is that we can transfer the original FFC constraints for each type of

faults into a uniform ”bounded M-sum” problem: the sum of any M out of N variables

is bounded. Finally, we develop a method based on sorting networks [19], to efficiently

encode this problem as O(kn) linear constraints.

Fundamentally, FFC makes available a novel control knob to network operators. To-

day, operators must either conservatively over-provision the network to guarantee the ab-

sence of congestion when faults occur or aggressively utilize the network [42, 44] at the
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risk of severe fault-induced congestion. FFC enables operating points that trade-off provi-

sioning and congestion-risk in an informed manned, based on network characteristics and

desired protection levels for traffic.

1.1.2 Congestion avoidance in network maintenance operations

Besides faults, another major cause of network dynamics is maintenance. There are vari-

ous types of maintenance being performed every day in networks. For instance, in a data

center network, network operators usually need to upgrade firmware of all switches. In

addition, to on-board a newly built network, network operators need to conduct existing

traffic in old network onto the new one. In production datacenter networks, there are even

more types of maintenance such as load balancer reconfigurations, virtual machine migra-

tions, and so forth.

Each of such maintenance activities changes the distribution of traffic over the network

in its own way. Typically, a sophisticated operation plan is needed if we do not want to

corrupt latency sensitive applications running on top of the network during maintenance.

For example, before rebooting a switch for firmware upgrade, a network operator wants

this switch to carry no traffic. Therefore, beforehand he configures the routing in the

network to conduct all traffic flows to go through paths which do not contain the switch.

This configuration can involve many switches because moving one flow usually needs the

coordination from more flows to make sure at the end the network is congestion-free.

After studying common maintenance activities in datacenter networks, we find that

they all need to configure the network beforehand to achieve a traffic distribution which

satisfies their specific requirements. According to this observation, we introduce the con-

cept Smooth traffic Distribution Transition (SDT) which means that the preceding con-

figuration process is realized quickly without any congestion. SDT provides a common

functionality that is needed during diverse types of network maintenances.

6



The key challenge to realize SDT is from the inherent difficulty in synchronizing the

changes to many devices, which may lead to unforeseen transient link load spikes or even

congestion. In Chapter 3, we present one primitive, zUpdate, which performs SDT

via a multi-step and progressive network re-configuration scheduling. To perform a SDT

with zUpdate, operators only need to describe the requirements to the target traffic dis-

tribution. These requirements can easily be converted into a set of input constraints to

zUpdate. Then zUpdate will attempt to compute a sequence of steps to progressively

meet the requirements from an initial traffic distribution. When such a sequence is found,

zUpdate autonatically configures the network step by step to accomplish the traffic dis-

tribution transition smoothly and losslessly. Chapter 3 also presents implementation of

zUpdate with practical limitations (e.g. limited switch table size, computation scalabil-

ity, etc.), and extensive evaluations.

1.1.3 Adaptive download scheduling in content services

While FFC and SDT are useful to prevent congestion on network links, they are hardly

helpful for handling congestion on overloaded servers. Such congestion in servers is es-

pecially crucial for traffic intensive and latency sensitive applications, e.g. content ser-

vices like video on demand and live streaming. Most content services leverage public

clouds and/or content delivery networks (CDNs) as their backend infrastructures. There-

fore, fluctuations of server performance in the infrastructures directly impact users’ quality

of experience (QoE) in the content services.

We present a framework Content Multihoming Optimization (CMO) to enhance

QoE of content services under the server performance dynamics in individual infrastruc-

tures. The key idea in CMO is that a content service provider selects multiple servers from

one or more than one infrastructures for a single user, and the user performs a client-side

adaptive download scheduling algorithm to download different content pieces in parallel
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from the servers. This scheduling algorithm adjusts the downloading rates from different

servers on-the-fly according to the servers’ real-time performance, making sure that the

total downloading rate of a user satisfies the service’s requirement.

There are two key challenges to achieve CMO. First, how to design the download

scheduling algorithm with small overhead. A CMO client needs to learn different servers’

real-time capability quickly and schedule downloading according to it. Additionally, given

the high overhead to maintain HTTP connections, the client should also use as few servers

as possible to satisfy its downloading requirement. Second, how to minimize the cost of

infrastructure usage. The charging models of infrastructures are typically non-linear and

based on multiple factors (e.g. traffic volume and number of HTTP requests). Addition-

ally, an infrastructure also has different price functions in different geographical locations.

Such complex infrastructure charging models make it extremely difficult to decide how to

choose infrastructures for each user to minimize cost as well as guarantee users’ QoE.

Chapter 4 elaborates our design of CMO that addresses the preceding challenges. We

leverage a two-level approach to realize the whole framework. In the client-side level,

a client assigns a request window for each server, and the number of pieces it requests

from the server never exceeds the window size. The window size is adjusted with AIMD

(additive increase multiplicative decrease) according to the server’s capability. A client

requests pieces from different servers with different priorities. Intuitively, a server with a

lower price and larger window size should be preferred because it can help to save cost

and reduce the number of servers in use.

The ranks of server for cost is given by a global level centralized optimization. Based

on the observation that the cost function of most infrastructures are concave (the more us-

age, the lower price), we design an optimal algorithm which decides which infrastructures

to return to each user and the priority of these infrastructures. The client-side algorithm

respects the ranking of infrastructures.
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With such joint optimizations from both global and local views, we show that CMO

can minimize the cost for utilizing the infrastructures while still guaranteeing users’ QoE.

1.2 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we describe FFC

in more detail and show how the basic concept and algorithm can be extended in multi-

ple dimensions. Chapter 3 describes how zUpdate is formulated, designed and proved.

Additionally, we discuss how to handle several practical issues in the implementation of

zUpdate. Next, Chapter 4 presents CMO and describes in details our two-level joint op-

timization design. Further, it proves the correctness and optimality of the global optimiza-

tion algorithm. It leverages real CDNs in the evaluation to demonstrate its effectiveness in

reality. Finally, in Chapter 5, we conclude and look ahead to future work.
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Chapter 2

Traffic Engineering with Forward Fault

Correction

Faults such as link failures and high switch-configuration delays can cause heavy conges-

tion and packet loss in networks with traffic engineering. Because it takes time to detect

and react to faults, these conditions can last long—even tens of seconds. We propose for-

ward fault correction (FFC), a proactive approach to handling faults. FFC spreads network

traffic such that freedom from congestion is guaranteed under arbitrary combinations of

up to k faults. We show how FFC can be practically realized by compactly encoding the

constraints that arise from this large number of possible faults and solving them efficiently

using sorting networks. Experiments with data from real networks show that, with neg-

ligible loss in overall network throughput, FFC can reduce total data loss by a factor of

7∼130 in well-provisioned networks, and reduce the loss of high-priority traffic to almost

zero in well-utilized networks.
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2.1 Introduction

Centralized traffic engineering reduces network congestion and increases efficiency [13,

21, 31, 42, 44, 47]. In such systems, a (logically centralized) TE controller frequently re-

configures the network to match current traffic demand. This control enables the network

to carry more traffic, thus enabling the operators to extract more value from the expensive

infrastructure investment.

While centralized TE can be highly effective, it suffers from an inability to quickly

react to faults in both the data and control planes. Data plane faults occur when a link or

switch fails, which impacts packet forwarding. Control plane faults occur when the con-

troller fails to reconfigure a switch in a timely manner, even though the switch continues to

forward packets (as previously configured). They can occur due to a host of factors, such

as RPC (remote procedure call) failures, bugs in switch firmware or software, shortage of

memory in the switch, and so forth.

Both types of faults are common. Several studies have reported frequent link and

switch failures in large networks [40, 63, 74]; in a wide area network that we study, a link

fails every 30 minutes on average. Google reports both heavy delays and outright failures

in configuring switches [44]. The failure rate is in the range of 0.1-1%.1 In a network

with a hundred switches, this failure rate implies that the controller will commonly fail to

configure at least some of them.

These faults can cause heavy congestion and packet loss. When a link fails, switches

quickly move traffic to other available paths but, because this movement does not account

for link capacity constraints, it can severely congest some links. Similarly, control plane

faults cause congestion when a switch continues sending traffic on a link as per old con-

figuration, while it was expected to move the traffic away. Our experiments show that data

1Our own experiments confirm this failure rate. We used custom software on commodity switches. For
two different vendors, the failure rate was 10 times higher with the default software.
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and control plane faults frequently lead to links getting 10-20% more traffic than capacity.

The resulting high loss rate will seriously hurt TCP-based applications that are using the

network.

Today, relieving congestion due to these faults requires intervention by the TE con-

troller, but these reactions happen after congestion has already occurred. Worse, they can

take a long time due to the delay inherent in updating a large network, which stems from

factors such as RPC delays, control load on switches, and the time to switch forward-

ing rules. Updating a single switch rule can take a few seconds [44], and network-wide

updates typically require updating many rules per switch.

We thus argue for proactively handling faults, i.e., spread traffic in the network such

that no congestion occurs as long as the total number of faults is k or fewer. This guarantee

should hold for arbitrary combinations of faults. Our view is inspired by forward error

correction (FEC), in which a transmitted packet stream is modified such that all original

packets can be recovered, without any reaction (e.g., retransmission) as long as the number

of losses is up to k. Analogously, we call our approach forward fault correction (FFC).

Practically realizing FFC requires addressing two intertwined challenges—minimizing

throughput loss and computational scalability. Just as FEC has overhead in terms of re-

dundant information that is transmitted, FFC will have overhead in terms of link capacity

set aside to tolerate faults. This overhead must be low for FFC to be acceptable. The com-

putational challenge is that with n possible faults, the number of combinations of up to k

faults is
∑k

i=1

(
n
i

)
. With n=1000, a plausible number of links in a large network, and k=3,

this number over 109. Thus, enumerating all possible faults and considering their impact

is intractable. Approximations may help reduce computational effort, but unless one is

careful, they may heavily impact overhead.

We address these challenges by first formulating FFC requirements as a linear pro-

gram. This formulation is precise, which minimizes overhead, but has an intractably large
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number of constraints because of possible fault combinations. We then observe that these

constraints can be transformed, with minimal loss in precision, to a ”bounded M-sum”

problem: the sum of any M out of N variables is bounded. Finally, we develop a method

based on sorting networks [19], to efficiently encode this problem as O(kn) linear con-

straints. For control plane FFC, our approach is optimal with respect to overhead; for data

plane FFC, it is optimal in the case where the multiple paths that carry traffic between two

switches are disjoint.

Further, our approach is flexible and applies to many TE scenarios. We show how

it accommodates multiple traffic priorities, multi-step network updates [42], different TE

objectives (e.g., fairness versus maximizing throughput versus minimizing maximum link

utilization), and handles configuration faults in flow rate limiters [18, 67].

We evaluate FFC in a testbed with commodity switches and using simulations based

on traffic and fault data from real networks. We find that FFC is valuable in a range of

scenarios. In well-provisioned networks, as is common for ISPs today, FFC has negligible

throughput overhead and reduces data loss by a factor of 7∼130. In well-utilized networks

that use multiple traffic priorities, as is common for inter-datacenter networks [42, 44],

FFC protects high-priority traffic from almost all loss, again with negligible loss in total

network throughput.

Fundamentally, FFC makes available a novel control knob to network operators. To-

day, operators must either conservatively overprovision the network to guarantee the ab-

sence of congestion when faults occur or aggressively utilize the network [42, 44] at the

risk of severe fault-induced congestion. FFC enables operating points that trade-off provi-

sioning and congestion-risk in an informed manned, based on network characteristics and

desired protection levels for traffic.
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2.2 Motivation

FFC is motivated by the observations that data and control plane faults cause congestion

and that reacting to these faults is slow. We illustrate these observations below.

As is prevalent [13, 31, 42, 44] in TE networks, we assume tunnel-based forwarding.

One or more tunnels carry traffic between each ingress-egress switch pair; we call this

traffic a flow. Relative weights configured at the ingress switch determine how the flow’s

traffic is split across tunnels.

2.2.1 Impact of data plane faults

When a link or switch fails, it impacts all tunnels that traverse it. Upon learning about

tunnel failures, ingress switches rescale traffic to the remaining tunnels for the flow, in

proportion to configured weights. Suppose a flow has three tunnels with splitting weights

(0.5, 0.3, 0.2) . When the third tunnel fails, weights of (0.5
0.8 ,

0.3
0.8 , 0) are used to split traffic.

OpenFlow group tables can implement such rescaling [7].

Rescaling quickly restores connectivity but can leave the network in a congested state.

For example, Figure 2.2(a) shows an initial traffic distribution with two flows, {s2, s3}

→ s4. Dashed curves represent tunnels and numbers represent traffic volume they carry.

When link s2-s4 fails and s2 rescales, the traffic distribution of Figure 2.2(b) emerges, in

which link s1-s4 is heavily congested. Such congestion will persist until the TE controller

can compute a new solution and configure the network, which can take tens of seconds

(see below).

While this example was illustrative, Figure 2.1(a) characterizes congestion due to data

plane faults for L-Net, a real network on which we provide more information in §2.8.

This experiment uses topology and traffic data from the network, and it uses a standard

TE algorithm (§2.4.1) to spread traffic every interval (5 minutes) across six tunnels per-
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Figure 2.1: Congestion due to faults in L-Net.

flow. We fail randomly selected links or switches in each time interval and measure the

maximum link oversubscription rate, i.e., the amount of traffic above capacity that arrives

at the link. The graph plots the CDF of the oversubscription rate for the cases of 1–3

link failures and 1 switch failure. Even with a single link failure—which occurs every 30

minutes on average in this network—the link oversubscription rate is over 20% a quarter

of the time (75th %-ile). For a 100 Gbps link, 20% oversubscription means that 120 Gbps

traffic will arrive soon after a failure. Even with 100 MB buffer capacity, the switch will

be unable to buffer even 50 ms of this traffic and (TCP) flows will suffer a burst of high

loss rate.

The graph also shows that in the worst case, links receive traffic that is twice their

capacity. Switch failures hurt more in general, but have similar worst-case impact.

2.2.2 Impact of control plane faults

To illustrate how a delay or failure in configuring a switch causes congestion, Figure 2.3(a)

shows a simple network with 4 flows: s1 → {s2, s3} and {s2, s3} → s4. Assume that

the controller wants to change the configuration to Figure 2.3(b), to accommodate a new

flow s1→ s4. This change requires updating s2 and s3, to modify traffic split weights for

their flows. If s2 does not update and continues to split traffic as before, link s1-s4 will be

congested, as in Figure 2.3(c).
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Figure 2.3: Congestion due to a control plane fault.

Figure 2.1(b) characterizes congestion in L-Net due to control plane faults. In this

experiment, we simulate a network update every interval based on the same TE algorithm

as above. For each update, we inject control plane faults at randomly selected switches

and measure the maximum link oversubscription rate. We see from the graph that, though

control plane faults are less damaging than data plane faults, even a single fault—-which

can occur every 5 minutes if the fault rate is 1% [44] and the network has 100 switches—

can lead to an oversubscription of 10% a tenth of the time.

While we focus on switch configuration faults above, a similar problem arises for rate

limiter configuration as well, in networks that control traffic rate [42,44]. Congestion will

occure if a rate limiter continues to send traffic at the older, higher rate. We show that FFC

handles such faults as well.

The example above assumes that all updates are sent to the switches in one shot; in

another method [42], updates are sent in multiple steps to avoid transient congestion due
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Figure 2.5: FFC for conntrol plane faults.

to switches applying updates at different times. To go from Figure 2.3(a) to 2.3(b), possible

steps are: 1) update traffic splitting ratios at s2 and s3; and 2) if that succeeds, update the

rate of flow s1 → s4. This way, no congestion will occur if s2 (or s3) fails to update.

However, configuration failures will stall network updates because Step 2 cannot proceed

until Step 1 finishes. They will also lower throughput since flow s1 → s4 cannot start if

Step 1 fails. FFC handles control plane faults for multi-step updates as well.

2.2.3 Slow reaction to faults

Reactive approaches suffer from the fact that they start after congestion and loss has al-

ready started, and they can take a long time in large production networks. Figure 2.6(a)

shows the distribution of rule update times in B4, based on Figure 12 and Table 4 of the pa-

per [44]. It excludes switches for which configuration completely fails. It shows both RPC
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Figure 2.6: Switch update latencies.

delays and the time to update a single forwarding rule. Typically, many rules per switch

are updated during a network update; this number is commonly over 100 for L-Net. For

updating R rules, the total update delay will be RPC delay + R× per-rule delay; we have

confirmed this behavior experimentally. Thus, in B4, the median delay for 100 rules will

be over 40 seconds and the worst case over 7 minutes.

While B4 is a complex network, we also quantified update delays in a controlled,

lab environment using commodity switches. We issued rule update commands, while the

switches had moderate background control load such as reading counters and running tun-

nel liveness detection protocol. (Forwarding load has no visible impact on rule update

time.) The number and type of updates were drawn from those issued in L-Net. Fig-

ure 2.6(b) shows that the rule update time is still substantial. The median is 10 ms and the

worst case is over 200 ms. Ignoring RPC delay, for updating 100 rules, the median update

delay for a switch will be 1 second and the worst case over 20 seconds. We will show

that FFC provides significant benefit even when switch update characteristics mimic this

simplified setting.

It may be possible to make reaction times faster, but it is fundamentally limited by fac-

tors such as network path latencies, overloaded switch CPUs, time to update forwarding

tables,2 and noise inherent to any production environment. We thus advocate an approach

2Being based on TCAMs (ternary content addressable memory), they are optimized for fast lookups,
rather than updates [31]
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where common faults are handled proactively, and only big, rare faults are handle reac-

tively.

2.3 FFC Overview and Challanges

Our goal is to develop proactive methods to handle data and control plane faults. Inspired

by FEC, we develop the concept of FFC, which guarantees that no congestion will occur

as long as the number of faults is up to (a configurable bound) k . Explicit fault detection

or any reaction from the TE controller is not needed to maintain this guarantee.

Just as the primary controls in FEC are the number of packets sent and their encoding,

the primary controls in FFC are the amount of traffic entering the network and its spread.

(Assume for now that incoming traffic is rate controlled; in §2.5.4, we apply FFC to other

networks.) We illustrate below how these controls, with some overhead in terms of lower

throughput, can proactively protect against faults.

2.3.1 FFC for control plane faults

We start with control plane faults because they are unique to centralized TE and have

not been studied before. Control plane FFC guarantees that no congestion occurs as long

as the number of switches that experience a configuration fault is up to k. To see how

this guarantee may be achieved, let us revisit Figure 2.3, in which we wanted to update

switches s2 and s3 to accommodate a new flow. If we try to update the network from

Figure 2.3(a) to 2.3(b), in which flow s1 → s4 sends 10 units of traffic, it is impossible

to be robust against configuration failure of s2 or s3. However, the network configuration

of Figure 2.5(a), in which s1 → s4 sends 4 units of traffic, is robust to either one or both

switches failing to configure. Thus, this traffic distribution is an example of FFC with k=2,

where no congestion will occur if up to two switches fail to update.
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The downside of course is that the network throughput is lower than what would have

been in the absence of faults and FFC. However, if s2 and s3 were successfully configured,

the flow s1→ s4 will be allowed to increase its rate to 10 units in the next period. Even if

temporary, lowered throughput is an overhead of robustness provided by FFC.

As with FEC, FFC overhead is lower for lower protection levels. In the example above,

if robustness to the configuration failure of up to one switch (k=1) is desired, we can safely

install the configuration of Figure 2.5(b), which supports 7 units of flow s1 → s4. There

will be no congestion if s2 or s3 (but not both) fail to configure.

2.3.2 FFC for data plane faults

Data plane FFC guarantees that no congestion will occur as long as up to k links (or

switches) fail. To see how this guarantee may be achieved, let us revisit Figure 2.2, where

congestion occurs when link s2-s4 fails. However, if we spread traffic as in Figure 2.4(a),

any single link failure (k = 1) will not cause congestion. For example, if link s2-s4 fails,

the traffic distribution after rescaling is shown in Figure 2.4(b).

As for control plane, data plane FFC can lower throughput. When a link fails, network

capacity is reduced. To not congest after a failure, we must leave spare capacity to absorb

the traffic that was being carried by the link.

2.3.3 Challenges and overview of techniques

Practical realization of FFC for arbitrary topologies and traffic demands poses two chal-

lenges. The first is the scalability with which robust traffic distributions can be computed.

If there are n network entities, and we want to be robust to up to k of them failing, FFC

has to deal with
∑k

j=1

(
n
j

)
failure cases. Thus, naive, enumeration-based approaches are

computationally intractable for large networks. We must meet the computational challenge
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while meeting the second challenge of minimizing the loss in network throughput. After

all, if network throughput were not a concern, a trivially robust solution is to not carry any

traffic.

We address these challenges by first formulating the conditions on traffic quantity and

spread as linear constraints. While this formulation is precise, it has a large number of

constraints. We then reduce these large number of constraints to a much smaller number

by observing that the constraints can be transformed to what we call the ”bounded M-sum”

problem and all constraints in such a problem can be reduced to a single constraint on the

largest (or smallest) M variables. Finally, we encode these variables using efficient linear

expressions with the aid of sorting networks [19]. The result is an FFC formulation with

O(kn) constraints.

Our techniques exploit two properties of our setting. First, the impact of a fault is easy

to model. If switch configuration fails, it sticks to its old configuration; if a link fails,

ingress switches deterministically rescale traffic. This simplicity allows us to capture the

conditions imposed by FFC using efficient, linear constraints. Second, while faults are

common, the fault ratio (i.e., the fraction of elements that fail) is low. Thus, it suffices

to guard against a small number of faults (k). Solving for high values of k would be

computationally intensive and impose a high throughput overhead.

2.4 Basic FFC Formulation

We now describe how to formulate and solve FFC for a basic TE setting. Our formulation

is highly flexible, and §2.5 shows how it easily extends to a range of TE settings.
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TE G Network graph with switches V and links E.
Input F = {f} Flows aggregated by ingress-engress switches.

df The bandwidth demand of f in a TE interval.
ce The bandwidth capacity of link e.
Tf The set of tunnels that are set up for flow f .
l[t, e] 1 if tunnel t uses link e and 0 otherwise.
s[t, v] 1 if tunnel t’s source is switch v and 0 otherwise.

TE bf The granted bandwidth to flow f .
Output af,t The bandwidth allocated for flow f on tunnel t.

TE βf,t The upper-bound of flow f ’s traffic.
Others wf,t The traffic splitting weight of flow f on tunnel t.
FFC pf & p The max number of f ’s tunnels traverse a link.

qf & q The max number of f ’s tunnels traverse a switch.

kc, ke, kv
The number of configuration, link and switch
failures that FFC protects the network against.

τf
The min number of f ’s residual tunnels with up
to ke link and kv switch failures.

Table 2.1: The key notations in FFC formulations.

2.4.1 Basic TE (without FFC)

The basic TE problem can be formulated as follows, with the key notations summarized in

Table 4.1. The input is a graph G=(V,E), where V and E are sets of switches and directed

links between switches. Each link e ∈ E has a capacity ce. The traffic demand is a set

of flows, where each flow f is (aggregated) traffic from an ingress to an egress switch.

The bandwidth demand of f in a TE interval is df and its traffic can be carried on a set of

pre-established tunnels Tf .

The output of the TE is bandwidth allocation {bf |∀f} of each flow and how much of

the flow can traverse each tunnel {af,t|∀f, t ∈ Tf}. In networks where the flow rate cannot

be controlled, the TE output is only the latter (and bf = df ).

The TE problem can be solved based on path-constrained multi-commodity flow prob-

lem [35], as follows:
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max
∑

f∈F bf (2.1)

s.t.∀e ∈ E :
∑

f∈F,t∈Tf af,tl[t, e] ≤ ce (2.2)

∀f ∈ F :
∑

t∈Tf af,t ≥ bf (2.3)

∀f ∈ F, t ∈ Tf : 0 ≤ bf ≤ df ; 0 ≤ af,t (2.4)

where the binary variable l[t, e] denotes if tunnel t traverses link e. The TE objective in this

formulation is to maximize network throughput (Eqn. 2.1). We consider other objectives

in §2.5.3. Eqn. 2.2 says that no link should be overloaded, and Eqn. 2.3 says that the

sum of the allocation of a flow across all its tunnels should no less than its allocated rate.3

Eqn. 2.4 says that the bandwidth granted to a flow is no more than the flow’s demand, and

all variables are nonnegative.

The formulation above captures TE for both wide area networks (WAN) and data center

networks (DCN). One difference is that in DCNs, given the larger scale, TE focuses only

on large flows (elephants) and link capacity (ce) refers to what is not used by small flows

(mice).

To implement the computed solution, the TE controller updates the flow’s rate limiters

to {bf} and ingress switches to use traffic splitting weights of wf,t = af,t/
∑

t∈Tf af,t.

2.4.2 Modeling control plane faults

For control plane faults, the goal of FFC is to compute the new configuration ({bf}, {af,t})

such that no congestion will occur as long as kc or fewer switches fail to update their old

configuration ({b′f}, {a
′
f,t}). Another type of control plane fault is a failure to configure a

rate limiter, which we will consider in §2.5.5. Let λv=1 denote a configuration failure for

3Using ‘≥’ instead of ‘=’ in Eqn. 2.3 simplifies the exposition of FFC for data plane faults. For TE
without FFC, given the goal of maximizing bf , using ‘≥’ is equivalent to using ‘=’.
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at least one of the flows with v as the ingress switch; λv=0 denotes that configuration for

all flows starting at v succeeds. An individual case of control plane faults in the network

can be represented by a vector λ=[λv|v ∈ V ] that indicates the status of each switch. Thus,

FFC that is robust to kc faults requires that the network have no overloaded link under the

set of cases Λkc = {λ|
∑

v∈V λv ≤ kc}.

This requirement can be captured as:

∀e ∈ E,λ ∈ Λkc :
∑
v∈V
{(1− λv)âv,e + λvβ̂v,e} ≤ ce (2.5)

where âv,e is the total traffic that can arrive at link e from flows starting at v if there is no

configuration fault. That is:

∀v ∈ V, e ∈ E : âv,e =
∑

f∈F,t∈Tf af,tl[t, e]s[t, v] (2.6)

where binary variable s[t, v] denotes if tunnel t’s source switch is v.

In Eqn. 2.5, β̂v,e is the upper bound on link e ’s traffic from flows starting at v when a

fault occurs (λv = 1). That is:

∀v ∈ V, e ∈ E : β̂v,e =
∑

f∈F,t∈Tf βf,tl[t, e]s[t, v] (2.7)

where βf,t is the upper bound on flow f’s traffic on tunnel t when a faults occurs for f .

Since we assume the updates in rate limiters are successful, βf,t can be modeled as:

∀f ∈ F, t ∈ Tf : βf,t = max{w′f,tbf , af,t} (2.8)
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where w
′
f,t is flow f’s splitting weight for tunnel t in the old configuration (which is

known).

Adding Eqns. 2.5∼2.8 to the basic TE formulation can, in theory, find TE configura-

tions that are robust to kc control plane faults. However, Eqn. 2.5 contains |E|
∑kc

j=1

(|V |
j

)
constraints because Λkc has

∑kc
j=1

(|V |
j

)
failures cases in total. Directly solving for these

number of constraints is computationally intractable. We outline in §2.4.5 how we reduce

this problem to a smaller number of equivalent constraints.

2.4.3 Modeling data plane faults

For data plane faults, the goal of FFC is to compute flow allocations such that no conges-

tion occurs even after up to ke links fail and up to kv switches fail. The guarantee is for

link failures that are not incident on the failed switches. Since switch failures imply link

failures, one could protect against them by considering only link failures [78]. But we

explicitly consider switch failures because switches can have a large number of incident

links; protecting against switch failures implicitly (using link failures) would require a

high value of ke. This approach would significantly hurt throughput because it will protect

against arbitrary combinations of up to ke links, a much stronger condition than protecting

against ke incident links on the same switch.

We model data plane FFC as follows. Let µe=1 denote that link e has failed, and ηv=1

denote that switch v has failed; the variable values are 0 otherwise. Then, a case of data

plane fault can be represented by (µ,η) in which vector µ = [µe|e ∈ E] and η = [ηv|v ∈

V ]. Thus, TE that is robust to ke link failures and kv switch failures requires that there

is no overloaded link under the set of hardware failure cases Uke,kv = {(µ,η)|
∑

e µe ≤

ke,
∑

v ηv ≤ kv}.

Recall that data plane faults can cause congestion because they alter traffic distribution

over the network when ingress switches rescale traffic, that is, move it from the impacted
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to the residual tunnels for the flow. Given a fault case (µ,η), we know the residual tunnels

Tµ,η
f of each flow f—those that do not traverse any failed link or switch. FFC requires

that f’s residual tunnels be able to hold its allocated rate.

∀f ∈ F, (µ,η) ∈ Uke,kv :
∑

t∈Tµ,η
f

af,t ≥ bf (2.9)

Further, if a flow f has no residual tunnels (Tµ,η
f = ∅) under a failure case (µ,η), its flow

size bf should be fixed to 0.

Eqn. (2.9) also guarantees that no link will be overloaded:

Lemma 1 A TE configuration ({af,t}, {bf}) which satisfies constraints Eqn. 2.2∼Eqn. 2.4

and Eqn. 2.9 under fault case (µ,η) causes no link overload after all ingress switches

rescale.

Proof. When a data plane failure case (µ,η) happens, the traffic load of a flow f on a

residual tunnel t ∈ Tµ,η
f is:

bµ,ηf,t =
at,f∑

t∈Tµ,η
f

af,t
∗ bf ≤

at,f
bf
∗ bf = af,t (2.10)

which is directly derived from Eqn. 2.9. Therefore, we know the total traffic load on a link

e is:

∀e ∈ E :
∑

f,t∈Tµ,η
f

bµ,ηf,t l[t, e] ≤
∑

f,t∈Tf af,tl[t, e] ≤ ce

which finishes the proof.

As for control plane faults, adding these constraints to the basic TE will in theory yield

a solution that is robust to data plane faults, but directly solving for these constraints is
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intractable given the large number of possible failure cases in Uke,kv . Before describing

how to solve these constraints, we briefly discuss how careful tunnel layout can improve

robustness to data plane faults as well as reduce the overhead of data plane FFC.

2.4.4 Robust tunnel layout

One observation from Eqn. 2.9 is: higher the number of residual tunnels, greater the

network throughput that FFC supports. Thus, we can help improve throughput by laying

out tunnels such that flows lose as few tunnels as possible when faults occur. The ideal

case is that each a flow loses at most one tunnel when a fault occurs, but it requires that

tunnels be switch-disjoint, which also implies link-disjoint, which limits flows to a small

number of tunnels in networks with low path diversity. That would in turn restrict network

throughput, as more tunnels are better able to utilize network capacity.

To balance these needs, we recommend (p, q) link-switch disjoint tunnels. For an indi-

vidual flow, at most p tunnels should traverse a link and at most q tunnels should traverse

a switch. The parameters p and q can be flow specific. Algorithms to find link and switch

disjoint paths can be extended to find (p, q) link-switch disjoint tunnels. We outline a

simple algorithm to find network paths that can support such tunnels as follows.

Finding p-link-q-router-disjoint paths

We can construct p-link-q-router-disjoint tunnels by extending the classic arc-disjoint and

vertex-disjoint path search algorithms [24]. Figure 2.7 shows a concrete example to

demonstrate how the algorithm works. The original network topology is in Figure 2.7(a).

In the classic arc-disjoint path search algorithm, regardless the actual link capacity in (a),

the virtual capacity of all links is set to 1 as in (b). The link-disjoint tunnels from s1 to s5

are the pathes used by the max-flows from s1 to s5 on the network graph with the virtual

link capacity.
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(a) Original topology
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(b) Meta topology of classic link-disjoint
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Result tunnels (max-flow pathes): 
s1->s2->s5,
s1->s3->s5

s5

(c) Meta topology of 2-link- -router disjoint

s2
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s4

s1

Result tunnels (max-flow pathes):
s1->s2->s5, s1->s2->s4->s5
s1->s3->s5, s1->s3->s2->s5

(d) Meta topology of a link in 2-link-3-router disjoint

s1 S1.r S1.s

s2 S2.r S2.s

1

1

1

1

1
1

1

S1.r S1.s

S2.r S2.s

Figure 2.7: A concreate example of the algorithm to construct robust tunnels.

If we want 2-link-∞-router disjoint pathes, we replace each link with 2 meta nodes

and the links (with capacity 1) connecting the meta nodes and the start/end node of the

original link, as illustrated by (c). On such a meta-graph, we find link-disjoint pathes from

s1 to s5. After we remove all the meta nodes in the pathes, we get the tunnels that are

2-link-∞-router disjoint.

For router’s disjointment, we first need to transform nodes on the graph into intra-

node links. Figure 2.7 (d) shows the transformation of a single link, For 2-link-3-router

disjointment, we first transform each node on the original graph into a directional intra-

node link from the ‘‘receiver’’ part of the node (s1.r and s2.r in (d)) to the ‘‘’sender’ part

(s2.s and s2.s in (d)). Accordingly, each inter-node link in the original graph becomes

two directional links from one end’s sender part to the other end’s receiver part. Next, we

bring in 2 meta-nodes to inter-node links and 3 meta-nodes to intra-node links. Finally, we

obtain the 2-link-3-router disjoint tunnels on the original graph after removing all meta-
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nodes and transform intra-node links back to nodes from the link-disjoint pathes on the

meta-graph (not shown in Figure 2.7).

Note that the robust tunnels are built on physical links rather than logical links. If two

routers have multiple physical links that can fail independently, each one of the links can

carry p tunnels for a flow in a p-link-q-router disjoint strategy.

2.4.5 Efficiently solving FFC constraints

To tractably solve the large number of FFC constraints, we transform them to a ”bounded

M-sum” problem and then encode the transformed problem using a sorting network.

Transformation to bounded M-sum

We define the bounded M-sum problem as: Given a set of N variables, the sum of any M

of those should be less (or more) than a bound B. Formally, if NM is the set of all possible

variable subsets with cardinality ≤M , we have:

∀S ∈ NM :
∑
ni∈S

ni ≤ B (2.11)

The interesting aspects of this problem are: 1) FFC constraints can be transformed to

it; and 2) while the original formulation has a large number of constraints, all of them are

satisfied as long as one constraint involving the largest M variables is satisfied. If nj is an

expression for the j-th largest variable in N , all constraints above hold if:

M∑
j=1

nj ≤ B (2.12)

Thus, if we can find efficient (linear) expressions for the largest M variables in N , we
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can replace the original subset constraints with one constraint. We show below how to

find such expressions, but first we show how to transform FFC constraints into bounded

M-sum problem.

Control plane faults Eqn. 2.5 of control plane FFC can be equivalently re-written as:

∀e ∈ E,λ ∈ Λkc :
∑
v∈V

λv(β̂v,e − âv,e) ≤ ce −
∑
v

âv,e (2.13)

Let D = {β̂v,e − âv,e|v ∈ V } and dj be the jth largest element in D. Since β̂v,e − âv,e ≥ 0,

Eqn. 2.13 is equivalent to

∀e ∈ E :

kc∑
j=1

dj ≤ ce −
∑
v

âv,e (2.14)

Thus, we have transformed the original |E| × |Λkc | constraints into |E| constraints, one for

each link.

Data plane faults Assume that the tunnels of flow f are (pf , qf ) link-switch disjoint. (The

values (pf , qf ) are computable for any given tunnel layout; the layout does not have to use

the robust strategy above.) Then, for any data plane fault case (µ,η) ∈ Uke,kv , the number

of residual tunnels is no less than τf = |Tf | − kepf − kvqf . Suppose ajf,t is the jth smallest

(not largest) element in Af = {af,t|t ∈ Tf}, the following guarantees that all constraints in

Eqn. 2.9 are satisfied:

∀f :
∑τf

j=1 a
j
f,t ≥ bf (2.15)

This is because the left-hand side of Eqn. 2.15 is the worst-case bandwidth allocation that

flow f can have from its residual tunnels under any case in Uke,kv .
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Figure 2.8: An example sorting network.

Unlike control plane faults, the transformation from Eqn. 2.9 to Eqn. 2.15 does not pre-

serve equivalence. Satisfying Eqn. 2.15 satisfies Eqn. 2.9, but not vice versa. In the special

cases link failures with link-disjoint tunnels and switch failures with switch-disjoint tun-

nels, the two are equivalent.

Interestingly, however, the imprecision of Eqn. 2.15 allows it protect against fault cases

beyond Uke,kv . It essentially protects the network against any data plane fault case where

the number of tunnel failures is no more than kt = kepf + kvqf . Suppose (pf , qf )=(1, 3)

and our desired protection level is up to three links failures and no switch failure (ke=3,

kv=0), with Eqn. 2.15 we also simultaneously protect the network against a single arbitrary

switch failure and no link failure (ke=0, kv=1). We leverage this effect in our experiments

(§2.8).

Encoding for largest (or smallest) M variables

We now explain how we express the largest M variables as linear constraints. When added

to other TE constraints, they help efficiently compute FFC traffic distribution.

Our method is based on sorting networks [19], which are networks of compare-swap

operators that can sort any array of N values. An example network to sort 4 values is

shown in Figure 2.8. This network is based on the merge sort algorithm. Each compare-

swap operator takes two inputs from left, and it moves the higher input upwards and the

lower downwards.

The characteristic of sorting networks that we exploit is that the sequence of compare-
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Figure 2.9: A network to find the largest-2 elements.

swap operations are independent of the input, unlike many sorting algorithms (e.g., quick

sort) where the next comparison depends on the outcome of previous ones. This charac-

teristic allows us to encode its computation as linear expressions for each of the largest to

smallest variable.

We also exploit that we are interested in only the largest M values, rather than sorting

them all, which allows us to build a smaller network. Practical sorting networks requires

O(Nlog(N)2) compare-swap operators, while we use a partial network with O(NM) op-

erators. Since M is small in our setting—equivalent to the number of faults we want to

guard against—and N is large, the savings are significant.

We base our network on bubble sort; unlike other algorithms, its premature termination

after M stages yields the largest M values. Figure 2.9 illustrates our strategy for the case

of finding the largest 2 of 4 values. The first stage finds the largest element, and the second

finds the second largest.

Algorithm 1 shows the pseudocode for generating expressions for the largestM values.

It operates in M steps, and in each step, it builds an expression for the largest of the

remaining values. Algorithm 2 shows the pseudocode for building the expression for the

largest value.

A similar approach can find the expressions for the smallest M values. We just need to

use compare-swap operators that push the lower of the two values upwards.

32



Algorithm 1: LargestValues(X , M )
1 [Input] X: an array of variables
2 [Input] M : the number of largest values to extract
3 [Output] Y : an array of new variables in which Y [i] (0 ≤ i ≤M) is the ith largest element

in X
4 [Output] C: a set of constraints between X and Y

5 Y ← ∅; C ← ∅;
6 // Pop M largest variables from X .
7 while |Y | < M do
8 y∗, X , C

′ ← BubbleMax(X) ;
9 Y ← Y + {y∗}; C ← C + C

′
;

10 return Y , C ;

Algorithm 2: BubbleMax(X)
1 [Input] X: an array of variables
2 [Output] x∗: a variable that represents max{X}
3 [Output] Y : an array that represent X \ {x∗}
4 [Output] C: a set of constrants among X , Y and x∗

5 x∗← X .pop(); Y ← ∅; C ← ∅ ;
6 while X 6= ∅ do
7 x← X .pop() ;
8 xmax, xmin← new variables ;
9 // Make two new constraints.

10 c1← 2 ∗ xmax = x+ x∗ + |x− x∗| ;
11 c2← 2 ∗ xmin = x+ x∗ − |x− x∗| ;
12 x∗ ← xmax; Y ← Y + {xmin}; C ← C + {c1, c2};
13 return x∗, Y , C ;

Throughput and computational overhead

Our methods have the following properties with respect to throughput overhead: 1) Our

control plane FFC scheme is optimal; and 2) Our data plane FFC scheme is optimal for

the special cases of link failures with link disjoint tunnels and switch failures with switch

disjoint tunnels. Optimal means that no other scheme will have lower overhead for the

same degree of protection.

The computational overhead of our methods can be characterized using the number

of additional variables and constraints they introduce in the LP. The basic (non-FFC) TE
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problem has 2|F | + |E| constraints and
∑

f |Tf | + |F | variables. Control plane FFC intro-

duces |E| constraints (Eqn. 2.14) plus up to 4kc|V ||E| constraints and up to 3kc|V ||E| vari-

ables to encode the partial sorting network. (Even though we show only 2 new variables

and 2 constraints in Algorithm 2, multiplicative factors of 4 and 3 stem from converting

the absolute values in Lines 10∼11 into standard linear constraints.) Data plane FFC intro-

duces up to |F |+4
∑

f |Tf |min{|Tf |−τf , τf} constraints and up to 3
∑

f |Tf |min{Tf−τf , τf}

variables. Recall that τf = |Tf | − kepf − kvqf .

2.4.6 Combined FFC for both faults types

To simultaneously protect against control and data plane faults, we simply include both

types of constraints in TE computations. It will take three parameters (kc, ke, kv) and the

guarantee is that no congestion will occur as long as switch configuration failures, link

failures, and switch failures are up to kc, ke , and kv , respectively.

A subtle issue can arise in combined protection settings right after data plane faults

bigger than the protection level (e.g., number of failed links > ke). Due to such faults,

some links may get congested and there may be no way to move traffic away from them

while being also robust to control plane faults. For instance, assume that due to a big data

plane fault, after rescaling, a link e with capacity 10 gets 7 units of traffic each from three

flows that start at different ingress switches. Moving the extra 11 units of traffic away

from the link requires updating at least two switches. But if we are protecting against two

control plane faults (kc=2) planning for this movement is impossible; there would be no

feasible solution to the FFC constraints. To handle this issue, we allow unprotected moves

for overloaded links by setting kc=0 for such links in Eqn. 2.5. In theory, overloaded

links can arise after big control plane faults as well, but in our experience, such faults are

unlikely to create congestion that is so severe that traffic cannot be moved in a manner that

is robust to (further) control plane faults.
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2.5 Extending Basic FFC

Our FFC formulation is not only efficient but also flexible. We now show how it extends

to a wide range of TE settings.

2.5.1 Traffic with different priorities

Earlier, we assumed that all traffic has the same priority; some networks may use mul-

tiple priorities to differentiate between applications with different performance require-

ments [42, 44]. FFC can be extended to this setting to offer different levels of protections

to different priorities. The TE solution for higher priority traffic is computed first with

a custom protection level (khc , khe and khv ), and the TE solution of lower priority traffic is

computed next with its own protection level (klc, kle and klv). This cascading computation is

already done to support multiple priorities [42, 44]; computation for lower priority traffic

uses residual link capacity (not actually used higher priority traffic).

A requirement for the extension above is that the protection level for high priority

should not be smaller (khx ≥ klx, x ∈ {c, e, v}), which is a desirable property anyway. Oth-

erwise, the FFC-TE for lower priorities may not have a feasible solution because the con-

figuration for high priority traffic may violate FFC constraints.

2.5.2 Congestion-free updates

Some networks use multi-step updates to preclude transient congestion caused by different

switches updating their configuration at different times [42,61]. The basic idea is to find a

chain of intermediate TE configurations Ai={aif,t}(0 < i < n) that update the network from

current configuration A0 to the desired configuration An. The transition between each pair

of adjacent TE configurations is guaranteed to be congestion free irrespective of the order

in which the switches apply updates. Such intermediate TEs are found using the following
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key constraint:

∀e ∈ E, i :
∑
v

max{âi−1
v,e , â

i
v,e} ≤ ce (2.16)

This constraint captures the condition that each link e should be able to accommodate

the maximum traffic, across adjacent configurations, it gets from each ingress switch v.

After computing the intermediate configurations, the TE controller updates the network

step-by-step: A0 → A1 . . . An.

With congestion-free updates, control plane faults will not cause congestion, but will

block the update process; the preceding step must complete before the next step can be

taken. In this setting, FFC can ensure that the update can proceed from Ai−1 to Ai as long

as the cumulative number of faults (across all steps thus far) is kc or fewer. We can find

such intermediate configurations by replacing Eqn. 2.16 with:

∀e ∈ E, λ ∈ Λkc , i :∑
v λvmax{β̂0

v,e, ...β̂
i
v,e}+ (1− λv)max{âi−1

v,e , â
i
v,e} ≤ ce

This is a large number of constraints, but we can solve them efficiently by transforming

them to the bounded M-sum problem (§2.4.5). We omit details for space constraints.

2.5.3 Optimizing for fairness

Earlier, we assumed that TE objective was to maximize network throughput; another com-

mon objective is fairness among flows [42, 44]. Fairness typically introduces more con-

straints in the TE problem, and simply including those constraints will yield FFC-TE with

fairness. As a concrete example, consider the iterative approximate-max-min fair meth-od
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of SWAN [42]. It solves the basic TE (Eqns. 2.1- 2.4) multiple times, each time with an

upper-bound on flow allocations (bf ). The bound is iteratively increased by multiplying it

by a factor α. The allocation of flows that are unable to reach the bound in a given iteration

are frozen for future iterations, and the iterations continue until the bound goes above the

maximum flow demand (df ). This process ensures that flows with large demands cannot

get a higher allocation until the allocation of other flows cannot be increased to at least

that level. It yields flow allocations that are provably at most α away from true max-min

fair allocation (which is computationally hard to compute) [42].

The same process can be used largely unmodified to compute TE solutions that are

both fair and provide FFC. The only difference is that in each iteration we include the

FFC-related constraints as well.

2.5.4 TE without flow rate control

In some networks, such as ISP backbones, controlling the rates of incoming flows is not

possible. Instead of allocating flow rates, the goal of TE tends to be to configure the

network such that maximum link utilization (MLU) is minimized while carrying the of-

fered demand ({df}). The network configuration ({af,t}) can be computed by using the

following objective function and constraint:

min. Θ(u)

s.t.∀e : u ≥
∑

v âv,e/ce

where u denotes MLU and Θ is a function of MLU that needs to be minimized.

Constraints for data plane FFC stay the same in this setting, but control plane FFC

requires changing the objective function and additional constraints, as follows:
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min. Θ(u) + σΘ(uf)

∀e ∈ E, λ ∈ Λkc : uf ≥
∑

v{λv ˆβv,e + (1− λv)âv,e}/ce

where σ > 0 is a coefficient that balances the importance of MLU in normal cases u and

MLU when faults occur uf. These constraints can be solved using the method of § 2.4.5.

2.5.5 Control plane faults for rate limiters

Earlier, we assumed that configuration updates for rate limiters always succeed; some

networks may experience update failures for rate limiters as well. If ingress switches and

rate limiters are updated independently, the traffic load of a flow on a tunnel can be a mix

of old or new traffic splitting weights and old or new flow sizes. We can account for this

by modifying Eqn 2.8 to:

βf,t = max{a′f,t, b
′
fwf,t, bfw

′
f,t, af,t} (2.17)

In some networks, the updates on switches and rate limiters are ordered to ensure that

there is no congestion due to transient inconsistencies in flow sizes and tunnel weights [42].

The order is: if f’s size is increasing (b′f ¡ bf ), the traffic splitting weights at ingress

switches are updated first and the rate limiter is updated after (and only if) that succeeds;

otherwise, the rate limiter is updated first and the splitting weights are updated after that

succeeds. Thus, if b′f ¡ bf , the combination of new flow size and old weights (bfw
′
f,t) will

not occur and b′fwf,t ¡ af,t; similarly if b′f ¿ bf , the combination of old flow size and new

weights (b′fwf,t) will not occur and bfw
′
f,t ¡ a′f,t. We can then simplify Eqn. 2.17 to:
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βf,t = max{a′f,t, af,t} (2.18)

Besides simplifying the FFC formulation, ordering of updates on switches and rate limiters

also helps lower the overhead of FFC. It reduces the number of possible traffic configura-

tions for which we must be prepared.

2.5.6 Uncertainty in current TE

Earlier, we assumed that while computing the next TE configuration, the controller exactly

knows the current configuration ({a′f,t}, {b
′
f}) of each flow. Sometimes, however, there

may be uncertainty in the configuration of some flows, e.g., if update commands were sent

in the last round to change configuration from ({a′′f,t}, {b
′′
f}) to ({a′f,t}, {b

′
f}) but the success

of some updates could not be confirmed. In such an event, the configuration of the flow

can be either ({a′′f,t}, {b
′′
f}) or ({a′f,t}, {b

′
f}).

We can explicitly account for this uncertainty in FFC computations. Suppose F is a

set of flows with uncertain configurations. Instead of computing yet another configuration

for them, we try to bring their configuration up-to-date and, in terms of link capacity

allocation, we plan for them to be in either of the last two configurations. The following

constraints capture this strategy:

∀f ∈ F , t ∈ Tf : bf = b
′
f ; af,t = a

′
f,t

∀f ∈ F , t ∈ Tf : βf,t = max{a′′f,t, a
′
f,t}
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Figure 2.10: The network topology emulated in our testbed.

2.6 Implementation

Our FFC controller is implemented as a drop-in replacement for existing TE controllers.

It takes as input traffic demand (per-priority ingress-egress flow), network topology, and

current traffic, and produces the allocation of each flow and configuration for each switch.

The additional configuration for our controller includes the protection level (kc, ke, kv) for

each priority. It implements all the extensions in §2.5. We use Solver Foundation [4]

v3.0.2 with CPLEX [1] plugin v12.5.0 as our LP solver.

Our implementation includes a few optimizations that do not practically impact the

FFC properties but help reduce the computational burden. For control plane FFC, observe

that not all ingress switches have traffic on each link. Thus, in Eqn. 2.14, if a switch v has

no load on a link e in the old TE, we ignore v when considering the safety of e. Similarly,

we also ignore switches that have little traffic load—less than 0.001% of capacity—on e in

the old TE because the impact of such switches not updating is negligible. For data plane

FFC, we pick mice flows—those that collectively carry less than 1% of the traffic—and fix

their tunnel bandwidth allocations with the constraint af,t =
bf
τf

, which suffices to satisfy

Eqn. 2.15, rather than using sorting networks.
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Figure 2.11: Traffic distribution before link s6-s7 fails.

2.7 Testbed Evaluation

We begin our evaluation of FFC by first performing experiments on a testbed. These

experiments show the value of FFC with real switches and actual delays in detecting and

reacting to failures. The next section shows the value of FFC at scale using simulations

with data from a real WAN.

Our testbed emulates a WAN with 8 sites spread across 4 continents, as shown in Fig-

ure 2.10. Each site has 5 servers that generate traffic and 1 WAN-facing switch (Arista

7050T). The capacity of every cross-site link is 1 Gbps. The TE controller is in New York

(s5), and we emulate delays for control messages based on geographic distances. We up-

date switch rules via a custom software agent running on the switches (which we have

found to be more performant and reliable than the built-in software). We use iPerf [3] on

the servers to generate UDP traffic flows with specified rates and measure packet loss ac-

cording to both iPerf’s server reports and the packet counters in the switches. All switches

run link liveness detection protocol, and they report any failures to ingress switches. Upon

hearing about a failure, ingress switches rescale traffic away from the impacted tunnels.

We conducted several experiments to study the behavior of FFC and non-FFC TE, we

present results from a simple, representative experiment that illustrates their differences

for a data plane fault. This experiment has two flows, s3→s7 and s4 → s5, each with

demand 1 Gbps. Figure 2.11 shows how this traffic was spread in the case of FFC and non-

FFC. The main difference is that FFC uses tunnel s4-s6-s5, instead of s4-s3-s5, to transmit
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Figure 2.12: Events with and without FFC during link failures.

0.5 Gbps traffic, which provides protection against any single-link failure. We conducted

many trials with this setup; in each we failed link s6-s7 and observed the ensuing events.

FFC behavior was consistent across trials. Figure 2.12(a) shows an example. The x-

axis is a time line relative to when the link failure was injected and y-axis lists the events

that could happen in a failure reaction. Shadowed blocks denote the start and end of the

event. We see s6 detects link failure within 5 ms, and s3 hears about it within 45 ms. s3

rescales and moves all traffic to the residual tunnel within 2 ms. Packet loss on tunnel s3-

s6-s7 stops immediately after that. We thus see that losses in FFC are a purely a function

of the time it takes for fault detection and rescaling delay. We see that modulo propagation

delay, which is fundamental, today’s switches can detect faults and rescale quickly. FFC

ensures that these activities suffice at eliminating congestion, and the TE controller does

not need to react.

The situation is more complex in the non-FFC case. After s3 rescales, link s4-s5 will

get congested as it starts getting 1.5 Gbps of traffic; see Figure 2.10(b). To remedy this,

the TE controller computes a new solution in which s4 moves 0.5 Gbps of traffic to tunnel

s4-s6-s5 and updates the switch s4.

Figure 2.12(b) shows the best case for non-FFC in our trials, in which the update
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itself was quick (within 5 ms). We see rescaling-related loss on s3-s5 stops within 45 ms,

given the propagation delay from the controller to the switch s4. Overall, the network

was congested for twice the time compared to FFC. Figure 2.12(c) shows a bad case for

non-FFC, in which the switch s4 took a long time to apply the update. Consequently, the

congestion lasted for much longer.

2.8 Data-Driven Evaluation

We now evaluate FFC with topology, traffic, and failure data from real networks. We first

microbenchmark its throughput and computation cost, then study its end-to-end impact in

single- and multi-priority networks, and finally study its impact on update time for multi-

step updates. We start by describing our data sources and experimental methodology.

2.8.1 Experimental methodology

Networks: We use two inter-datacenter networks in our experiments. The first, which we

call L-Net, hasO(50) sites globally withO(100) andO(1000) links. We have data on link

capacities, traffic flows, and data plane faults for this network. To ensure that our results

to are robust to network topology, we also use B4’s site-level topology with 12 sites [44],

which we call S-Net. Not knowing the internal details of S-Net, we assume that there

are 2 switches per site and site-level connectivity is composed of 16 switch-level 10 Gbps

links. Switches for a site connect symmetrically.

Traffic demand: We collect network traffic logs and aggregate it into ingress-egress flows.

We partition time into 5-minute bins (the TE interval) and the demand of the flow for an

interval is the average bandwidth it consumed. For L-Net, we use its traffic logs directly.

For S-Net, we use traffic logs from another inter-datacenter network (not L-Net) and

synthesize demand by mapping sites from the other network onto S-Net, as in earlier
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work [42].

For multi-priority experiments, we partition traffic into three priorities based on their

source services. Following SWAN [42], high priority is for interactive services, which are

highly sensitive to loss and delay; medium priority is for services that are less sensitive

but are still impacted by packet loss (e.g., deadline-driven transfers); and low priority is

for background services (e.g., large replication jobs).

To understand the impact of network provisioning level, we study three cases. The

first is a well-utilized network where capacity matches demand. To mimic this, we scale

the demands of all flows (uniformly) such that 99% of demands per interval are satisfied.

The results below refer to this case as traffic scale of 1. The other two cases are a well-

provisioned network and an under-provisioned network, and we use traffic scales of 0.5

and 2 to mimic them.

In terms of relationship to practice, ISP networks are typically well-provisioned and

use single priority traffic. Inter-datacenter networks are well-utilized and use multiple

priorities to protect high priority traffic from short-term demand increases of lower priority

traffic [42, 44].

Failures and switch update models: For L-Net, we inject data plane faults as per logs

from the network. For S-Net, we inject faults based on the per-link and per-switch failure

probabilities derived from L-Net logs. We assume that it takes 5 ms for a switch to detect

a link failure, and the time it takes for an ingress switch to hear about the failure and rescale

depends on the propagation delay.

We consider two models of switch update behaviors. In the Realistic model, we

use the update delay distribution reported for B4 (§2.2.3) and a configuration failure rate

of 1%. In the Optimistic model, we use the update delay distribution that we measured

in a controlled environment (§2.2.3) and a configuration failure rate of 0%.

TE approaches: We compare TE with and without FFC. Without FFC, when a link or
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switch fails, the TE controller immediately computes a new traffic distribution and updates

the network. With FFC, the controller does not react to data plane faults unless it is on

the edge of protection level. If the link protection level ke=2, the controller reacts only

after 2 links have failed. reaction logic is per-priority; when a given priority traffic is at

the edge of protection level, only that traffic is re-adjusted. Both approaches use the same

set of tunnels. We use (1, 3)-link-switch disjoint strategy to establish six tunnels for each

flow. Except in the microbenchmark experiments, if a flow’s demand is not satisfied in an

interval, the remaining bytes add to its demand in the next interval.

We evaluated both max-throughput and max-min fairness as TE objectives but present

results only for the former. Results for the latter are qualitatively similar.

Metrics: We use two metrics to capture the behavior of FFC:

i) Throughput ratio: Network throughput with FFC versus without FFC. One minus this

ratio is the overhead of FFC.

ii) Data loss ratio: Bytes lost with FFC versus without FFC. We count bytes lost due to

both blackholes and congestion. Blackhole losses occur during the time between when a

link fails and when ingress switches rescale; all packets that traverse the failed link are

considered lost in this period. Congestion losses are computed based on link capacity

and the duration and degree to which the link is oversubscribed. This simple measure

overestimates actual losses if congestion control is used at the hosts, as they will reduce

sending rates in response to early losses. But it serves as a good proxy for capturing the

intensity and duration of congestion [42].

2.8.2 Microbenchmarks

Throughput overhead To microbenchmark the overhead of FFC, we compute traffic dis-

tributions with and without it for successive TE intervals. In each interval, we exclude
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Figure 2.13: Throughput overhead of FFC. Bars show the 90th %-ile value and error bars
show the 50th and 99th %-iles.

any unfinished data from previous intervals, so that both approaches operate on the same

demand in each interval, independent of preceding allocations. Failure and switch models

do not impact these experiments as we do not inject faults but study overhead when no

faults happen.

Figure 2.13(a) and 2.13(b) show the overhead (1 - throughput ratio) of control plane

FFC (by itself; no data plane FFC) for three protection levels. For each traffic scale, it

plots three percentile values. We see that the overhead of control plane FFC is small—

under 5% even at 90th percentile level for all but one settings–and, expectedly, increases

with the protection level. We also see that the overhead generally increases with the traffic

scale. As the network gets busier, it becomes harder to accommodate all traffic in a way
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FFC (3, 3, 0) ∪ (3, 0, 1) FFC (2, 1, 0) Without FFC
L-Net 1.2 sec 0.3 sec 0.05 sec
S-Net 0.03 sec 0.02 sec 0.015 sec

Table 2.2: TE computation time with and without FFC.

that modifies existing traffic spread robustly. The results are similar for L-Net and S-Net.

Figure 2.13(c) and 2.13(d) show the overhead of data plane FFC for 1-3 links failures

and 1 switch failure. Because we use (1, 3)-link-switch disjoint strategy to construct tun-

nels, the cases with ke = 3 and kv = 1 are identical. We see that the overhead is low at

traffic scale 0.5 (which implies a well-provisioned network), but it grows quickly as traffic

scales and protection level increases.

Based on these results and that multiple link failures in a short amount of time and

switch failures are uncommon (but they do occur), we recommend using a protection level

of (kc, ke, kv) =(2, 1, 0) in single-priority networks. In multi-priority networks, we recom-

mend a higher protection level for high-priority flows. As the relative volume of this traffic

is typically under 50%, FFC’s overhead will still be small.

Computation time We benchmark computation time on an ordinary PC with Intel i5

M540 2.53 Ghz CPU (2 cores) and 4GB RAM. Table 2.2 lists the average computation

time for FFC with different protection levels and without FFC. Because of the imprecision

of Eqn. 2.15 (§2.4.5), FFC configuration of (3, 3, 0) simultaneously provides protection

for (3, 0, 1). We use (3, 0, 1) ∪ (3, 3, 0) as a shorthand for this combined protection level.

We see that even at a high protection level, FFC computation takes only 1.2 seconds for

large network like L-Net.

2.8.3 Single-priority traffic

We now perform an end-to-end evaluation of FFC with realistic failure and switch models.

This section focuses on the single-priority case, and the next on multi-priority case. Per
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Figure 2.14: Throughput and data loss ratio for FFC with single traffic priority.

above, we configure FFC as (kc, ke, kv) =(2, 1, 0) .

Figure 2.14 shows the results for the two networks, the two switch models, and the

three traffic scales. Focusing first on the case of well-provisioned networks (traffic scale

0.5), which is the common case for single-priority traffic, we see that throughput difference

with and without FFC is negligible. At the same time, FFC offers 10∼20 times reduction

in data loss. We do not report absolute amount of lost data to maintain confidentiality for

link capacities in L-Net. But we note that the loss is substantial (well above O(100GB)

per day), and in almost all cases of link oversubscription, the amount of data lost is well

above typical buffer capacities.

For the case of well-utilized networks (traffic scale 1), we see that FFC carries over

90% of the traffic carried without FFC and cuts data loss to 0.72∼11.5%.
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Figure 2.15: The tradeoff of data loss and throughput.

Closer inspection of lost data reveals that both with and without FFC, blackhole losses,

due to delay in rescaling after a link failure, are negligible. With FFC, the primary factor

behind losses is cases where the number of data plane faults is greater than the protection

level. Without FFC, any control and data plane fault leads to congestive losses, and both

types of faults contribute roughly equally.

Though the absolute amount of data loss is lower for the Optimistic switch model,

we observe in Figure 2.14 that the relative gain of FFC is similar for both switch models.

Thus, FFC helps even if switch updates times could be improved to those in controlled

environments today and all configuration failures could be eliminated.

Trade-off between throughput and data loss Using link failures as an example, Fig-

ure 2.15 shows the tradeoff between data loss and throughput overhead as we change the

protection level. This experiment uses the Realistic switch model and no protection

from control plane faults or switch failures. For each traffic scale, the point at (100, 100)

corresponds to no protection (ke = 0) and successive points to the left correspond to in-

creasing values of link protection. Expectedly, the less data we want to lose, the higher

the throughput overhead, though throughput overhead grows slower than loss reduction

(linear versus exponential).
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Figure 2.16: FFC with multiple priorities.

2.8.4 Multi-priority traffic

We now consider networks with multi-priority traffic (§2.5.1). Here, FFC offers the op-

portunity to provide greater protection for high-priority traffic with minimal loss in total

throughput because low-priority traffic can be safely carried over the capacity that is set
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aside to protect high-priority traffic. When congestion occurs, priority queueing, which

preferentially drops lower-priority packets, protects high-priority traffic as long as its rate

does not exceed link capacity.

We use different protection levels for different priorities: (kc, ke, kv) =(3, 0, 1)∪ (3, 3, 0)

for high-priority traffic to provide it strong protection, (2, 1, 0) for medium priority, and

(0, 0, 0) for low priority. Thus, low priority traffic is not protected at all, which lets it use

all network capacity.

Figure 2.16 shows the results for both our networks. This experiment uses traffic scale

of 1 (well-utilized network). From Figures 2.16(a) and (b), we see that the throughput

ratio is close to 100%, for total traffic as well for individual priorities. Recall that in

a single-priority network, throughput ratio is 90% and loss ratio is 0.72∼11.5% for this

traffic scale. Given the basic FFC trade-off, the increase in total throughput for this multi-

priority network must accompany a decrease in protection from congestion. The loss ratio

for total traffic bears this out; it is 40∼80%.

What is interesting, however, are the data loss ratios of different priorities. The high-

priority traffic suffers almost no loss, and the loss has been concentrated towards low-

priority traffic. The effect is extreme for L-Net, where low-priority traffic looses more

bytes with FFC than without FFC.

Figure 2.16(c) shows the relative fraction of lost bytes for each priority. With FFC,

there is negligible loss for high-priority traffic and a small amount (2∼7%) of loss for

medium-priority traffic. In contrast, without FFC, 5∼15% of the bytes lost are high-

priority and 30∼70% are medium-priority. Thus, the use of priority queueing by itself

is not sufficient for preventing congestion losses for high priority traffic. FFC can provide

strong protection without loss in throughput.
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Figure 2.17: Update time for congestion-free updates.

2.8.5 Congestion-free network updates

We now consider the case of congestion-free, multi-step updates. Recall that in this setting,

control plane faults do not lead to congestion losses, but network updates can be slow and

can even stall. We evaluate the speed of network updates with and without FFC.

Figure 2.17 shows the results for L-Net for both switch models. With the Realistic

model, without FFC, 40% of the updates do not finish within 300 seconds. Since that is the

TE interval, it is the maximum time we wait for the update to finish. This poor performance

stems from the fact that even a single switch that takes a long time or fails to update

altogether hurts the update process. FFC allows for faster updates by being robust to a

small number of control plane faults (in this case kc=2). FFC provides significant reduction

in update time even with the Optimistic model, in which there are no configuration

failures, only occasional delays. The median and 99th percentile speedup is a factor of

three.

Faster updates would lead to a more nimble network that can quickly react to demands

bursts. They can also improve throughput by enabling a shorter TE interval, which enables

the network to handle shorter-term demand variations.
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2.9 Related Work

We build upon the rich line of work in TE algorithms and systems. Researchers have stud-

ied various aspects of this problem, including i) how to implement close-to-optimal traffic

distributions in different settings such as link-state routing [81], MPLS environments [34],

and SDNs [25, 42, 44, 71]; ii) how to stably adapt to changing traffic demands [46, 54];

iii) how to reroute traffic after failures such that minimal changes are needed [16]; and iv)

how to find efficient backup paths [48, 55].

For brevity, we discuss below only proactive techniques to make TE robust. Our key

contributions in this space are that, to our knowledge, we are the first to handle control

plane faults and to proactively handle data plane faults in a way that is both robust to any

combination of up to k failures and works with today’s commodity switches.

Data plane faults: To prevent rescaling-induced congestion after a data plane fault, Suchara et

al. [73] modify the ingress switch’s rescaling behavior. Instead of simple proportional

rescaling, tunnel splitting weights are based on the set of residual tunnels. These weights

are pre-computed and configured at the switch. Unlike our data plane FFC, which protects

against any combination of up to k faults, this approach can handle only a modest number

of potential failure cases as there are exponential number of residual tunnel sets.

For a distributed TE setting, R3 [78] proposes an approach for congestion-free fast re-

route (FRR) [10], in which adjacent routers route around failed links. The routing behavior

is determined by a fast online computation, aided by offline computation that is done ahead

of time. Like FFC, R3 protects against any combination of up to k link failures. A key

difference is that we focus on rescaling at ingress switches versus fast reroute at link-

adjacent routers. This difference induces different types of constraints (and thus require a

different solution technique).

Further, both works above require changes to the switch hardware or software; we
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build solely on existing primitives.

Demand uncertainty: In networks where incoming traffic rate is not controlled, oblivious

routing [17] and COPE [77] aim to find TE configurations that are robust to changes in

traffic demand or errors in demand prediction. These works do not consider control and

data plane faults which is the focus of our work. An interesting area of future investigation

is if our approach for handling control plane faults in rate limiters, which induces uncer-

tainty in traffic entering the network, can be extended to tackle demand uncertainty. That

would enable a common framework for handling both faults and demand uncertainty.

2.10 Summary

We developed FFC methods that proactively protect a network from congestion and packet

loss due to data and control plane faults. These methods have low overhead in terms

of network throughput—even optimal in some cases—and are computationally efficient.

Using testbed experiments and data from real networks, we showed how FFC is useful in

a variety of settings. For instance, in well-provisioned networks, it can reduce packet loss

by a factor of 7∼130; in well-utilized networks that carry traffic with multiple priorities,

it can reduce loss for high-priority traffic to almost zero, with negligible reduction in total

network throughput.
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Chapter 3

zUpdate: Updating Data Center

Networks with Zero Loss

Datacenter networks (DCNs) are constantly evolving due to various updates such as switch

upgrades and VM migrations. Each update must be carefully planned and executed in

order to avoid disrupting many of the mission-critical, interactive applications hosted in

DCNs. The key challenge arises from the inherent difficulty in synchronizing the changes

to many devices, which may result in unforeseen transient link load spikes or even conges-

tions. We present one primitive, zUpdate, to perform congestion-free network updates

under asynchronous switch and traffic matrix changes. We formulate the update problem

using a network model and apply our model to a variety of representative update scenarios

in DCNs. We develop novel techniques to handle several practical challenges in realiz-

ing zUpdate as well as implement the zUpdate prototype on OpenFlow switches and

deploy it on a testbed that resembles real DCN topology. Our results, from both real-world

experiments and large-scale trace-driven simulations, show that zUpdate can effectively

perform congestion-free updates in production DCNs.
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3.1 Introduction

The rise of cloud computing platform and Internet-scale services has fueled the growth of

large datacenter networks (DCNs) with thousands of switches and hundreds of thousands

of servers. Due to the sheer number of hosted services and underlying physical devices,

DCN updates occur frequently, whether triggered by the operators, applications, or some-

times even failures. For example, DCN operators routinely upgrade existing switches or

onboard new switches to fix known bugs or to add new capacity. For applications, migrat-

ing VMs or reconfiguring load balancers are considered the norm rather than the exception.

Despite their prevalence, DCN updates can be challenging and distressing even for the

most experienced operators. One key reason is because of the complex nature of the up-

dates themselves. An update usually must be performed in multiple steps, each of which is

well planned to minimize disruptions to the applications. Each step can involve changes to

a myriad of switches, which if not properly coordinated may lead to catastrophic incidents.

Making matters even worse, there are different types of update with diverse requirements

and objectives, forcing operators to develop and follow a unique process for each type of

update. Because of these reasons, a DCN update may take hours or days to carefully plan

and execute while still running the risk of spiraling into operators’ nightmare.

This stark reality calls for a simple yet powerful abstraction for DCN updates, which

can relieve the operators from the nitty-gritty, such as deciding which devices to change or

in what order, while offering seamless update experience to the applications. We identify

three essential properties of such an abstraction. First, it should provide a simple interface

for operators to use. Second, it should handle a wide range of common update scenarios.

Third, it should provide certain levels of guarantee which are relevant to the applications.

The seminal work by Reitblatt et al. [69] introduces two abstractions for network up-

dates: per-packet and per-flow consistency. These two abstractions guarantee that a packet
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or a flow is handled either by the old configuration before an update or by the new config-

uration after an update, but never by both. To implement such abstractions, they proposed

a two-phase commit mechanism which first populates the new configuration to the middle

of the network and then flips the packet version numbers at the ingress switches. These

abstractions can preserve certain useful trace properties, e.g., loop-free during the update,

as long as these properties hold before and after the update.

While the two abstractions are immensely useful, they are not the panacea for all the

problems during DCN updates. In fact, a DCN update may trigger network-wide traffic

migrations, in which case many flows’ configurations have to be changed. Because of

the inherent difficulty in synchronizing the changes to the flows from different ingress

switches, the link load during an update could get significantly higher than that before

or after the update (see example in §3.3). This problem may further exacerbate when

the application traffic is also fluctuating independently from the changes to switches. As

a result, nowadays operators are completely in the dark about how badly links could be

congested during an update, not to mention how to come up with a feasible workaround.

This chapter introduces one key primitive, zUpdate, to perform congestion-free network-

wide traffic migration during DCN updates. The letter “z” means zero loss and zero human

effort. With zUpdate, operators simply need to describe the end requirements of the up-

date, which can easily be converted into a set of input constraints to zUpdate. Then

zUpdate will attempt to compute and execute a sequence of steps to progressively meet

the end requirements from an initial traffic matrix and traffic distribution. When such a

sequence is found, zUpdate guarantees that there will be no congestion throughout the

update process. We demonstrate the power and simplicity of zUpdate by applying it to

several realistic, complex update scenarios in large DCNs.

To formalize the traffic migration problem, we present a network model that can pre-

cisely describe the relevant state of a network — specifically the traffic matrix and traffic

57



distribution. This model enables us to derive the sufficient and necessary conditions un-

der which the transition between two network states will not incur any congestion. Based

on that, we propose an algorithm to find a sequence of lossless transitions from an initial

state to an end state which satisfies the end constraints of an update. We also illustrate by

examples how to translate the high-level human-understandable update requirements into

the corresponding mathematical constraints which are compliant with our model.

zUpdate can be readily implemented on existing commodity OpenFlow switches.

One major challenge in realizing zUpdate is the limited flow and group table sizes on

those switches. Based on the observation that ECMP works sufficiently well for most of

the flows in a DCN [80], we present an algorithm that greedily consolidates such flows to

make efficient use of the limited table space. Furthermore, we devise heuristics to reduce

the computation time and the switch update overhead.

We summarize our contributions as follows:

• We introduce the zUpdate primitive to perform congestion-free network updates

under asynchronous switch and traffic matrix changes.

• We formalize the network-wide traffic migration problem using a network model

and propose a novel algorithm to solve it.

• We illustrate the power of zUpdate by applying it to several representative update

scenarios in DCNs.

• We handle several practical challenges, e.g. switch table size limit and computation

complexity, in implementing zUpdate.

• We build a zUpdate prototype on top of OpenFlow [6] switches and Floodlight

controller [2].
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• We extensively evaluate zUpdate both on a real network testbed and in large-scale

simulations driven by the topology and traffic demand from a large production DCN.

3.2 Datacenter Network

Topology: A state-of-the-art DCN typically adopts a FatTree or Clos topology to attain

high bisection bandwidth between servers. Figure 3.2(a) shows an example in which the

switches are organized into three layers from the top to the bottom: Core, Aggregation

(Agg) and Top-of-Rack (ToR). Servers are connected to the ToRs.

Forwarding and routing: In such a hierarchical network, traffic traverses a valley-free

path from one ToR to another: first go upwards and then downwards. To limit the forward-

ing table size, the servers under the same ToR may share one IP prefix and forwarding is

performed based on each ToR’s prefix. To fully exploit the redundant paths, each switch

uses ECMP to evenly split traffic among multiple next hops. The emergence of Software

Defined Networks (SDN) allows the forwarding tables of each switch to be directly con-

trolled by a logically centralized controller, e.g., via the OpenFlow APIs, dramatically

simplifying the routing in DCNs.

Flow and group tables on commodity switches: An (OpenFlow) switch forwards pack-

ets by matching packet headers, e.g., source and destination IP addresses, against entries

in the so called flow table (Figure 3.6). A flow entry specifies a pattern used for matching

and actions taken on matching packets. To perform multipath forwarding, a flow entry can

direct a matching packet to an entry in a group table, which can further direct the packet

to one of its multiple next hops by hashing on the packet header. Various hash functions

may be used to implement different load balancing schemes, such as ECMP or Weighted-

Cost-Multi-Path (WCMP). To perform pattern matching, the flow table is made of TCAM

(Ternary Content Addressable Memory) which is expensive and power-hungry. Thus, the
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commodity switches have limited flow table size, usually between 1K to 4K entries. The

group table typically has 1K entries.

3.3 Network Update Problem

Scenario Description
VM migration Moving VMs among physical servers.

Load balancer reconfiguration
Changing the mapping between a load
balancer and its backend servers.

Switch firmware upgrade
Rebooting a switch to install new
version of firmware.

Switch failure repair
Shutting down a faulty switch to
prevent failure propagation.

New switch onboarding
Moving traffic to a new switch to test
its functionality and compatibility.

Table 3.1: The common update scenarios in production DCNs.

We surveyed the operators of several production DCNs about the typical update scenar-

ios and listed them in Table 3.1. One common problem that makes these DCN updates hard

is they all have to deal with so called network-wide traffic migration where the forward-

ing rules of many flows have to be changed. For example in switch firmware upgrade, in

order to avoid impacting the applications, operators would move all the traffic away from

a target switch before performing the upgrade. Taking VM migration as another example,

to relocate a group of VM’s, all the traffic associated with the VM’s will be migrated as

well.

s1 l1

s2

f1

f2
(a) initial (b) final (c) transient

ingress linksflows ingress linksflows ingress linksflows

l2

s1 l1

s2

f1

f2

l2

s1 l1

s2

f1

f2

l2

Figure 3.1: Transient load increase during traffic migration.

Such network-wide traffic migration, if not done properly, could lead to severe conges-
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tion. The fundamental reason is because of the difficulty in synchronizing the changes to

the flows from different ingress switches, causing certain links to carry significantly more

traffic during the migration than before or after the migration. We illustrate this problem

using a simple example in Figure 3.1. Flows f1 and f2 enter the network from ingress

switches s1 and s2 respectively. To move the traffic distribution from the initial one in

(a) to the final one in (b), we need to change the forwarding rules in both s1 and s2. As

shown in (c), link l2 will carry the aggregate traffic of f1 and f2 if s1 is changed before s2.

Similar problem will occur if s2 is changed first. In fact, this problem cannot be solved by

the two-phase commit mechanism proposed in [69].

A modern DCN hosts many interactive applications such as search and advertisement

which require very low latencies. Prior research [15] reported that even small losses and

queuing delays could dramatically elevate the flow completion time and impair the user-

perceived performance. Thus, it is critical to avoid congestion during DCN updates.

Performing lossless network-wide traffic migration can be highly tricky in DCNs, be-

cause it often involves changes to many switches and its impact can ripple throughout the

network. To avoid congestion, operators have to develop a thoughtful migration plan in

which changes are made step-by-step and in an appropriate order. Furthermore, certain

update (e.g., VM migration) may require coordination between servers and switches. Op-

erators, thus, have to carefully calibrate the impact of server changes along with that of

switch changes. Finally, because each update scenario has its distinctive requirements,

operators today have to create a customized migration plan for each scenario.

Due to the reasons above, network-wide traffic migration is an arduous and compli-

cated process which could take weeks for operators to plan and execute while some of

the subtle yet important corner cases might still be overlooked. Thus, risk-averse opera-

tors sometimes deliberately defer an update, e.g., leaving switches running an out-of-date,

buggy firmware, because the potential damages from the update may outweigh the gains.
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Figure 3.2: This example shows how to perform a lossless firmware upgrade through
careful traffic distribution transitions.

Such tendency would severely hurt the efficiency and agility of the whole DCN.

Our goal: is to provide a primitive called zUpdate to manage the network-wide traffic

migration for all the DCN updates shown in Table 3.1. In our approach, operators only

need to provide the end requirements of a specific DCN update, and then zUpdate will

automatically handle all the details, including computing a lossless (perhaps multi-step)

migration plan and coordinating the changes to different switches. This would dramati-

cally simplify the migration process and minimize the burden placed on operators.

3.4 Overview

In this section, we illustrate by two examples how asynchronous switch and traffic ma-

trix changes lead to congestion during traffic migration in DCN and how to prevent the

congestion through a carefully-designed migration plan.

Switch firmware upgrade: Figure 3.2(a) shows a FatTree [14] network where the ca-

pacity of each link is 1000. The numbers above the core switches and those below the

ToRs are traffic demands. The number on each link is the traffic load and the arrow indi-
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Figure 3.3: This example shows how to avoid congestion by choosing the proper traffic
split ratios for switches.

cates the traffic direction. This figure shows the initial traffic distribution D0 where each

switch uses ECMP to evenly split the traffic among the next hops. For example, the load

on link ToR1→AGG1 is 300, half of the traffic demand ToR1→ToR2. The busiest link

CORE1→AGG3 has a load of 920, which is the sum of 620 (demand CORE1→ToR3/4),

150 (traffic AGG1→CORE1), and 150 (traffic AGG5→CORE1). No link is congested.

Suppose we want to move the traffic away from AGG1 before taking it down for

firmware upgrade. A naive way is to disable link ToR1→AGG1 so that all the demand

ToR1→ToR2 shifts to link ToR1→AGG2 whose load becomes 600 (as shown in Fig-

ure 3.2(b)). As a result, link CORE3→AGG4 will have a load of 1070 by combining 300

(traffic AGG2→CORE3), 150 (traffic AGG6→CORE3), and 620 (demand CORE3→ToR3/4),

exceeding its capacity.

Figure 3.2(c) shows the preceding congestion can be prevented through proper traffic

distribution D2, where ToR5 forwards 500 traffic on link ToR5→AGG5 and 100 traffic on

63



link ToR5→AGG6 instead of using ECMP. This reduces the load on link CORE3→AGG4

to 970, right below its capacity.

However, to transition from the initial D0 (Figure 3.2(a)) to D2 (Figure 3.2(c)), we

need to change the traffic split ratio on both ToR1 and ToR5. Since it is hard to change two

switches simultaneously, we may end up with a traffic distribution shown in Figure 3.2(d)

where link CORE1→AGG3 is congested, when ToR5 is changed before ToR1. Conversely,

if ToR1 is changed first, we will have the traffic distribution D′2 in Figure 3.2(b) where link

CORE3→AGG4 is congested.

Given the asynchronous changes to different switches, it seems impossible to transit

from D0 (Figure 3.2(a)) to D2 (Figure 3.2(c)) without causing any loss. Our basic idea

is to introduce an intermediate traffic distribution D1 as a stepping stone, such that the

transitions D0→D1 and D1→D2 are both lossless. Figure 3.2(e) is such an intermediate

D1 where ToR1 splits traffic by 200:400 and ToR5 splits traffic by 450:150. It is easy to

verify that no link is congested in D1 since the busiest link CORE1→AGG3 has a load of

945.

Furthermore, when transitioning from D0 (Figure 3.2(a)) to D1, no matter in what order

ToR1 and ToR5 are changed, there will be no congestion. Figure 3.2(f) gives an example

where ToR5 is changed before ToR1. The busiest link CORE1→AGG3 has a load of 995.

Although not shown here, we verified that there is no congestion if ToR1 is changed first.

Similarly, the transition from D1 (Figure 3.2(e)) to D2 (Figure 3.2(c)) is lossless regardless

of the change order of ToR1 and ToR5.

In this example, the key challenge is to find the appropriate D2 (Figure 3.2(c)) that sat-

isfies the firmware upgrade requirement (moving traffic away from AGG1) as well as the

appropriate D1 (Figure 3.2(e)) that bridges the lossless transitions from D0 (Figure 3.2(a))

to D2. We will explain how zUpdate computes the intermediate and final traffic distri-

butions in §3.5.3.
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Load balancer reconfiguration: Figure 3.3(a) shows another FatTree network where the

link capacity remains 1000. One of the links CORE2↔AGG3 is down (a common in-

cident in DCN). Two servers S‘
1 and S‘

2 are sending traffic to two services S1 and S2,

located in Container1 and Container2 respectively. The labels on some links, for exam-

ple, ToR5→AGG3, are in the form of “l1 + l2”, which indicate the traffic load towards

Container1 and Container2 respectively.

Suppose all the switches use ECMP to forward traffic, Figure 3.3(a) shows the traffic

distribution under the initial traffic matrix T0 where the load on the busiest link CORE1→AGG1

is 920, which is the sum of 600 (the demand CORE1→ToR1/4) and 320 (the traffic on link

AGG3→CORE1 towards Container1). No link is congested.

To be resilient to the failure of a single container, we now want S1 and S2 to run in

both Container1 and Container2. For S2, we will instantiate a new server under ToR3 and

reconfigure its load balancer (LB) (not shown in the figure) to shift half of its load from

ToR9 to ToR3. For S1, we will take similar steps to shift half of its load from ToR3 to

ToR9. Figure 3.3(b) shows the traffic distribution under the final traffic matrix T2 after

the update. Note that the traffic on link ToR5 →AGG3 is “160+160” because half of it

goes to the S1 under ToR2 in Container1 and the other half goes to the S1 under ToR9 in

Container2. It is easy to verify that there is no congestion.

However, the reconfiguration of the LBs of S1 and S2 usually cannot be done simulta-

neously because they reside on different devices. Such asynchrony may lead to a transient

traffic matrix T1 shown in Figure 3.3(c) where S2’ LB is reconfigured before S1’s. This

causes link ToR6 →AGG3 to carry “160+160” traffic, half of which goes to the S2 in

Contain1, and further causes congestion on link CORE1 →AGG1. Although not shown

here, we have verified that congestion will happen if S1’s LB is reconfigured first.

The congestion above is caused by asynchronous traffic matrix changes. Our basic

idea to solve this problem is to find the proper traffic split ratios for the switches such that
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Figure 3.4: The high-level working process of zUpdate.

there will be no congestion under the initial, final or any possible transient traffic matrices

during the update. Figure 3.3(d) shows one such solution where ToR5 and ToR6 send 240

traffic to AGG3 and 400 traffic to AGG4, and other switches still use ECMP. The load on

the busiest link CORE1→AGG1 now becomes 960 and hence no link is congested under

T1. Although not shown here, we have verified that, given such traffic split ratios, the

network is congestion-free under the initial T0 (Figure 3.3(a)), the final T2 (Figure 3.3(b)),

and the transient traffic matrix where S1’s LB is reconfigured first.

Generally, the asynchronous reconfigurations of multiple LBs could result in a large

number of possible transient traffic matrices, making it hard to find the proper traffic split

ratios for all the switches. We will explain how to solve this problem with zUpdate in

§3.6.2.

The zUpdate process: We provide zUpdate(T0, D0, C) to perform lossless traffic

migration for DCN updates. Given an initial traffic matrix T0, zUpdate will attempt to

compute a sequence of lossless transitions from the initial traffic distribution D0 to the final

traffic distribution Dn which satisfies the update requirements C. Dn would then allow an

update, e.g., upgrading switch or reconfiguring LB, to be executed without incurring any

loss.

Figure 3.4 shows the overall workflow of zUpdate. In the following, we will first

present a network model for describing lossless traffic distribution transition (§3.5.1, 3.5.2)
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and an algorithm for computing a lossless transition plan (§3.5.3). We will then explain

how to represent the constraints in each update scenario (§3.6). After that, we will show

how to implement the transition plan on switches with limited table size (§3.7.1, 3.7.2),

reduce computational complexity by confining search space (§3.7.3), and reduce transition

overhead by picking a proper search objective function (§3.7.4).

3.5 Network Model

This section describes a network model under which we formally define the traffic matrix

and traffic distribution as the inputs to zUpdate. We use this model to derive the sufficient

and necessary conditions for a lossless transition between two traffic distributions. In the

end, we present an algorithm for computing a lossless transition plan using an optimization

programming model.

3.5.1 Abstraction of traffic distribution

Network, flow and traffic matrix: A network is a directed graph G = (V,E), where V is

the set of switches, andE is the set of links between switches. A flow f enters the network

from an ingress switch (sf ) and exits at an egress switch (df ) through one or multiple paths

(pf ). Let Gf be the subgraph formed by all the pf ’s. For instance, in Figure 3.5, suppose

f takes the two paths (1, 2, 4, 6, 8) and (1, 2, 4, 7, 8) from switch1 to switch8, then Gf is

comprised of switches {1, 2, 4, 6, 7, 8} and the links between them. A traffic matrix T

defines the size of each flow Tf .

Traffic distribution: Let lfv,u be f ’s traffic load on link ev,u. We defineD = {lfv,u|∀f, ev,u ∈

E} as a traffic distribution, which represents each flow’s load on each link. Given a T , we

call D feasible if it satisfies:
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V The set of all switches.
E The set of all links between switches.
G The directed network graph G = (V,E).
ev,u A directed link from switch v to u.
cv,u The link capacity of ev,u.
f A flow from an ingress to an egress switch.
sf The ingress switch of f .
df The egress switch of f .
pf A path taken by f from sf to df .
Gf The subgraph formed by all the pf ’s.
T The traffic matrix of the network.
Tf The flow size of f in T .
lfv,u The traffic load placed on ev,u by f .
D A traffic distribution D := {lfv,u|∀f, ev,u ∈ E}.
rfv,u A rule for f on ev,u: rfv,u = lfv,u/Tf .
R All rules in network: R := {rfv,u|∀f, ev,u ∈ E}.
Rfv Rules for f on switch v: {rfv,u|∀u : ev,u ∈ E}.
Rf Rules for f in the network: {rfv,u|∀ev,u ∈ E}.
D(T ) All feasible traffic distributions which fully deliver T .
DC(T ) All traffic distributions in D(T ) which satisfy constraints C.
P(T ) P(T ) := {(D1, D2)|∀D1, D2 ∈ D(T ), direct transition D1 to D2 is lossless.}

Table 3.2: The key notations of the network model.

∀f :
∑
u∈V

lfsf ,u =
∑
v∈V

lfv,df = Tf (3.1)

∀f, v ∈ V \ {sf , df} :
∑
u∈V

lfv,u =
∑
u∈V

lfu,v (3.2)

∀f, ev,u /∈ Gf : lfv,u = 0 (3.3)

∀ev,u ∈ E :
∑
∀f

lfv,u ≤ cv,u (3.4)

Equations (3.1) and (3.2) guarantee that all the traffic is fully delivered, (3.3) means a link

should not carry f ’s traffic if it is not on the paths from sf to df , and (3.4) means no link

is congested. We denote D(T ) as the set of all feasible traffic distributions under T .

Flow rule: We define a rule for a flow f on link ev,u as rfv,u = lfv,u/Tf , which is essentially
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a normalized value of lv,u by the flow size Tf . We also define the set of rules in the whole

network asR = {rfv,u|∀f, ev,u ∈ E}, the set of rules of a flow f asRf = {rfv,u|∀ev,u ∈ E},

and the set of rules for a flow f on a switch v as Rf
v = {rfv,u|∀u : ev,u ∈ E}.

Given T , we can compute the rule set R for the traffic distribution D and vice versa.

We use D = T ×R to denote the correspondence between D and R. We call a R feasible

if its corresponding D is feasible. In practice, we will install R into the switches to realize

the corresponding D under T because R is independent from the flow sizes and can be di-

rectly implemented with the existing switch functions. We will discuss the implementation

details in §3.8.

3.5.2 Lossless transition between traffic distributions

To transition from D1 to D2 under given T , we need to change the corresponding rules

from R1 to R2 on all the switches. A basic requirement for a lossless transition is that

both D1 and D2 are feasible: D1 ∈ D(T ) ∧ D2 ∈ D(T ). However, this requirement is

insufficient due to asynchronous switch changes as shown in §3.4.

We explain this problem in more detail using an example in Figure 3.5, which is the

subgraph Gf of f from ToR1 to ToR8 in a small Clos network. Each of switches 1-5 has

two next hops towards ToR8. Thus lf7,8 depends on f ’s rules on switches 1-5. When the

switches are changed asynchronously, each of them could be using either old or new rules,

resulting in 25 potential values of lf7,8.

Generally, the number of potential values of lfv,u grows exponentially with the number

of switches which may influence lfv,u. To guarantee a lossless transition under an arbitrary

switch change order, Equation (3.4) must hold for any potential value of lfv,u, which is

computationally infeasible to check in a large network.

To solve the state explosion problem, we leverage the two-phase commit mechanism [69]

to change the rules of each flow. In the first phase, the new rules of f (Rf,2) are added to all
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the switches while f ’s packets tagged with an old version number are still processed with

the old rules (Rf,1). In the second phase, sf tags f ’s packets with a new version number,

causing all the switches to process the packets with the new version number using Rf,2.

CoreAgg AggToR ToR

2

3

4

5

6

7

81

ingress egress

switch using new rules switch using old rules

delay = �0
delay = �1

Figure 3.5: Two-phase commit simplifies link load calculations.

To see how two-phase commit helps solve the state explosion problem, we observe

that the subgraph Gf of a flow f (Figure 3.5) has multiple layers and the propagation

delay between two adjacent layers is almost a constant. When there is no congestion, the

queuing and processing delays on switches are negligibly small. Suppose switch1 flips to

the new rules at time 0, switch4 will receive the packets with the new version number on

both of its incoming interfaces at τ0 + τ1 and flip to the new rules at the same time. It

will never receive a mix of packets with two different version numbers. Moreover, all the

switches in the same layer will flip to the new rules simultaneously. This is illustrated in

Figure 3.5 where switch4 and switch5 (in shaded boxes) just flipped to the new rules while

switch6 and switch7 (in unshaded boxes) are still using the old rules. Formally, we can

prove

Lemma 2 Suppose a network uses two-phase commit to transition the traffic distribution

of a flow f from D1 to D2. If Gf satisfies the following three conditions:

i) Layered structure: All switches in Gf can be partitioned into sets L0, . . . , Lm, where

L0 = {sf}, Lm = {df} and ∀ev,u ∈ Gf , if v ∈ Lk, then u ∈ Lk+1.
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ii) Constant delay between adjacent layers: ∀ev,u ∈ Gf , let sv,u and rv,u be the sending

rate of v and the receiving rate of u, δv,u be the delay from the time when sv,u changes

to the time when rv,u changes. Suppose ∀v1, v2 ∈ Vk, ev1,u1 , ev2,u2 ∈ Gf : δv1,u1 =

δv2,u2 = δk.

iii) No switch queuing or processing delay: Given a switch u and ∀ev,u, eu,w ∈ Gf : if

rv,u changes from l1v,u to l2v,u simultaneously, then su,w changes from l1u,w to l2u,w

immediately at the same time.

then we have ∀ev,u ∈ Gf , sv,u and rv,u are either l1v,u or l2v,u during the transition.

Proof. Assume at time t = τk, flow f ’s traffic distribution is:

• ∀v ∈ Li(i < k), ev,u ∈ Gf : sv,u = rv,u = l2v,u.

• ∀v ∈ Li(i > k), ev,u ∈ Gf : sv,u = rv,u = l1v,u.

• ∀v ∈ Lk, ev,u ∈ Gf : all the sv,u’s are changing from l1v,u to l2v,u simultaneously, but

all the rv,u’s are l1v,u.

Consider ∀u ∈ Lk+1, ev,u, eu,w ∈ Gf : According to Condition ii), in the duration τk ≤ t <

τk+1 = τk + δk, all the rv,u’s remain l1v,u. Therefore, f ’s traffic distribution is:

• ∀v ∈ Li(i < k), ev,u ∈ Gf : sv,u = rv,u = l2v,u, because nothing has changed on

these links.

• ∀v ∈ Li(i > k), ev,u ∈ Gf : sv,u = rv,u = l1v,u, because nothing has changed on

these links.

• ∀v ∈ Lk, ev,u ∈ Gf : sv,u = l2v,u and rv,u = l1v,u, since the rate change on the sending

end has not reached the receiving end due to the link delay.
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At t = τk+1, ∀u ∈ Lk+1, all the rv,u’s change from l1v,u to l2v,u simultaneously. According

to Condition iii), all the su,w’s also change from l1u,w to l2u,w at the same time. Thus, at

t = τk+1:

• ∀v ∈ Li(i < k + 1), ev,u ∈ Gf : sv,u = rv,u = l2v,u

• ∀v ∈ Li(i > k + 1), ev,u ∈ Gf : sv,u = rv,u = l1v,u

• ∀v ∈ Lk+1, ev,u ∈ Gf : all the sv,u’s are changing from l1v,u to l2v,u simultaneously,

but all the rv,u’s are l1v,u.

At the beginning of the transition t = τ0, sf , the only switch in L0, starts to tag f ’s

packets with a new version number, causing all of its outgoing links to change from the

old sending rates to the new sending rates simultaneously. Hence, we have:

• ∀v ∈ Li(i > 0), ev,u ∈ Gf : sv,u = rv,u = l1v,u.

• ∀v ∈ L0, ev,u ∈ Gf : all the sv,u’s are changing from l1v,u to l2v,u simultaneously, but

all the rv,u’s are l1v,u.

which matches our preceding assumption at t = τk. Since we have derived that if the

assumption holds for t = τk, it also holds for t = τk+1. Hence it holds for the whole

transition process. Because in each duration [τk, τk+1), ∀ev,u ∈ Gf , sv,u and rv,u are either

l1v,u or l2v,u, proof completes.

Two-phase commit reduces the number of potential values of lfv,u to just two, but it

does not completely solve the problem. In fact, when each f is changed asynchronously

via two-phase commit, the number of potential values of
∑
∀f l

f
v,u in Equation (3.4) will

be 2n where n is the number of flows. To further reduce the complexity in checking (3.4),

we introduce the following:
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Lemma 3 When each flow is changed independently, a transition from D1 to D2 is loss-

less if and only if:

∀ev,u ∈ E :
∑
∀f

max {lf,1v,u, lf,2v,u} ≤ cv,u (3.5)

Proof. At any snapshot during the transition, ∀ev,u ∈ E, let F1
v,u/F2

v,u be the set of flows

with the old/new load values. Due to two-phase commit, F1
v,u ∪F2

v,u contains all the flows

on ev,u.

⇒: Construct F1
v,u and F2

v,u as follows: f is put into F1
v,u if lf,1v,u ≥ lf,2v,u, otherwise it is

put into F2
v,u. Because the transition is congestion-free, we have:

∑
f∈F1

v,u

lf,1v,u +
∑
f∈F2

v,u

lf,2v,u =
∑
∀f

max {lf,1v,u, lf,2v,u} ≤ cv,u

Hence, (3.5) holds.

⇐: When (3.5) holds, we have:

∑
f∈F1

v,u

lf,1v,u +
∑
f∈F2

v,u

lf,2v,u ≤
∑
∀f

max {lf,1v,u, lf,2v,u} ≤ cv,u

Thus no link is congested at any snapshot during the transition.

Lemma 3 means we only need to check Equation (3.5) to ensure a lossless transition,

which is now computationally feasible. Note that when the flow changes are dependent,

e.g., the flows on the same ingress switch are tagged with a new version number simul-

taneously, (3.5) will be a sufficient condition. We define P(T ) as the set of all pairs of

feasible traffic distributions (D1, D2) which satisfy (3.5) under traffic matrix T .

73



3.5.3 Computing transition plan

Given T0 andD0, zUpdate tries to find a feasibleDn which satisfies constraints C and can

be transitioned from D0 without loss. The search is done by constructing an optimization

programming modelM.

In the simplest form, M is comprised of Dn as the variable and two constraints: (i)

Dn ∈ DC(T0); (ii) (D0, Dn) ∈ P(T0). Note that (i) & (ii) can be represented with equa-

tions (3.1)∼(3.5). We defer the discussion of constraints C in §3.6. If such a Dn is found,

the problem is solved (by the definitions of DC(T0) and P(T0) in Table 4.1) and a lossless

transition can be performed in one step.

However, sometimes we cannot find a Dn which satisfies the two constraints above.

When this happens, our key idea is to introduce a sequence of intermediate traffic distri-

butions (D1, . . . , Dn−1) to bridge the transition from D0 to Dn via n steps. Specifically,

zUpdate will attempt to find Dk(k = 1, . . . , n) which satisfy: (I) Dn ∈ DC(T0); (II)

(Dk−1, Dk) ∈ P(T0). If such a sequence is found, it means a lossless transition from D0

to Dn can be performed in n steps. In this general form ofM, Dk(k = 1, . . . , n) are the

variables and (I) & (II) are the constraints.

Algorithm 3 shows the pseudocode of zUpdate(T0, D0, C). Since we do not know

how many steps are needed in advance, we will search from n = 1 and increment n by 1

until a solution is found or n reaches a predefined limit N . In essence, we aim to minimize

the number of transition steps to save the overall transition time. Note that there may exist

many solutions toM, we will show how to pick a proper objective function to reduce the

transition overhead in §3.7.4.
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Algorithm 3: zUpdate(T0, D0, C)
1 // D0 is the initial traffic distribution
2 // If D0 satisfies the constraints C, return D0 directly
3 if D0 ∈ DC(T0) then
4 return [D0] ;

5 // The initial # of steps is 1, N is the max # of steps
6 n← 1 ;
7 while n ≤ N do
8 M← new optimization model ;
9 D[0]← D0 ;

10 for k ← 1, 2, . . . , n do
11 D[k]← new traffic distribution variable ;
12 M.addVariable(D[k]) ;

13 // D[k] should be feasible under T0M.addConstraint(D[k] ∈ D(T0)) ;

14 for k ← 1, 2, . . . , n do
15 // Transition D[k − 1]→ D[k] is lossless ;
16 M.addConstraint((D[k − 1], D[k]) ∈ P(T0)) ;

17 // D[n] should satisfy the constraints C M.addConstraint(D[n] ∈ DC(T0)) ;

18 // An objective is optional
19 M.addObjective(objective) ;

20 ifM.solve() = Successful then
21 return D[1→ n] ;

22 n← n+ 1 ;

23 return [] // no solution is found ;

3.6 Handling Update Scenarios

In this section, we apply zUpdate to various update scenarios listed in Table 3.1. Specif-

ically, we will explain how to formulate the requirements of each scenario as zUpdate’s

input constraints C.

3.6.1 Network topology updates

Certain update scenarios, e.g., switch firmware upgrade, switch failure repair, and new

switch on-boarding, involve network topology changes but no traffic matrix change. We
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may use zUpdate to transition from the initial traffic distribution D0 to a new traffic

distribution D∗ which satisfies the following requirements.

Switch firmware upgrade & switch failure repair: Before the operators shutdown or

reboot switches for firmware upgrade or failure repair, they want to move all the traffic

away from those switches to avoid disrupting the applications. Let U be the set of candi-

date switches. The preceding requirement can be represented as the following constraints

C on the traffic distribution D∗:

∀f, u ∈ U, ev,u ∈ E : lf,∗v,u = 0 (3.6)

which forces all the neighbor switches to stop forwarding traffic to switch u before the

update.

New device on-boarding: Before the operators add a new switch to the network, they

want to test the functionality and performance of the new switch with some non-critical

production traffic. Let u0 be the new switch, Ftest be the test flows, and Gf (u0) be the

subgraph formed by all the pf ’s which traverse u0. The preceding requirement can be

represented as the following constraints C on the traffic distribution D∗:

∀f ∈ Ftest, ev,u /∈ Gf (u0) : lf,∗v,u = 0 (3.7)

∀f /∈ Ftest, ev,u0 ∈ E : lf,∗v,u0 = 0 (3.8)

where (3.7) forces all the test flows to only use the paths through u0, while (3.8) forces all

the non-test flows not to traverse u0.

Restoring ECMP: A DCN often uses ECMP in normal condition, but WCMP during
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updates. After an upgrade or testing is completed, operators may want to restore ECMP in

the network. This can simply be represented as the following constraints C on D∗:

∀f, v ∈ V, ev,u1 , ev,u2 ∈ Gf : lf,∗v,u1 = lf,∗v,u2 (3.9)

which forces switches to evenly split f ’s traffic among next hops.

3.6.2 Traffic matrix updates

Certain update scenarios, e.g., VM migration and LB reconfiguration, will trigger traf-

fic matrix changes. Let T0 and T1 be the initial and final traffic matrices, we may use

zUpdate to transition from the initial traffic distribution D0 to a new D∗ whose corre-

sponding rule set R∗ is feasible under T0, T1, and any possible transient traffic matrices

during the update.

As explained in §3.4, the number of possible transient traffic matrices can be enormous

when many LBs (or VMs) are being updated. It is thus computationally infeasible even

to enumerate all of them. Our key idea to solve this problem is to introduce a maximum

traffic matrix Tmax that is “larger” than T0, T1 and any possible transient traffic matrices

and only search for a D∗ whose corresponding R∗ is feasible under Tmax.

Suppose during the update process, the real traffic matrix T (t) is a function of time t.

We define ∀f : Tmax,f := sup(Tf (t)) where sup means the upper bound over time t. We

derive the following:

Lemma 4 Given a rule set R∗, if Tmax×R∗ ∈ D(Tmax), we have T (t)×R∗ ∈ D(T (t)).

Proof. Because Tf (t) ≤ Tf,max and Tmax ×R∗ ∈ D(Tmax), ∀ev,u ∈ E, we have:
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Figure 3.6: Implementing zUpdate on an OpenFlow switch.

∑
∀f

Tf (t)× rf,∗v,u ≤
∑
∀f

Tf,max × rf,∗v,u ≤ cv,u

Hence, T (t)×R∗ ∈ D(T (t)).

Lemma 4 says ifR∗ is feasible under Tmax, it is feasible throughout the update process.

This means, before updating the traffic matrix from T0 to T1, we may use zUpdate to

transition from D0 into D∗ whose corresponding R∗ is feasible under Tmax. This leads to

the following constraints C on D∗:

D∗ = T0 ×R∗ (3.10)

Tmax ×R∗ ∈ D(Tmax) (3.11)

Here Tmax is specified by the applications owners who are going to perform the update.

In essence, lemma 4 enables the operators to migrate multiple VMs in parallel, saving the

overall migration time, while not incurring any congestion.
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3.7 Practical Issues

In this section, we discuss several practical issues in implementing zUpdate including

switch table size, computational complexity, transition overhead, and unplanned failures

and traffic matrix variations.

3.7.1 Implementing zUpdate on switches

The output of zUpdate is a sequence of traffic distributions, each of which can be im-

plemented by installing its corresponding flow table entries into the switches. Given a

flow f ’s traffic distribution on a switch v: {lfv,u}, we compute a weight set W f
v in which

wfv,u = lfv,u/
∑

ui
lfv,ui . In practice, a zUpdate flow f is the collection of all the 5-tuple

flows from the same ingress to the same egress switches, since all these 5-tuple flows share

the same set of paths. W f
v can then be implemented on switch v by hashing each of f ’s

5-tuple flows into one next hop in f ’s next hop set using WCMP. As in [69], the version

number used by two-phase commit can be encoded in the VLAN tag.

Figure 3.6 shows an example of how to map the zUpdate flows to the flow and group

table entries on an OpenFlow switch. The zUpdate flow (ver2, s2, d2) maps to the switch

flow table entry (vlan2, s2, d2) which further points to group2 in the switch group table.

group2 implements this flow’s weight set {0.25, 0.75,−} using the SELECT group type

and the WCMP hash function.

3.7.2 Limited flow and group table size

As described in §3.2, a commodity switch has limited flow table size, usually between 1K

and 4K entries. However, a large DCN may have several hundreds ToR switches, elevating

the number of zUpdate flows beyond 100K, far exceeding the flow table size. Making

things even worse, because two-phase commit is used, a flow table may hold two versions

79



of the entry for each flow, potentially doubling the number of entries. Finally, the group

table size on commodity switches also poses a challenge, since it is around 1K (sometimes

smaller than the flow table size).

Our solution to this problem is motivated by one key observation: ECMP works rea-

sonably well for most of the flows in a DCN. During transition, there usually exist only

several bottleneck links on which congestion may arise. Such congestion can be avoided

by adjusting the traffic distribution of a small number of critical flows. This allows us to

significantly cut down the number of flow table entries by keeping most of the flows in

ECMP.

Consolidating flow table entries: Let S be the flow table size and n be the number of ToR

switches. In a flow table, we will always have one wildcard entry for the destination prefix

of each ToR switch, resulting in n wildcard entries in the table. Any flow that matches

a wildcard entry will simply use ECMP. Figure 3.6 shows an example where the switch

flow table has three wildcard entries for destinations d1, d2 and d3. Since the weight set

of zUpdate flows (ver1, s4, d3) and (ver2, s4, d3) is {−, 0.5, 0.5}, they both map to one

wildcard entry (*, *, d3) and use ECMP.

Suppose we need to consolidate k zUpdate flows into the switch flow table. Exclud-

ing the wildcard entries, the flow table still has S − n free entries (note that S is almost

certainly larger than n). Therefore, we will select S−n critical flows and install a specific

entry for each of them while forcing the remaining non-critical flows to use the wildcard

entries (ECMP). This is illustrated in Figure 3.6 where the zUpdate flows (ver1, s1, d1)

and (ver1, s3, d2) map to specific and wildcard entries in the switch flow table respectively.

To resolve matching ambiguity in the switch flow table, a specific entry, e.g., (vlan1, s1,

d1), always has higher priority than a wildcard entry, e.g., (*, *, d1).

The remaining question is how to select the critical flows. Suppose Df
v is the traffic

distribution of a zUpdate flow f on switch v, we calculate the corresponding D̄f
v which

80



is f ’s traffic distribution if it uses ECMP. We use δfv =
∑

u |lfv,u − l̄fv,u| to quantify the

“penalty” we pay if f is forced to use ECMP. To minimize the penalty caused by the flow

consolidation, we pick the top S − n flows with the largest penalty as the critical flows.

In Figure 3.6, there are 3 critical flows whose penalty is greater than 0 and 5 non-critical

flows whose penalty is 0.

Because of two-phase commit, each zUpdate flow has two versions. We follow the

preceding process to consolidate both versions of the flows into the switch flow table. As

shown in Figure 3.6, zUpdate flows (ver1, s4, d3) and (ver2, s4, d3) share the same

wildcard entry in the switch flow table. In contrast, zUpdate flows (ver1, s1, d1) and

(ver2, s1, d1) map to one specific entry and one wildcard entry in the switch flow table

separately.

On some switches, the group table size may not be large enough to hold the weight

sets of all the critical flows. Let T be group table size and m be the number of ECMP

group entries. Because a group table must at least hold all the ECMP entries, T is almost

always greater than m. After excluding the ECMP entries, the group table still has T −m

free entries. If S − n > T −m, we follow the preceding process to select T −m critical

flows with the largest penalty and install a group entry for each of them while forcing the

remaining non-critical flows to use ECMP.

After flow consolidation, the real traffic distribution D̃ may deviate from the ideal

traffic distribution D computed by zUpdate. Thus, an ideal lossless transition from D0

to Dn may not be feasible due to the table size limits. To keep the no loss guarantee,

zUpdate will check the real loss of transitioning from D̃0 to D̃n after flow consolidation

and return an empty list if loss does occur.

81



3.7.3 Reducing computational complexity

In §3.5.3, we construct an optimization programming modelM to compute a lossless tran-

sition plan. Let |F |, |V |, and |E| be the number of flows, switches and links in the network

and n be the number of transition steps. The total number of variables and constraints in

M is O(n|F ||E|) and O(n|F |(|V | + |E|)). In a large DCN, it could take a long time to

solveM.

Given a network, |V | and |E| are fixed and n is usually very small, the key to shortening

the computation time is to reduce |F |. Fortunately in DCNs, congestion usually occurs

only on a small number of bottleneck links during traffic migration, and such congestion

may be avoided by just manipulating the traffic distribution of the bottleneck flows that

traverse those bottleneck links. Thus, our basic idea is to treat only the bottleneck flows

as variables while fixing all the non-bottleneck flows as constants inM. This effectively

reduces |F | to be the number of bottleneck flows, which is far smaller than the total number

of flows, dramatically improving the scalability of zUpdate.

Generally, without solving the (potentially expensive) M, it is difficult to precisely

know the bottleneck links. To circumvent this problem, we use a simple heuristic called

ECMP-Only (or ECMP-O) to roughly estimate the bottleneck links. In essence, ECMP-O

mimics how operators perform traffic migration today by solely relying on ECMP.

For network topology update (§3.6.1), the final traffic distribution D∗ must satisfy

Equations (3.6)∼(3.8), each of which is in the form of lf,∗v,u = 0. To meet each constraint

lf,∗v,u = 0, we simply remove the corresponding u from f ’s next hop set on switch v. After

that, we compute D∗ by splitting each flow’s traffic among its remaining next hops using

ECMP. Finally, we identify the bottleneck links as: i) the congested links during the one-

step transition from D0 to D∗ (violating Equation (3.5)); ii) the congested links under D∗

after the transition is done (violating Equation (3.4)).
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For traffic matrix update (§3.6.2), ECMP-O does not perform any traffic distribution

transition, and thus congestion can arise only during traffic matrix changes. Let Tmax be

the maximum traffic matrix and Recmp be ECMP, we simply identify the bottleneck links

as the congested links under Dmax = Tmax ×Recmp.

3.7.4 Transition overhead

To perform traffic distribution transitions, zUpdate needs to change the flow and group

tables on switches. Besides guaranteeing a lossless transition, we would also like to mini-

mize the number of table changes. Remember that under the optimization modelM, there

may exist many possible solutions. We could favor solutions with low transition overhead

by picking a proper objective function. As just discussed, the ECMP-related entries (e.g.,

wildcard entries) will remain static in the flow and group tables. In contrast, the non-

ECMP entries (e.g., specific entries) are more dynamic since they are directly influenced

by the transition plan computed by zUpdate. Hence, a simple way to reduce the number

of table changes is to “nudge” more flows towards ECMP. This prompts us to minimize

the following objective function inM:

n∑
i=1

∑
f,v,u,w

|lf,iv,u − lf,iv,w|,where ev,u, ev,w ∈ E (3.12)

in which n is the number of transition steps. Clearly, the objective value is 0 when all

the flows use ECMP. One nice property of Equation(4.1) is its linearity. In fact, because

Equations(3.1) ∼ (4.1) are all linear, M becomes a linear programming (LP) problem

which can be solved efficiently.
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3.7.5 Failures and traffic matrix variations

It is trivial for zUpdate to handle unplanned failures during transitions. In fact, fail-

ures can be treated in the same way as switch upgrades (see §3.6.1) by adding the failed

switches/links to the update requirements, e.g., those failed switches/links should not carry

any traffic in the future. zUpdate will then attempt to re-compute a transition plan from

the current traffic matrix and traffic distribution to meet the new update requirements.

Handling traffic matrix variations is also quite simple. When estimating Tmax, we may

multiply it by an error margin η (η > 1). Lemma 4 guarantees that the transitions are

lossless so long as the real traffic matrix T ≤ ηTmax.

3.8 Implementation

Figure 3.7 shows the key components and workflow of zUpdate. When an operator

wants to perform a DCN update, she will submit a request containing the update require-

ments to the update scenario translator. The latter converts the operator’s request into

the formal update constraints (§3.6). The zUpdate engine takes the update constraints

together with the current network topology, traffic matrix, and flow rules and attempts to

produce a lossless transition plan (§3.5, 3.7.3 & 3.7.4). If such a plan cannot be found,

it will notify the operator who may decide to revise or postpone the update. Otherwise,

the transition plan translator will convert the transition plan into the corresponding flow

rules (§3.7.1 & 3.7.2). Finally, the OpenFlow controller will push the flow rules into the

switches.

The zUpdate engine and the update scenario translator consists of 3000+ lines of

C# code with Mosek [5] as the linear programming solver. The transition plan translator

is written in 1500+ lines of Python code. We use Floodlight 0.9 [2] as the OpenFlow

controller and commodity switches which support OpenFlow 1.0 [6]. Given that WCMP
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Figure 3.7: zUpdate’s prototype implementation.

is not available in OpenFlow 1.0, we emulate WCMP as follows: given the weight set of

a zUpdate flow f at switch v, for each constituent 5-tuple flow ξ in f , we first compute

the next hop u of ξ according to WCMP hashing and then insert a rule for ξ with u as the

next hop into v.

3.9 Evaluations

In this section, we show zUpdate can effectively perform cong-estion-free traffic migra-

tion using both testbed experiments and large-scale simulations. Compared to alternative

traffic migration approaches, zUpdate can not only prevent loss but also reduce the tran-

sition time and transition overhead.

3.9.1 Experimental methodology

Testbed experiments: Our testbed experiments run on a FatTree network with 4 CORE

switches and 3 containers as illustrated in Figure 3.3. (Note that there are 2 additional

ToRs connected to AGG3,4 which are not shown in the figure because they do not send

or receive any traffic). All the switches support OpenFlow 1.0 with 10Gbps link speed.

A commercial traffic generator is connected to all the ToRs and CORE’s to inject 5-tuple
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flows at pre-configured constant bit rate.

Large-scale simulations: Our simulations are based on a production DCN with hundreds

of switches and tens of thousands of servers. The flow and group table sizes are 750 and

1,000 entries respectively, matching the numbers of the commodity switches used in the

DCN. To obtain the traffic matrices, we log the socket events on all the servers and ag-

gregate the logs into ingress-to-egress flows over 10-minute intervals. A traffic matrix is

comprised of all the ingress-to-egress flows in one interval. From the 144 traffic matri-

ces in a typical working day, we pick 3 traffic matrices that correspond to the minimum,

median and maximum network-wide traffic loads respectively. The simulations run on a

commodity server with 1 quad-core Intel Xeon 2.13GHz CPU and 48GB RAM.

Alternative approaches: We compare zUpdate with three alternative approaches: (1)

zUpdate-One-Step (zUpdate-O): It uses zUpdate to compute the final traffic distri-

bution and then jumps from the initial traffic distribution to the final one directly, omitting

all the intermediate steps. (2) ECMP-O (defined in §3.7.3). (3) ECMP-Planned (ECMP-

P): For traffic matrix update, ECMP-P does not perform any traffic distribution transition

(like ECMP-O). For network topology update, ECMP-P has the same final traffic distri-

bution as ECMP-O. Their only difference is, when there are k ingress-to-egress flows to

be migrated from the initial traffic distribution to the final traffic distribution, ECMP-O

migrates all the k flows in one step while ECMP-P migrates only one flow in each step,

resulting in k! candidate migration sequences. In our simulations, ECMP-P will evaluate

1,000 randomly-chosen candidate migration sequences and use the one with the minimum

losses. In essence, ECMP-P mimics how today’s operators sequentially migrate multiple

flows in DCN.

Performance metrics: We use the following metrics to compare different approaches.

(1) Link utilization: the ratio between the link load and the link capacity. For the ease

of presentation, we represent link congestion as link utilization value higher than 100%.
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Figure 3.8: The link utilization of the two busiest links in the switch upgrade example.

(2) Post-transition loss (Post-TrLoss): the maximum link loss rate after reaching the final

traffic distribution. (3) Transition loss (TrLoss): the maximum link loss rate under all the

possible ingress-to-egress flow migration sequences during traffic distribution transitions.

(4) Number of steps: the whole traffic migration process can be divided into multiple steps.

The flow migrations within the same step are done in parallel while the flow migrations

of the next step cannot start until the flow migrations of the current step complete. This

metric reflects how long the traffic migration process will take. (5) Switch touch times

(STT): the total number of times the switches are reconfigured during a traffic migration.

This metrics reflects the transition overhead.

87



 0.6

 0.7

 0.8

 0.9

 1

0 2 4 6 8 10 12 14 16 18 time(s)

L
in

k
 u

ti
li

za
ti

o
n

reconfig S2 reconfig S1

CORE1-AGG1 CORE3-AGG6

(a) ECMP

 0.7

 0.8

 0.9

 1

0 5 10 15 20 25 time(s)

L
in

k
 u

ti
li

za
ti

o
n

change ToR5

change ToR6

reconfig S1
reconfig S2

change ToR5

change ToR6

CORE1-AGG1 CORE3-AGG6

(b) zUpdate

Figure 3.9: The link utilization of the two busiest links in LB reconfiguration example.

Calculating Tmax: Tmax includes two components: Tb and Tmaxapp . Tb is the background

traffic which is independent from the application being updated. Tmaxapp is the maximum

traffic matrix comprised of only the ingress-to-egress flows (fapp’s) related to the applica-

tions being updated. We calculate Tmaxapp as follows: for each fapp, the size of fapp in in

Tmaxapp is the largest size that fapp can possibly get during the entire traffic matrix update

process.

3.9.2 Testbed experiments

We now conduct testbed experiments to reproduce the two traffic migration examples de-

scribed in §3.4.

Switch upgrade: Figure 3.8 shows the real-time utilization of the two busiest links,

CORE1 → AGG3 and CORE3 → AGG4, in the switch upgrade example (Figure 3.2).

Figure 3.8(a) shows the transition process from Figure 3.2a (0s ∼ 6s) to Figure 3.2b (6s

∼ 14s) under ECMP-O. The two links initially carry the same amount of traffic. At 6s,
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ToR1 → AGG1 is deactivated, triggering traffic loss on CORE3 → AGG4 (Figure 3.2b).

The congestion lasts until 14s when ToR1 → AGG1 is restored. Note that we deliber-

ately shorten the switch upgrade period for illustration purpose. In addition, because only

one ingress-to-egress flow (ToR1 → ToR2) needs to be migrated, ECMP-P is the same as

ECMP-O.

Figure 3.8(b) shows the transition process from Figure 3.2a (0s ∼ 6s) to Figure 3.2d

(6s ∼ 8s) to Figure 3.2c (8s ∼ 16s) under zUpdate-O. At 6s ∼ 8s, ToR5 and ToR1

are changed asynchronously, leading to a transient congestion on CORE1 → AGG3 (Fig-

ure 3.2d). After ToR1,5 are changed, the upgrading of AGG1 is congestion-free at 8s ∼

16s (Figure 3.2c). Once the upgrading of AGG1 completes at 16s, the network is restored

back to ECMP. Again because of the asynchronous changes to ToR5 and ToR1, another

transient congestion happens on CORE3→ AGG4 at 16s ∼ 18s.

Figure 3.8(c) shows the transition process from Figure 3.2a (0s ∼ 6s) to Figure 3.2e

(8s ∼ 16s) to Figure 3.2c (18s ∼ 26s) under zUpdate. Due to the introduction of an

intermediate traffic distribution between 8s ∼ 16s (Figure 3.2e), the transition process is

lossless despite of asynchronous switch changes at 6s ∼ 8s and 16s ∼ 18s.

LB reconfiguration: Figure 3.9 shows the real-time utilization of the two busiest links,

CORE1 → AGG1 and CORE3 → AGG6 in the LB reconfiguration example (Figure 3.3).

Figure 3.9(a) shows the migration process from Figure 3.3a (0s ∼ 6s) to Figure 3.3c (6s

∼ 14s) to Figure 3.3b (after 14s) under ECMP. At 6s ∼ 14s, S2’s LB and S1’s LB are

reconfigured asynchronously, causing congestion on CORE1→AGG1 (Figure 3.3c). After

both LB’s are reconfigured at 14s, the network is congestion-free (Figure 3.3b).

Figure 3.9(b) shows the migration process from Figure 3.3a (0s ∼ 6s) to Figure 3.3d

(10s ∼ 18s) to Figure 3.3b (after 22s) under zUpdate. By changing the traffic split ratio

on ToR5 and ToR6 at 6s ∼ 8s, zUpdate ensures the network is congestion-free even

though S2’s LB and S1’s LB are reconfigured asynchronously at 10s ∼ 18s. Once the LB
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reconfiguration completes at 18s, the traffic split ratio on ToR5 and ToR6 is restored to

ECMP at 20s ∼ 22s. Note that zUpdate is the same as zUpdate-O in this experiment,

because there is no intermediate step in the traffic distribution transition.

3.9.3 Large-scale simulations

We run large-scale simulations to study how zUpdate enables lossless switch onboarding

and VM migration in production DCN.

Switch onboarding: In this experiment, a new CORE switch is initially connected to

each container but carries no traffic. We then randomly select 1% of the ingress-to-egress

flows, as test flows, to traverse the new CORE switch for testing. Figure 3.10(a) compares

different migration approaches under the median network-wide traffic load. The y-axis on

the left is the traffic loss rate and the y-axis on the right is the number of steps. zUpdate

attains zero loss by taking 2 transition steps. Although not shown in the figure, our flow

consolidation heuristic (§3.7.2) successfully fits a large number of ingress-to-egress flows

into the limited switch flow and group tables. zUpdate-O has no post-transition loss but

8% transition loss because it takes just one transition step.

ECMP-O incurs 7% transition loss and 13.5% post-transition loss. This is a bit coun-

terintuitive because the overall network capacity actually increases with the new switch.

We explain this phenomenon with a simple example in Figure 3.11. Suppose there are 7

ingress-to-egress flows to ToR1, each of which is 2Gbps, and the link capacity is 10Gbps.

Figure 3.11(a) shows the initial traffic distribution under ECMP where each downward

link to ToR1 carries 7Gbps traffic. In Figure 3.11(b), 4 out of the 7 flows are selected as

the test flows and are moved to the new CORE3. Thus, CORE3 → AGG2 has 8Gbps traf-

fic (the 4 test flows) and CORE2 → AGG2 has 3Gbps traffic (half of the 3 non-test flows

due to ECMP). This in turn overloads AGG2 → ToR1 with 11Gbps traffic. Figure 3.11(c)
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Figure 3.10: Comparison of different migration approaches.
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Figure 3.11: Why congestion occurs in switch onboarding.

shows zUpdate avoids the congestion by moving 2 non-test flows away from CORE2→

AGG2 to AGG1 → ToR1. This leaves only 1Gbps traffic (half of the remaining 1 non-test

flow) on CORE2→ AGG2 and reduces the load on AGG2→ ToR1 to 9Gbps.

ECMP-P has smaller transition loss (4%) than ECMP-O because ECMP-P attempts to

use a flow migration sequence that incurs the minimum loss. They have the same post-

transition loss because their final traffic distribution is the same. Compared to zUpdate,

ECMP-P has significantly higher loss although it takes hundreds of transition steps (which

also implies much longer transition period).
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VM migration: In this experiment, we migrate a group of VMs from one ToR to another

ToR in two different containers. During the live migration, the old and new VMs establish

tunnels to synchronize data and running states [28,51]. The total traffic rate of the tunnels

is 6Gbps.

Figure 3.10(b) compares different migration approaches under the median network-

wide traffic load. zUpdate takes 2 steps to reach a traffic distribution that can accommo-

date the large volume of tunneling traffic and the varying traffic matrices during the live

migration. Hence, it does not have any loss. In contrast, zUpdate-O has 4.5% transition

loss because it skips the intermediate step taken by zUpdate. We combine ECMP-O

and ECMP-P into ECMP because they are the same for traffic matrix updates (§3.9.1).

ECMP’s post-transition loss is large (7.4%) because it cannot handle the large volume of

tunneling traffic during the live migration.

Impact of traffic load: We re-run the switch onboarding experiment under the minimum,

median, and maximum network-wide traffic loads. In Figure 3.12, we omit the loss of of

zUpdate and the post-transition loss of zUpdate-O, since all of them are 0.
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Figure 3.12: Comparison under different traffic loads.

We observe that only zUpdate can attain zero loss under different levels of traffic

load. Surprisingly, the transition loss of zUpdate-O and ECMP-O is actually higher

under the minimum load than under the median load. This is because the traffic loss is
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determined to a large extent by a few bottleneck links. Hence, without careful planning, it

is risky to perform network-wide traffic migration even during off-peak hours. Figure 3.12

also shows zUpdate takes more transition steps as the network-wide traffic load grows.

This is because when the traffic load is higher, it is more difficult for zUpdate to find the

spare bandwidth to accommodate the temporary link load increase during transitions.

Transition overhead: Table 3.3 shows the number of switch touch times (STT) of differ-

ent migration approaches in the switch onboarding experiment. Compared to the STT of

zUpdate-O and ECMP-O, the STT of zUpdate is doubled because it takes two steps

instead of one. However, this also indicates zUpdate touches at most 68 switches which

represent a small fraction of the several hundreds switches in the DCN. This can be at-

tributed to the heuristics in §3.7.3 and §3.7.4 which restrict the number of flows to be

migrated. ECMP-P has much larger STT than the other approaches because it takes a lot

more transition steps.

zUpdate zUpdate-O ECMP-O ECMP-P
STT 68 34 34 410

Table 3.3: Comparison of transition overhead.

The computation time of zUpdate is reasonably small for performing traffic migra-

tion in large DCNs. In fact, the running time is below 1 minute for all the experiments

except the maximum traffic load case in Figure 3.12, where it takes 2.5 minutes to com-

pute a 4-step transition plan. This is because of the heuristic in §3.7.3 which ties the

computation complexity to the number of bottleneck flows rather than the total number of

flows, effectively reducing the number of variables by at least two orders of magnitude.
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3.10 Related Work

Congestion during update: Several recent papers focus on preventing congestion during

a specific type of update. Raza et al. [68] study the problem of how to schedule link weight

changes during IGP migrations. Ghorbani et al. [39] attempt to find a congestion-free VM

migration sequence. In contrast, our work provides one primitive for a variety of update

scenarios. Another key difference is they do not consider the transient congestion caused

by asynchronous traffic matrix or switch changes since they assume there is only one link

weight change or one VM being migrated at a time.

Routing consistency: There is a rich body of work on preventing transient misbehav-

iors during routing protocol updates. Vanbever et al. [76] and Francois et al. [37] seek

to guarantee no forwarding loop during IGP migrations and link metric reconfigurations.

Consensus routing [45] is a policy routing protocol aiming at eliminating transient prob-

lems during BGP convergence times. The work above emphasizes on routing consistency

rather than congestion.

Several tools have been created to statically check the correctness of network config-

urations. Feamster et al. [36] built a tool to detect errors in BGP configurations. Header

Space Analysis (HSA) [50] and Anteater [62] can check a few useful network invari-

ants, such as reachability and no loop, in the forwarding plane. Built on the earlier work,

VeriFlow [53] and realtime HSA [49] have been developed to check network invariants

on-the-fly.

3.11 Summary

We have introduced zUpdate for performing congestion-free traffic migration in DCNs

given the presence of asynchronous switch and traffic matrix changes. The core of zUpdate
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is an optimization programming model that enables lossless transitions from an initial traf-

fic distribution to a final traffic distribution to meet the predefined update requirements. We

have built a zUpdate prototype on top of OpenFlow switches and Floodlight controller

and demonstrated its capability in handling a variety of representative DCN update sce-

narios using both testbed experiments and large-scale simulations. zUpdate, as in its

current form, works only for hierarchical DCN topology such as FatTree and Clos. We

plan to extend zUpdate to support a wider range of network topologies in the future.
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Chapter 4

Optimizing Cost and Performance in

Content Multihoming

Many large content publishers use multiple content distribution networks to deliver their

content, and many industrial systems have become available to help a broader set of con-

tent publishers to benefit from using multiple distribution networks, which we refer to as

content multihoming. In this chapter, we conduct the first systematic study on optimizing

content multihoming, by introducing a series of novel algorithms to optimize both per-

formance and cost for content multihoming. In particular, we design a novel, efficient

algorithm to compute assignments of content objects to content distribution networks for

content publishers, considering both cost and performance. We also design a novel, light-

weight client adaptation algorithm executing at individual content viewers to achieve scal-

able, fine-grained, fast online adaptation to optimize the quality of experience (QoE) for

individual viewers. We provide proof on the optimality of our optimization algorithms

and conduct systematic, extensive evaluations using real charging data, content viewer

demands, and performance data, to demonstrate the effectiveness of our algorithms. We

show that our content multihoming algorithms reduce publishing cost by up to 40%. Our
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client algorithm executing in browsers reduces viewer QoE degradation by 51%.

4.1 Introduction

Many content publishers on the Internet use multiple content distribution networks (CDNs)

to distribute and cache their digital content. For example, both Netflix [11] and Hulu use

CDNs including Level 3, Limelight, and Akamai to distribute their content. We refer to

content publishing using multiple content distribution networks as content multihoming.

In our recent survey, major content publishers such as Netflix, Hulu, Microsoft, Apple,

Facebook, and MSNBC all use content multihoming.

Content publishers adopt content multihoming to aggregate the diversity of individual

CDN providers on features, performance and commitment [26]. For example, one CDN

may provide good coverage for locations 1 and 2, whereas another CDN provides good

coverage for locations 2 and 3. To deliver content to viewers from all three locations, a

content publisher may need to use both CDNs.

Given the wide usage and potential benefits of content multihoming, many commer-

cial systems supporting content multihoming have recently been developed and deployed

(e.g., [9, 29, 30, 33, 57, 58, 66]), so that more content publishers can benefit from content

multihoming. However, these commercial products either use ad hoc algorithms or do not

provide details on their designs. There are no previous known studies on how to effectively

utilize content multihoming.

In this chapter, we attempt to provide a framework and a set of novel algorithms to op-

timize the benefits of content multihoming. We ask a simple question: Given that content

multihoming allows a content object to be delivered from multiple CDNs, which CDN(s)

should a content publisher use to deliver each object to each content viewer requesting

this object, so that the publisher optimizes its benefits from content multihoming? Since
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modern content delivery infrastructures provide flexible request routing mechanisms (e.g.,

DNS CNAME and HTTP Redirect from the server side, and client scripts from the client

side), the key to effectively utilizing content multihoming is to address this question.

An answer to this simple question, however, is not immediately obvious. Consider

the current common approach of choosing, for each content viewer, the best performing

CDN among all candidate CDNs. This approach, despite its simplicity, has multiple is-

sues. First, although the chosen CDN may provide the highest level of performance, for

example, satisfying that 99% viewers do not see quality of experience (QoE) degradation,

the cost of the chosen CDN can be much higher than another CDN with a slightly lower,

but still high enough level of 95%. Second, as we shall see, there are often multiple CDNs

with comparable and sufficient levels of performance at a given region, e.g., in US. One

common approach to break ties in such cases is to pick the CDN with the lowest cost.

However, the costs of CDNs, in particular, pay-as-you-go CDNs such as Amazon Cloud-

Front, are volume based and non-linear. The cost of one object assignment depends on

the other assignments. Third, there are locations where even the best performing CDN

falls short. For example, a content publisher may have a QoE target of 95%, but the best

performing CDN at some location achieves only 90%.

In this chapter, we provide an answer to the above question from two perspectives:

(1) an efficient optimization algorithm executing at content publisher server(s) to compute

content distribution guidance, and (2) a simple algorithm executing at individual content

viewers to follow the guidance with local adaptation. Either algorithm can be deployed

alone, but together they provide the most benefits.

Specifically, the local viewer algorithm provides a capability for a content viewer to

make efficient usage of multiple servers from multiple CDNs, with a preference ordering

on the usage of CDN edge servers provided by the content publisher. Inspired by TCP

AIMD and using a simple priority task assignment mechanism, the algorithm adapts the
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usage of multiple CDNs, achieving a performance level that no single CDN/server can

achieve alone.

The publisher server optimization algorithm, named CMO, computes CDN assign-

ments considering many real factors including non-linear, multi-region CDN traffic charg-

ing, per-request charging, storage charging, content licensing restrictions, CDN feature

availability, and CDN performance variations. The CMO algorithm is novel and highly

efficient. It reduces the computational complexity from exponential when using simple

enumeration to be independent of the number of content objects when considering traffic

costs.

We implement both algorithms and conduct systematic, extensive evaluations using

real charging data, content viewer demands, and CDN performance to demonstrate the

effectiveness of our algorithms. We show that our content multihoming algorithm reduces

publishing cost by up to 40%. Our implementation of the client algorithm running in real

Firefox browsers reduces viewer QoE degradation by 51%.

4.2 Background and Notations

We start by introducing background and notations. Table 4.1 provides a reference for the

list of notations.

There are three key types of entities being managed in content multihoming: (1) con-

tent objects; (2) viewers of contents; (3) distribution networks that cache contents from

origin networks to serve content viewers.

Content object: A content publisher can have a large number of content objects such as

video and image objects. Let N denote the total number of content objects. An object has

many properties. In the context of content distribution, the performance requirement, the

size, and the popularity of an object are its key properties [20]. Let si be the size of object
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i. We introduce object popularity when we next introduce content viewers.

N Number of content objects.
K Number of CDNs.
A Set of fine-grained location areas.
si Size of object i.
nai Number of requests for object i from area a.
ia Object i being requested by viewers from location area a.
αrk Set of location areas served by charging region r of CDN k.
trk Charging volume of CDN k at its charging region αrk.

Crk(trk) Charging function of CDN k for charging region αrk.
Fk Set of location objects that CDN k can serve.

pai,k
CDN k’s performance for object i at location area a:
fraction of times CDN k can deliver ia with sufficient QoE.

xai,k CDN guidance: fraction of nai requests directed to CDN k.
πk CDN assignment: set of location objects assigned to CDN k.
Tk The maximum volume that can be assigned to CDN k.
bk The boundary of the capacity constraint of CDN k.

Table 4.1: Summary of key notations.

Content viewer (client): There can be a large number of content viewers requesting the

content objects. These content viewers can be distributed across multiple geographical

areas. The specific geographical areas depend on the particular requirements of a content

publisher. For generality and conceptual clarity, let A be the set of all geographical areas,

say all cities. Note that in this challenging general case the size of A can be large, on the

order of thousands. Let a ∈ A denote a specific location area.

As the popularity of an object among content viewers is location dependent [38], let

nai denote the number of times that object i will be requested during a time interval (say a

month), from content viewers located at location area a.

We also use nai to encode licensing restrictions that a content publisher often needs

to enforce in practice. Specifically, if content viewers from a location area a should not

receive a content object i, nai should be 0.

Content distribution network (CDN): A key reason of content multihoming is to aggre-

gate the capability-geography expertise of different CDNs, as different CDNs can have
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Figure 4.1: Edge server distributions of three CDNs.

quite different performance and cost characteristics, at different geographic regions. On

the other hand, as we will see, such differences are a major source of intrinsic complexity

when optimizing content multihoming. In this chapter, we assume that the set of CDNs is

given. Let K be the number of CDNs, and we use k and j to index individual CDNs.

First consider performance. Figure 4.1 shows the edge server footprints of three real

CDNs: Amazon CloudFront, MaxCDN and ChinaCache. When a content viewer from

a location area a requests a content object through CDN k, a well designed CDN will

choose an edge server (or several servers) that is close to a to serve the request, since a

short latency from edge servers to end users is typically needed to achieve good content

delivery performance [56]. Comparing the geographical footprints of the three CDNs

shown in Figure 4.1, one can anticipate that CloudFront and MaxCDN are more likely

to provide better performance in US and Europe, while ChinaCache may perform well in

China. None of the three covers regions such as Russia and Africa.
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To quantify the performance, we conduct measurements on the performance of three

CDNs (CloudFront, MaxCDN, and Liquid Web) delivering to different locations. Since

performance metrics are dependent on the content type, and streaming media is a major

content type [27], we focus on the delivery of streaming media. Table 4.2 shows the

success rates of the CDNs to deliver streaming objects encoded at three different streaming

rates (1Mbps, 2Mbps, and 3Mbps) to some representative locations. For example, the

entry for Liquid Web/Spain shows the success rates when viewers from Spain request

from Liquid Web: if the object is encoded at 1 Mbps, 99.4% of the viewers can receive

at the encoding rate; for a 2 Mbps object, only 47.3% of the viewers can receive at the

encoding rate; for a 3 Mbps object, almost no viewers can receive at the encoding rate.

The measurement results clearly show that the usability of a CDN depends on both the

object (e.g., a video encoded at 1 Mpbs or higher) and the location of the viewer. We refer

to object i being requested by viewers at a specific location area a as a location object,

denoted as location object ia.

CloudFront MaxCDN Liquid Web
US 99.9 99.9 99.9 99.2 98.4 97.8 99.3 96.1 92.1

Brazil 100 100 99.9 98.6 70.5 24.4 99.6 0 0
Austria 99.9 99.9 99.8 97.6 96.7 95.3 97.0 42.2 0
Spain 99.9 99.9 99.9 98.7 96.6 95.1 99.4 47.3 0.2
Japan 99.9 99.9 99.9 97.5 95.8 77.1 99.7 0 0
China 99.9 99.9 99.8 91.1 24.7 0 1.6 0 0

Australia 100 100 99.9 94.7 89.5 0 99.7 0 0

Table 4.2: Measured CDN performance pai,k (3 content objects at streaming rates 1/2/3
Mbps).

To precisely characterize the performance of CDN k, in this chapter, we define pai,k

as the fraction of times (e.g., 90%) that CDN k can deliver ia at the encoding rate of the

object i. One may define pai,k for other contexts (e.g., for images) and use other metrics

(e.g., 95-percentile latency).

Next consider costs. Different regions may have different resource (e.g., bandwidth,
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Figure 4.2: Charging structures of CloudFront and MaxCDN.

electricity) costs. Different CDNs may operate at different scales at different regions to

negotiate different volume discounts. Hence, different CDNs may charge different costs

to content publishers, and one CDN may charge differently at different regions.

Figure 4.2 shows the real charging structures of two CDNs: Amazon CloudFront and

MaxCDN. We show these two structures because they are public and represent typical

CDN charging structures. We make three observations. First, each CDN groups the lo-

cations of its edge servers into multiple regions and each region may have a different

pricing model. We refer to each such region as a charging region. For example, Cloud-

Front divides into 5 charging regions: US, EU, South America (SA), Japan (J), and Singa-

pore/Hong Kong (SHK). MaxCDN divides into 2 charging regions: US/EU/SA, and Asia

Pacific (AP). The total charge of a CDN to a content publisher is the sum of the charges at

all of the charging regions. Second, denote the total traffic originated from the edge servers

of a CDN located at a charging region during a billing period as the charging volume of the

charging region; then the charging function of each charging region is a nonlinear concave

function of the charging volume. Third, there can be large price diversity within a CDN as

well as across CDNs. For example, CloudFront’s charge for South America for next 100

TB is $0.18, which is 3 times that for the US at the same traffic volume.

To precisely express the charging of CDNs, we let αrk be the charging region r of CDN

k. For viewers from a location area a, each CDN has its own strategy to select servers
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Figure 4.3: Content multihoming control framework (shaded components include our con-
tributions).

in some αrk to serve them. This strategy is controlled by CDN k but can be observed

by content publishers [70]. For instance, in our measurements, requests from Beijing are

redirected to CloudFront’s J region but to MaxCDN’s US/EU/SA region. Let trk denote the

charging volume of CDN k at its charging region αrk, during a billing period. Specifically,

the value of trk is computed as the total traffic delivered during the billing period to content

viewers at location areas who are pointed to αrk by CDN k. Then the total charge of CDN k

to the content publisher is a sum of the charges at individual charging regions. Let Cr
k(t

r
k)

denote the charging function of CDN k for charging region αrk.

4.3 Control Framework

We adopt a general, practical content publishing control framework shown in Figure 4.3.

A central Optimizer computes the configuration of directing viewer requests to CDNs. The

configuration is sent to a DNS system, HTTP redirector, or a manifest-file server system

to implement direction for specific viewer requests.

In particular, we distinguish two types of clients according to their capabilities, due

to their effects on our problem formulation. The first type is passive clients. A key char-

acteristics of passive clients is that they use one CDN edge server at a time. Although

multiple CDNs and/or multiple servers from one CDN are available in content multihom-

ing, such traditional clients at content viewers use only a single CDN server to serve a

particular content object request [11]. For such clients, we assume that the results of con-
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tent multihoming optimization are implemented by only server side mechanisms such as

DNS redirection.

Specifically, suppose that content publisher cp.com uses DNS-based re-direction.

For simplicity, the publisher assigns content object i URL: http://obj-i.cp.com.

When a content viewer visits the URL, a DNS query from the client of the content viewer

or the local DNS server of the content viewer to resolve obj-i.cp.com will be sent to

the DNS server of the content publisher, labeled CPDNS in Figure 4.3. Looking up the

IP address of the content viewer or the local DNS resolver of the content viewer, CPDNS

obtains the location area a. Using the output from the Optimizer, CPDNS returns to the

client the CNAME of a chosen CDN k. In the example shown in Figure 4.3, CloudFront

is chosen. Note that in real implementation, as we will see in our computation, there is

no need to assign per-object DNS name. Alternative implementations (e.g., using HTTP-

based re-direction) will be similar.

The second type is active clients. Such clients include an adaptation algorithm (e.g.,

an Adobe Flash Actionscript) to utilize multiple CDN servers when retrieving a single

content object. In particular, when the service rate of one CDN server is insufficient, an

active client can use additional servers (from the same CDN or backup CDNs) to make up

the deficit. The additional CDNs/servers are provided to the adaptation algorithm through

a manifest file from the content publisher. Such manifest files are already used by some

clients such as the Netflix clients. In the example shown in Figure 4.3, the CNAMEs of

two CDNs are returned to an active client.

4.4 Problem Statements

With the preceding background and control framework, our problems are easy to state.

Note that there is much flexibility in the deployment of our control framework. There can
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be settings with only passive clients, or only active clients, or a hybrid. We first state the

problem in the passive client only setting. An extension to active client only setting is

straightforward and follows. Combining them together is also straightforward and hence

omitted.

4.4.1 Passive client

Specifically, we formulate the content multihoming optimization problem as consisting

two objectives:

QoE guarantee: First and foremost, for every object i and location area a, if nai > 0,

content multihoming should assign one or more CDNs for viewers from location area a

requesting object i to achieve a QoE target. Each assigned CDN k should satisfy two

requirements: (1) CDN k be capable of providing the required features (e.g., streaming vs

download) to deliver object i; (2) pai,k exceed the performance target. For concreteness,

we use a major streaming media content publisher’s QoE target format that p̄ fraction of

viewer requests can be satisfied without any QoE degradation. In this chapter, we use

rate based pai,k for concreteness, and extension to latency-based is straightforward. Define

Fk={ia: CDN k can provide the features to deliver object i and pai,k ≥ p̄.}. In other words,

Fk is the set of location objects that CDN k can serve.

Cost optimization: Under the QoE guarantee constraint, content multihoming may bal-

ance the load to multiple CDNs, in particular to minimize the total cost. Let xai,k denote the

fraction of the nai requests that is directed to CDN k. Hence, each xai,k is an optimization

variable with a valid value range between 0 and 1. We state the problem Q as:
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minimize
{xai,k}

C({xai,k}) =
∑
k

∑
αr
k

Crk(
∑
a∈αr

k

∑
i

xai,kn
a
i si)

subject to ∀i, a, nai > 0 :
∑
k

xai,k = 1;

∀i, a, ia /∈ Fk : xai,k = 0.

The first constraint states that each demand for an object i at a location a should be

served. The second constraint states the QoE constraint. In other words, if CDN k cannot

provide sufficient performance or feature for a location object ia, no content viewers from

location area a for object i should be directed to CDN k. Note that the QoE constraint

may lead to infeasibility. Feasibility can be checked efficiently. In this chapter, we assume

feasibility.

After computing a solution (i.e., {xai,k}), the Optimizer sends the solution to CPDNS in

the control framework of Section 4 to implement it.

4.4.2 Active client

An active client allows the usage of multiple CDNs to serve the same request. One might

think that this will add substantial complexity to the preceding formulation. But as we will

see, it is a simple extension of the preceding problem definition.

Without loss of generality, consider that each active client uses two CDNs: one primary

and one backup. Consider the following set of CDNs: each CDN is a “virtual CDN” that

consists of a pair of CDNs: k′ = (k, j), where k is the primary CDN and j is the backup.

Then we will have a similar problem formulation as the preceding formulation.

First consider the QoE Guarantee. Define Fk′={ia: both CDN k and CDN j can pro-

vide the features to deliver object i and pai,k∪pai,j ≥ p̄.}, where∪ denotes the joint reliability

of the two CDNs.

Next consider the objective function. Assume that each primary CDN k still delivers
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the same amount of traffic. The backup CDN j incurs an additional traffic 1− pai,k fraction

of the time. One may verify that C({xa
i,k′
}) and C({xai,k}) have similar structure and can

be solved with the same method.

After computing a solution for this setting (i.e., {xa
i,k′
}), where each k′ is a pair of

CDNs. The Optimizer sends the solution to manifest file servers to return two CDNs for

each active client request.

4.5 Computing Optimization

We now develop techniques to solve the problem defined in the preceding section. Since

the problems for the passive clients and active clients have the same format, we use the

passive client formulation. Our strategy is to first transform the problem to a combinatorial

partitioning problem in Section 4.5.1. Then, in Section 4.5.2 we develop a novel, efficient

algorithm that computes an optimal partition without enumerating all of the exponentially

many partitions. We discuss extensions in Section 4.5.3.

4.5.1 Optimal content multihoming as object partitioning

At a first glance of the problem Q, one might think about using convex programming

(e.g., [23]) to solve the problem. Unfortunately, the objective function C({xai,k}), which

we target to minimize, is a concave function, as it is a sum of multiple concave functions.

Hence, traditional, efficient convex programming does not apply.

On the other hand, the concavity of the objective does lead to one observation: there

is a minimizer of (4.1) such that each location-object is put into only one CDN. Precisely,

we have the following result:

Lemma 5 There exists an minimizer of C({xai,k}) for problem Q, such that each location

object is assigned to one and only one CDN. Formally, for any object i and location a ∈ A,
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there exists some k∗ ∈ K such that (i, a) ∈ Fk, and


xai,k = 1; if k = k∗

xai,k = 0; if k 6= k∗.

Consider one such solution, and let π denote the mapping, according to the solution,

from each location object ia to its assigned single CDN k: π(ia) = k. We make two

observations. First, we can also write the mapping π in an equivalent partition format:

π := {π1, . . . , πK}, where πk denote the set of location-objects that are assigned to CDN

k. We use both formats in this chapter. Second, since π is derived from a valid solution

to problem Q, it satisfies the QoE constraint: if π(ia) = k, then ia ∈ Fk. We refer to a

partition satisfying the QoE constraint as a feasible partition.

The partition-based interpretation of the solution allows us to change problem Q into

a partition-based formulation. Figure 4.4 illustrates the partition based formulation. The

figure includes only the location objects ia whose demand nai is greater than 0. For each

location object, it shows the candidate CDNs that the location object can be assigned to.

CDN k is a candidate for location object ia only if ia ∈ Fk. The problem then is to assign

each location object to one and only one CDN to minimize the cost.

Figure 4.4: Example illustration: Q can be formulated as a partition problem.

An advantage of the discrete partition formulation is that it allows enumeration. A

straightforward approach to finding an optimal partition is to enumerate all partitions, and

select the best one among the feasible partitions . We know that each location object ia can
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Figure 4.5: An example illustrating the basic idea to solve problem Q.

be assigned to one of K CDNs. Hence, the total number of partitions is K |A|N . For K = 2

or 3, |A| on the order of thousands and N hundreds of thousands, direct enumeration is

clearly infeasible. In other words, the partition formulation allows enumeration, but naive

enumeration does not work.

4.5.2 Efficient optimal partitioning

Our key insight to substantially reduce the complexity is that the naive enumeration of all

of the exponential number of partitions is unnecessary. Instead, we need to consider only

a polynomial number of partitions.

Basic idea: Specifically, consider the space of all possible partitions illustrated by the

space on the left of Figure 4.5(a), where each partition is shown as a point. A feasible

partition is shown as an white box while an infeasible partition is shown as a black box.

Naive enumeration evaluates every partition, ignores a partition if it is infeasible, and picks

a feasible partition that gives the best outcome.

Now instead of looking at the space of partitions, we look at the space of the outcomes

of the partitions, illustrated by the right space in Figure 4.5(a). Each partition point in

the left space has a corresponding outcome point in the right outcome space. Specifically,

the outcome of a partition π is a vector, with each element of the vector representing

the charging volume at charging region of CDN. Let V π denote the multi-dimensional

charging volume vector representing the outcome of a partition π. We will develop the
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Figure 4.6: An example illustrating the charging-intersections.

exact representation shortly.

Since the objective function of our problem Q is a concave function of the charging-

volume vector, we know from concave optimization theory that we need to evaluate the

objective function only over the extremal points of the convex hull of the charging volume

vectors produced by feasible partitions. In other words, if the charging volume vector V π

resulted from a feasible partition π is not an extremal point, the vector can be expressed as a

convex combination of those resulted from some other feasible partitions, and hence there

is no need to evaluate π. Figure 4.5(a) illustrates that we need to consider those partitions

marked with an ”x”. As we will see, the number of extremal points is polynomial and we

can identify them efficiently. Below, we develop the details of our algorithm.

Representing each location-object as a vector: The foundation of our basic idea is based

on considering the resulting charging volumes of a partition π as a vector V π. We now

introduce a representation of each location object v = ia as a vector to allow easy aggre-

gation on the outcome of a partition. This representation is quite simple but involves some

notation complexity at the beginning. The benefit of the representation is that it provides

essential insight and simplification during our development.

We first introduce charging region intersections. Recall that each CDN k defines a

mapping from a location area a to one of its serving charging regions α1
k, · · · , αRk

k , where

Rk is the number of charging regions of CDN k. Note that α1
k, · · · , αRk

k provides a partition

of all location regions A. An intrinsic complexity of multiple CDNs is the heterogeneity

of their charging regions. Define the “intersections” of the charging regions of the K
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CDNs. Let αr1r2···rK denote the intersection of the charging regions r1 of CDN 1, r2 of

CDN 2, and rK of CDN K. Then a total of R = R1 ∗ R2 · · ·RK intersections are defined.

Figure 4.6(a) illustrates a setting of two CDNs with 3 and 2 charging regions respectively.

At most R = 6 non-empty intersections may be defined.

With charging region intersections, we can represent each location object as a vector.

Specifically, given the set of charging region intersections, one can observe that each lo-

cation area a belongs to one and only one of the charging region intersections. Fix one

ordering of the intersections. Then we can convert the traffic of each location object v = ia

as an R-dimension vector with all elements except one being 0. The position of the non-

zero element is the intersection that the location area a belongs to, and the value at the

position is nai si. When it is clear from the context, we use v to either represent the name

of a location object ia or the vector. Figure 4.6(b) shows the vector representations of two

location objects.

By representing each location object v = ia as a R dimensional vector, we introduce a

simple, linear outer-production operator to reflect the effect of assigning v to CDN k. Let

ek be a unit K-dimensional vector whose only non-zero element is at the k-th position and

the value at the k-th position is 1. Define v ⊗ ek, which reflects the effect of assigning v

to CDN k, as producing a R × K matrix such that v is at the k-th column and the other

columns are zero. Figure 4.6(c) shows four examples, when we assign two location objects

to two CDNs. For example, the first example shows v1⊗ e1; that is, assigning v to CDN 1.

Given this definition of the outer-product and a partition π, we can calculate the effect

of applying π to a location object as vπ, which is v⊗ eπ(v), where π(v) indicates the CDN

that v is assigned to under partition π.

Aggregating the effects of a partition π on all location objects, we define

V π = [
∑
v∈π1

v, . . . ,
∑
v∈πK

v] =
∑
v

v ⊗ eπ(v) ∈ RR×K . (4.1)
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We now go back to identifying extremal partitions.

Identifying extremal partitions by identifying separation vector: The basis of our tech-

nique to identify the extremal points of a set of points is through the fundamental Separa-

tion Lemma [43]. Specifically, define V Π = {V π}, where π is a feasible partition. Then

a sufficient and necessary condition for a specific V π∗ ∈ V Π to be an extremal point of

V Π is that there exists a vector P in the same dimension space such that the inner product

〈P, V π−V π∗〉 > 0 for any other V π ∈ V Π. In other words, the inner product of P and V π∗

is smaller than the inner product between P and any other point V π ∈ V Π. For instance,

in Figure 4.5(b) , 〈P, V π − V π∗〉 > 0,∀π 6= π∗.

Hence, a strategy to identify the set of all extremal points is to compute a set of P s and

from each P we compute an extremal feasible partition. Denote the computation from P

to a partition as f(P ). Figure 4.5(d) illustrates a set of P s and a mapping function f().

We want the following on conditions on the set of P s and f() :

1. computationally efficient: both the set of P s and f(P ) are easy to compute;

2. valid: each f(P ) is an extremal feasible partition;

3. exhaustive: for each extremal feasible partition π∗, there exists one P in the set of

P s, such that f(P ) = π∗.

Below, we show a set of P s and a function f(P ) satisfying the preceding conditions.

Function f(P ): We start by developing f(P ). We have the following CDN Identification

Lemma.

Lemma 6 (CDN Identification Lemma) A feasible partition π∗ is an extremal partition

among the set of all feasible partitions if and only if ∃P ∈ RR×K such that ∀v, k, k 6=

π∗(v) ∧ v ∈ Fk: 〈P, v ⊗ eπ∗(v)〉 < 〈P, v ⊗ ek〉.

113



We name the lemma CDN Identification Lemma because it is the foundation to develop

f(P ). Given a P in the lemma, we can compute a corresponding extremal partition π

efficiently: for each location object v = ia, iterate among all feasible CDNs k for the

object (i.e., ia ∈ Fk), we compute 〈P, v ⊗ ek〉. We assign v to the (unique) CDN k

attaining the minimal value: π(v) = k.

Set of P s: We consider the following set of P s: a P satisfies that all of the elements in

{〈P, v ⊗ ek〉|∀k : v ∈ Fk} are distinct. Formally:

{P : ∀k, j, v, k 6= j ∧ v ∈ Fk ∩ Fj : 〈P, v ⊗ (ek − ej)〉 6= 0}. (4.2)

Since the conditions are stronger than those from the CDN Identification Lemma, we

know that each such P can compute an extremal partition.

Geometrically, the condition that P satisfies 〈P, v ⊗ (ek − ej)〉 6= 0 is equivalent to

that P is not on the hyperplane that is orthogonal to v⊗ (ek − ej). Denote this hyperplane

as [v ⊗ (ek − ej)]⊥ and let H be the set of all these hyperplanes. Hence, a P satisfying all

conditions in (4.2) is not on any of the hyperplanes in H. In other words, P should be an

interior point in a cell created with hyperplanes in H as boundaries. Efficient algorithms

(e.g., [72]) exist to enumerate one interior point from each cell.

Exhaustiveness: From the preceding development, it should be clear that we have devel-

oped a set of P s and the function f which is computationally efficient, and f(P ) is valid.

The only remaining issue is whether we satisfy the exhaustive requirement by enumerating

an arbitrary interior P from each cell. First, we have

Proposition 7 If π∗ is an extremal feasible partition, then ∃P which makes f(P ) = π∗

and P is an interior point of a cell in H.

Proof. Suppose we find an extremal partition π∗ from a pointQ that is not an interior point

of any cell in H, we shall construct from Q another point Q′ that is indeed an interior point
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of some cell in H and that f(Q′) = π∗. Since Q is not interior, there exists v0, k0 6= j0

such that 〈Q, v0 ⊗ (ek0 − ej0)〉 = 0. Consider P (δ) = Q + δ · v0 ⊗ (ek0 − ej0), where

δ ∈ R1. We have that, for any v, k 6= j, 〈P (δ), v ⊗ (ek − ej)〉 = 〈Q, v ⊗ (ek − ej)〉 + δ ·

〈v0⊗ (ek0 − ej0), v⊗ (ek− ej)〉, which is a continuous function of δ. So there exists some

small enough |δ′| 6= 0 such that:

(1) 〈P (δ′), v ⊗ (ek − ej)〉 < 0(or > 0) for all v, k 6= j such that 〈Q, v ⊗ (ek − ej)〉 <

0(or > 0); and

(2) 〈P (δ′), v0 ⊗ (ek0 − ej0)〉 = δ′ · ‖v0 ⊗ (ek0 − ej0)‖2 6= 0.

This means that P (δ′) is on one less hyperplanes in H than Q. Moreover, since π∗ is

extremal, we have 〈Q, v⊗ (eπ∗(v)− ek)〉 < 0 for all v, k, k 6= π∗(v)∧ v ∈ Fk, so it follows

from (1) that 〈P (δ′), v ⊗ (eπ∗(v) − ek)〉 < 0 as well, hence f(P (δ′)) = π∗ by Lemma 6.

This process can be repeated to yield a Q′ that is not on any hyperplanes in H and that

f(Q′) = π∗.

A potential issue is that the interior P from the preceding lemma may not be the one

that our algorithm uses. However, we have the following result, and establish the exhaus-

tiveness of our approach.

Lemma 8 Interior points from the same cell find the same extremal feasible partition.

Proof. Let P1 and P2 are two interior points from the same cell. Suppose their corre-

sponding extremal partitions π∗1 6= π∗2 , then ∃v0 which has π∗1(v0) 6= π∗2(v0). Therefore,

according to Lemma 6

〈P1, v0 ⊗ (eπ∗1(v0) − eπ∗2(v0))〉 < 0

〈P2, v0 ⊗ (eπ∗1(v0) − eπ∗2(v0))〉 > 0

which contradicts with the pre-condition that P1 and P2 are from the same cell.
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Algorithm 4: CMO(V, {Fk})
Input: V: location objects to be assigned.
Input: {Fk}: K CDNs and their feasibility sets.
Output: optPi: optimal partition

1 // Step 1: Identify hyperplanes;
2 HPs← ∅ ;
3 foreach v ∈ V do
4 vVec = vAsVector(v) ;
5 foreach distinct (k, j) pairs do
6 if (v ∈ Fk ∧ v ∈ Fj) then
7 hpCandidate = norm(vV ec⊗ (ek − ej)) ;
8 if (hpCandidate /∈ HPs) then
9 HPs += hpCandidate

10 // Step 2: Compute interior Ps from hyperplanes;
11 Ps← computePs(HPs);

12 // Step 3: Evaluate extremal partitions identified by Ps;
13 optPi← null;
14 foreach P ∈ Ps do
15 // compute extremal partition π identified by P;
16 π← null ;
17 foreach v ∈ V do
18 optOuter← +∞;
19 foreach CDN k do
20 if v ∈ Fk ∧ 〈P, v ⊗ ek〉 < optOuter then
21 π(v)← k ;
22 optOuter← 〈P, v ⊗ ek〉

23 // compare new extremal π with current optPi;
24 if (π > currentOptP i) then
25 optPi← π

26 return optPi;

Redundancy elimination: On the surface, we need to enumerate all cells created by a

total of |A|NK(K − 1) hyperplanes, where |A|N is due to the number of possibilities for

v, which is the number of location objects, and K(K − 1) is due to the number of possi-

bilities for (ek − ej). However, some of the |A|NK(K − 1) hyperplanes are redundant.

Specifically, if one vector is just the scaling of another vector, they define the same hyper-

plane. For example, v ⊗ (ek − ej) and v ⊗ (ej − ek) give the same hyperplane. Hence,
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we need to consider only distinct pairs of k and j. Also, consider two location objects

v1 = ia11 and v2 = ia22 . If their vector representations satisfy v1 = λv2, where λ is a scalar,

then they define the same hyperplane, for each pair of k and j. In other words, all of the

location objects who are mapped to the same charging region intersection define the same

hyperplane for each pair of k and j. Hence, the number of unique hyperplanes is at most

R
(
K
2

)
.

Algorithm: For completeness, we specify the content multihoming optimization (CMO)

algorithm in Algorithm 4. Note there are many ways to implement computePs(). We

choose [72] because it can easily be parallelized running on multiple CPU cores and com-

puters.

Example: To help readers understand the algorithm, we apply it to the simplest setting of

two CDNs and both use one global charging region. This is a setting where one can solve

problem Q using intuition. Specifically, in this setting, we can divide the location objects

into 3 categories: V1: the location objects that can be assigned to only CDN 1; V2: the

location objects that can be assigned to only CDN 2; and V3: the location objects that can

be assigned to either CDN 1 and CDN 2. Then the only remaining issue is to determine the

assignments of objects in V3. One can verify that the correct strategy is that we compare

the objective function values of two alternatives: (1) assigning all objects in V3 to CDN

1, with objects in V1 and V2 preassigned to their respective CDNs; and (2) assigning all

objects in V3 to CDN 2, with objects in V1 and V2 preassigned to their respective CDNs.

Now, we see how CMO solves the setting. In Step 1 (Lines 2 to 9), the algorithm

computes that there is only one hyperplane defined by [1, -1]. In Step 2, ComputePs

computes two interior Ps P1 and P2, where P1 is any one vector in the lower right half-

space (x-coordinate is larger than the y-coordinate) of Figure 4.5(c), and P2 is any one in

the upper left half-space (x-coordinate is smaller than the y-coordinate).

In Step 3, the algorithm first evaluates P = P1 to compute an extremal partition. For
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each location object v = ia, if it is in V1 or V2, the algorithm assigns it to the only feasible

CDN. If v ∈ V3, 〈P1, v⊗ e1〉 is the x-coordinate of P1 times the traffic volume of object v,

and 〈P1, v⊗ e2〉 is the y-coordinate of P1 times the traffic volume of v. We know that P1 is

chosen such that the x-coordinate is larger than the y-coordinate. Hence, P1 produces the

extremal assignment of assigning all objects in V3 to CDN 1. The algorithm next evaluates

P = P2. It produces the the extremal assignment of assigning all objects in V3 to CDN

2. At Line 24, the algorithm compares the two cases and picks the better one. Hence,

it produces the intuitive results. For general settings where we can no longer appeal to

intuition, the algorithm computes the optimal assignment efficiently.

4.5.3 Extensions

The basic algorithm developed in the preceding section can be extended to handle diverse

practical issues including storage costs, per-request costs, capacity constraints (so that

we can handle CDNs with subscription levels as each CDN with a capacity constraint),

and dynamic streaming when the streaming rates can adapt. Below we present simple

extension to handle per-transaction cost and CDN capacity constraints.

Per-request cost: Besides charging for traffic, many CDNs also include charges for the

number of requests. For instance, CloudFront charges $0.0075 per 10,000 HTTP requests

in US. Consider that CloudFront charges $0.12/GB for the first 10TB traffic as shown in

Figure 4.2. One can calculate that if the object sizes are less than 6.25KB, then the per-

request charge can be higher than the traffic charge. Hence, the per-request charge can be

the major cost for content publishers providing small objects e.g., small images).

Extending Algorithm 4 to consider both traffic and per-request charge is relatively

straightforward. Specifically, in the preceding section, each location object is represented

as a R-dimension vector with one non-zero element at the charging region of the object.
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An extension to include per-request charge is to represent each location object as a R + 1

dimension vector, with the one added dimension representing the number of requests for

the object.

Hyperplane aggregation in this extended setting is also relatively straightforward. Since

each location object ia has two non-zero dimensions, traffic nai si and the number of re-

quests nai , we have that v(ia11 ) = λv(ia22 ), λ 6= 0 if and only if (1) a1 and a2 are in the same

charging region, and (2) si1 = si2 . One can further aggregate hyperplanes by discretizing

the sizes of objects into ranges.

We use a simple example to demonstrate the per-request cost extension of CMO. Sup-

pose there are two CDNs. CDN1 charges $1/MB for traffic and $0/request, and CDN2

charges $0.1/MB for traffic and $0.1/request. There are two 10KB objects with 30 and 49

requests respectively, , one object 25KB object with 20 requests, and one 1MB object with

1 request.

CMO goes through following steps to find out the optimal object assignment effi-

ciently:

1. CMO represents the objects as four 2D-vectors: v1 = [0.3, 30], v2 = [0.49, 49], v3 =

[0.5, 20] and v4 = [1, 1], where the first dimension is traffic/MB and the second is

number of requests.

2. Line 3 ∼ 9: CMO constructs four hyperplanes h1 = [0.3, -0.3, 30, -30], h2 = [0.49,

-0.49, 49, -49], h3 = [0.5, -0.5, 20, -20] and h4 = [1, -1, 1, -1]. After nomalization

and de-duplication (Line 7, 8), three hyperplanes left: [1, -1, 100, -100], [1, -1, 40,

-40] and [1, -1, 1, -1].

3. Line 11: It finds 6 interior points P1 = [1, 0, 1, 0], P2 = [-1, 0, -1, 0], P3 = [70, 0, -1,

0], P4 = [-70, 0, 1, 0] , P5 = [20, 0, -1, 0] and P6 = [-20, 0, 1, 0].

4. Line 14 ∼ 22: Six extremal object assignments are found (π := {CDN1’s ob-
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jects}{CDN2’s objects}): π1 = {v1, v2, v3, v4}{} π2 = {}{v1, v2, v3, v4}, π3 =

{v1, v2}, {v3, v4}, π4 = {v3, v4}, {v1, v2}, π5 = {v1, v2, v3}, {v4}, π6 = {v4}, {v1,

v2, v3}.

5. Line 23 ∼ 25: By comparing the costs of the extremal object assignments, we get

π5 is optimal.

CDN Capacity Constraint: In preceding sections, we developed our algorithms based

on the ”pay as you go” price model in which there is no usage limit for any CDN. How-

ever, in reality some CDNs make a commitment with their content providers and they

charge a one-time fee for a particular monthly resource usage upper bound (e.g.monthly

total traffic volume). Also, they punish the traffic volume exceeded the upper bound with

a much higher price. An interesting question is that for a content provider which is con-

sidering make commitments with such monthly-plan based CDNs, which data plan (usage

upper bound) should it choose and how to assign traffic to CDNs to optimize its cost and

performance.

To answer the question above, we introduce CDN capacity constraints for problem Q.

Define Tk as the maximum traffic volume in a charging period of CDN k, the original cost

optimization problem Q is adapted as problem Qc:

minimize
{xai,k}

C({xai,k}) =
∑
k

∑
αr
k

Crk(
∑
a∈αr

k

∑
i

xai,kn
a
i si)

subject to ∀i, a, nai > 0 :
∑
k

xai,k = 1;

∀i, a, ia /∈ Fk : xai,k = 0;

∀k :
∑
ia∈Fk

xai,kn
a
i si ≤ Tk.

Because of the capacity constraints, Lemma 5 will no longer be true, which means a

location object might be split into multiple CDNs in the optimal assignment.
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To develop an efficient algorithm to find the optimal object assignments in problem

Qc, we firstly claim two facts:

Lemma 9 The feasible set of problem Qc is convex.

Lemma 10 For a given CDN k, the feasible set without k’s capacity constraint is F and

the one with k’s capacity constraint is Fk. All the vertices of F who satisfy k’s capacity

constraint are vertices of Fk. Moreover, if a vertex of Fk is not a vertex of F , it is on the

boundary of k’s capacity constraint (bk).

Define an ”edge” of a convex set as a line segment whose end points are two vertices

and each point on it can only be a convex combination of points on itself.

Proposition 11 If a vertex of Fk is not a vertex of F , it is on an edge of F . One of the

edge’s end points is outside Fk and the other is inside Fk.

Proof. Suppose x∗ is a vertex of Fk which is not a vertex of F , it is a convex combination

of two points x0 ∈ F ∧ x0 /∈ Fk and x1 ∈ Fk.

Assume x1 is not on any edge of F , there exists two points x1 ∈ Fk and x2 ∈ Fk

satisfying x1 = λx2 + (1− λ)x3, (0 < λ < 1). The line segment between x0 and x2 (x3)

intersects bk on point x′2 (x′3). Without losing generality, let x0 be the zero point, we have:

x∗ = µ1x1, x′2 = µ2x2 and x′3 = µ3x3, where 0 < µ1,2,3 < 1. Hence we have:

x∗

µ1

= λ
x
′
2

µ2

+ (1− λ)
x
′
3

µ3

Because x∗, x′2 and x′3 are all on bk, we derive:

1

µ1

= λ
1

µ2

+ (1− λ)
1

µ3
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In summary we get:

x∗ =
1

1 + µ
x
′

2 +
µ

1 + µ
x
′

3

where µ = (1−λ)µ2
λµ3

. It is contradictory with the pre-condition that x∗ is a vertex of Fk.

Hence, x1 should be on an edge of F .

With Proposition 11, we can find the vertices of Qc’s feasible set starting from the

vertices of Q from Algorithm 4. In each step from feasible set F we add a new CDN’s (k)

capacity constraint and figure out the vertices of Fk on bk by enumerating the edges of F

intersecting bk.

4.6 Active Clients

An active client may be provided with an ordered list of CDNs to use in serving a single

content object to improve performance. The list may come from the result of our optimiza-

tion algorithm in the preceding section or another source of guidance. Even though our

optimization algorithm considers performance constraints, the filtering is based on statis-

tics. Hence, an active client still uses multiple CDNs to adapt to specific real-time CDN

performance dynamics, in particular, to improve QoE during CDN server failures.

4.6.1 Adaptation problem statement

An active client receives guidance on its adaptation behaviors. First, it is provided with a

prioritized list of CDNs. Without loss of generality, we consider the case of two CDNs:

the first primary CDN, and the second backup CDN. Second, each individual CDN on

the list provides a small number (typically 2) preferred edge servers through its request

routing mechanism (e.g., DNS resolution or HTTP redirect). We consider servers from the

same CDN having the same priority.

We define the problem statement of active client adaptation as implementing a simple

122



Figure 4.7: A downloading state transition diagram.

control state transition diagram. Figure 4.7 shows the diagram for a setting of two servers

(h11 and h12) from the primary CDN and one server (h21) from the backup CDN. An

active client starts at a state of using one primary CDN server. The state is shown as h11

in the figure, indicating that the client starts from downloading from h11. We construct

the control diagram to achieve protection, priority guidance and stability:

• Protection: At a given state, if the existing servers together cannot provide the required

QoE, the client adds one more server next in rank;

• Priority guidance: At a state using multiple servers, if sufficient capacity at a higher

ranked server has become available, increase the usage of the new capacity and try to

remove the usage of other servers;

• Stability: There is no switching overhead among servers from the same CDN (or same

priority in general).

Note that one can introduce other transitions using our control state diagram based

approach.
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4.6.2 Adaptation algorithm: window AIMD and priority assignment

We implement the control diagram using the classic window-based AIMD (Additive In-

crease Multiplicative Decrease) scheme, based on a key observation that there is an anal-

ogy between the traditional congestion control and active client adaptation. In particular,

if we consider the flow from each server to the client as a link, then we are solving a rate

allocation problem among the links, where two essential mechanisms are needed: (1) the

rate on a link should be reduced if the link is overloaded; and (2) a probing scheme is

needed to utilize newly available capacity.

Specifically, for each sever h, the client maintains a request window size wh to control

the number of bytes that the client will request from h per T seconds, where T is a con-

figuration parameter. We use the classic AIMD algorithm as a base to adjust the window

sizes. In particular, if server h is capable of finishing its allocated request load, its window

size wh should be linearly increased; otherwise, wh should be exponentially decreased.

However, our design problem is also different from the traditional congestion control

problem, and hence we need to introduce novel and interesting techniques.

Total workload control: Naive usage of traditional AIMD will imply that all servers can

be fully utilized to achieve a download rate that is as high as possible. However, this may

not be necessary for the content viewer. Specifically, to achieve QoE of streaming content,

the client only needs to sustain a sufficient downloading rate (e.g., the video encoding rate

R KB/s).

Based on this observation, we apply total workload control to appropriately limit the

usage of the CDN servers. In our design, every T seconds, a new request task is added to

the request queue of the client. The new task consists of only the next R · T KB content to

be downloaded. Note that there can be remaining tasks in the queue to be completed when

the new batch of task is added.
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Priority task assignment: Total workload control does not yet achieve our adaptation

goal. In particular, the load may still spread unnecessarily to too many servers. For ex-

ample, a single primary server h11 has enough capacity to serve the client, but a backup

server h21 may be also used unnecessarily for downloading, if h21 has equal opportunity

fetching task from the request queue.

Our solution to this issue is priority task assignment. Specifically, whenever a request

needs to be sent out, it always goes to the server at the highest rank, if its window allows.

The complete algorithm is described in Algorithms 5 and 6. Our real implementation is a

simple event loop.

Algorithm 5: WorkloadControl(newdata, server list)

1 /* request queue is a shared lock-free queue */
2 request queue← request queue + newdata;
3 /* sort server list by first h.rank then wh */
4 foreach h ∈ server list do
5 if request queue = ∅ then
6 break;

7 if h.free then
8 PriorityAssign(h);

Discussions: Our window-based downloading adaptation algorithm is different from the

traditional TCP congestion control. (1) To maintain client QoE, it requires (at application-

level, during T seconds) that the total downloading rate across all servers to be at least

video encoding rate. In particular, the sum window size should satisfy
∑
i
wi > R · T .

The adaptation algorithm enforces this by setting initial window size for a primary server

(e.g., wh11) to be R · T , and for each backup server to be 1. (2) Different from TCP’s

per-segment window update, we apply AI on the window size after all requests of the

entire window are completed. In steady state (client streaming smoothly), this allows the

client to slowly probe higher-ranked servers. Upon primary server failure or congestion,

our AI strategy increases the backup server’s window size; due to self clocking and before
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Algorithm 6: PriorityAssign(h)

1 h.free← false;
2 len← min(wh, request queue.size);
3 assign← request queue[0 : len-1];
4 request queue← request queue - assign;
5 (response, finished)← HTTP GET(h, assign) ;

// Upon HTTP RESPONSE:
6 /* put finished into content buffer */
7 if response = SUCCEED and wh = len then
8 wh ← wh + 1;

9 else
10 wh ← max(1, wh/2);
11 request queue← request queue + assign - finished;

12 if request queue 6= ∅ then
13 PriorityAssign(h);

14 else
15 h.free← true;
16 return;

reaching the streaming rate, the increase behavior is similar to TCP-slow start, which is

fast to allow request queue cleaning. (3) Although the algorithm maintains a window

size for each server, it does not open a (TCP) connection to a lower-ranked server until

necessary. Also, when the higher-ranked servers have sufficient capacity, the adaptation

algorithm disconnects the lower-ranked servers.

We evaluate both the QoE protection effectiveness and the cost overhead of our algo-

rithm by running real experiments (see Section 4.7).

4.7 Evaluations

In this section, we evaluate the cost and performance of our system design for content

multihoming. In specific, we implement and test our optimization algorithm (CMO), the

client adaptation algorithm, and the interactions between the two system components. We

use real data to drive the run of our optimizer, and instrument clients on PlanetLab to
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conduct experiments.

4.7.1 Evaluation methodology

Content publishers: We evaluate our algorithms using real traces of content requests to

two production Video-on-Demand (VoD) publishers. We name the content publishers CP1

and CP2 respectively. We consider each video as a content object, and collect the follow-

ing information about each video: its size, and the number of times that it is requested

from each city per month for a 6-month duration. Table 4.3 shows the summary statis-

tics of the content objects. Figure 4.8 plots detailed statistical distributions of object sizes

(si), number of requests (ni) to each object, and traffic volume (sini) of each object. We

notice that these distributions are long-tail distributions, which is consistent with other

measurements [82].

We use MaxMind GeoIP database to map a client IP address in the trace to a location

area. Our evaluations use the following definition of location areas: we start with each

country as a location area; for a country with a large geographical span, we refine it to a

next level; for example, we define each state in USA as a location area.

# Objects Sum of Obj Size Total Traffic #Request
CP1 529,411 40 TB 12,114 TB 153,129,348
CP2 667,856 71 TB 27,307 TB 390,235,440

Table 4.3: Summary statistics of content objects.

Content distribution networks: Our evaluation is based on three commercial CDNs:

Amazon CloudFront, MaxCDN, and an anonymous private CDN which we refer to as

CDN3. The geographic footprints of CloudFront and MaxCDN are shown in Figure 4.1,

and the real charging structures and parameters of CloudFront and MaxCDN are shown in

Figure 4.2. The server distribution and detailed price information for CDN3 are not shown

due to privacy.
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Figure 4.8: Statistics of object size, number of requests to each object, and total traffic for
each object.

In our evaluations, we require that pai,k ≥ 90% for each CDN k and each location object

ia.

To study how each CDN maps a location area to its charging region, we deploy a

measurement client on each one of 536 available PlanetLab machines to request objects

from each CDN. We use traceroute to determine the locations of the CDN servers,

as the GeoIP database can be inaccurate, e.g., all CloudFront servers are always classified
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as in Seattle, WA, US. After computing the charging region intersections of the three

CDNs, we pick the top 5 intersections that contain the most traffic. Table 4.4 shows the

percentages of traffic to major geographical regions.

US EU SA Asia & Pacific Japan
CP1 77 % 11 % 6 % 5 % 1 %
CP2 19 % 7 % 1 % 71 % 2 %

Table 4.4: Traffic distribution across major geo regions.

Optimizer, Client, and Content Deployment: Our publishing optimizer is implemented

in C++ and runs on a commodity PC with 2 quad-core Intel Xeon 2.33 GHz CPUs and 3

GB of memory.

We integrate our client adaptation algorithm into a production-based Adobe Flash

video player. We leverage NetStream.

appendBytes in Adobe Flash (supported by version 10.1 and above) to integrate multi-

ple CDN servers for one video streaming session. To collect the performance metrics, our

player periodically reports logs to a logging server through HTTP. Our player is deployed

on CDN3 and can be accessed by any web browser on the Internet, including PlanetLab

nodes. We then install Mozilla Firefox with Adobe Flash Player (using Xvnc as XServer)

on 412 PlanetLab nodes and instrument these clients to conduct video streaming experi-

ments. Based on our traces, we select the PlanetLab nodes according to their availability

and geographical locations. We also generate client request load according to the video

request patterns of CP1. Note we use PlanetLab for experiments to avoid compromising

real users’ experience and privacy.

We use sampled videos from CP1 for evaluation. We deploy the video content on

CloudFront and CDN3. CloudFront has the best performance according to our PlanetLab

measurement (see Table 4.2). We are able to run Adobe Flash Socket Policy service on

CDN3, thus the clients can use customized and optimized TCP sockets for requests to this
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private CDN. We also run multiple pre-tests (before the evaluation) to warm up both CDNs

i.e., the edge servers prefetched the video content before the experiments start.

CDN server capacity failure models: We evaluate the effectiveness of our client adap-

tation algorithm under both controlled stress tests and real server congestions. In the real

experiments using two CDNs and PlanetLab clients, we do not inject any failures, but the

CDN servers can get temporarily congested due to the bursty nature of client request load.

Performance metrics: We evaluate both the CDN cost and client QoE of our content

multihoming optimization. CDN cost is simply the total charge (in USD) by all CDNs

given a CDN assignment, i.e., the value of function C({xai,k}) defined in (4.1). For client

QoE, we use three performance metrics: (1) freezes, the frequency (number of times per

view) a viewer encounters rebuffering during the video view, excluding the cases due to

initial start or user drag (seek). As observed in [32], freezes are a major factor reducing

viewer’s QoE. (2) smoothness ratio, the percentage of the clients that never encounter

freeze. This is a statistical performance metric. (3) buffering time, viewer visible buffering

time (in seconds) per video view, including startup delay and seek delay.

Algorithms: We evaluate three algorithms to assign content objects to CDNs:

• CMO: This is the CMO algorithm defined Section 4.5.2. We also report results for CMO

extensions defined in Section 4.5.3.

• greedy: This algorithm assigns location objects sequentially in a uniformly random or-

der. When assigning the next object, the algorithm computes the cost to be reached when

the object is put in each feasible CDN. The object is assigned to the CDN resulting the

lowest cost among the alternatives.

• round-robin: This algorithm also assigns location objects sequentially in a uniformly

random order. An CDN index is maintained. When assigning the next object, the algo-

rithm uses round-robin, starting from the current CDN index, to assign the object to a

130



feasible CDN.

4.7.2 Publishing cost optimization

We start by evaluating the CDN cost savings of our CMO algorithm. At the beginning of

a month, for each location area a, we use the content traffic to a in last month as the traffic

prediction in this month. We leverage the three algorithms listed in Section 4.7.1 to decide

how to redirect locational requests to the three CDNs. We use the real traffic in this month

to calculate the total monthly cost of CP1 and CP2. Figure 4.9 shows the monthly cost of

the two content publishers with different CDN assignment algorithms. From Figure 4.9(a)

and 4.9(b) we make following observations. First, CMO saves sufficient cost for both

CP1 and CP2 every month, compared with both round-robin and greedy, except that in the

last month of CP1 greedy does almost as well as CMO. Second, CMO is efficient even

though we use the traffic distribution in last month to predict the one in the coming month.

Figure 4.9(c) and 4.9(d) shows the traffic distribution among each region in each month,

from which we find that the traffic distribution is relatively stable and CMO is not very

sensitive to the traffic prediction errors.

To better understand why CMO saves more cost than greedy, we look into US/EU

traffic cost of CP1 in the 1st month and the 6th month in Figure 4.9(e) and 4.9(f). In

US and EU, CDN3 has a constant price ($0.10 per GB). Also, according to Figure 4.2,

when the traffic volume is lower than 10 TB, both CDN3 and MaxCDN are cheaper than

CloudFront. Hence, greedy will choose CDN3 (for location objects cannot be served by

MaxCDN) rather than CloudFront until it meets a location object which has a large enough

traffic volume (¿ 10TB) to make greedy find CloudFront cheaper. Therefore, the reason

that greedy computes a cost that is close to CMO in the 6th month is that greedy meets a

location object whose traffic volume is larger than 10TB in the beginning of the process.
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Figure 4.9: Cost and traffic distributions in the 6 months with different CDN assignment
algorithms.

4.7.3 Client QoE adaptation

Given the optimized CDN assignment, passive clients can achieve high performance, as we

will show in our PlanetLab experiments. However, individual passive client cannot handle

the failures or congestions of primary CDN capacity, and may encounter QoE degradation

at times. We demonstrate the effectiveness of our adaptation algorithm in the active clients,

which achieves per-view QoE.

Stress tests: We start with stress tests when delivering a 1080p HD video object encoded

at 480 KB/s. We run two sets of experiments: (1) only one CDN (primary), which has two
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servers named primary1 and primary2; (2) two CDNs (one primary+one backup),

each with one server, named primary1 and backup1 respectively. In each set, we

vary the capacity of primary1 in the following three cases: (1) step-down, in which

the capacity of primary1 is reduced down to only 10% of video encoding rate and then

recovers after 2 min; (2) ramp-down: in which the capacity of primary1 is linearly

decreased (to 10% of the video encoding rate) in one minute and then linearly increased

back; (3) oscillation, in which the capacity of primary1 periodically falls down (to 10%

of the encoding rate) and then recovers after 20 seconds. We plot detailed downloading

rates to observe more behaviors. Figure 4.10 plots the results.
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Figure 4.10: Stress tests of client adaptation in CDN server failure cases.
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We make multiple observations on client behaviors.

First, in all 6 cases, the client downloads at full speed at the beginning to build the

required 4-second video buffer before playback can start. After starts, the active client

continues downloading to maintain a 16-second video buffer (total workload control).

Second, despite the fluctuations of primary1, the active client achieves protection

by downloading from the alternative server. In (b) and (e), under gradual primary1

capacity changes, the aggregated downloading rate (labeled total) never falls below the

streaming rate at any instance of time. In the other 4 cases, the instantaneous total rate

may drop below the streaming rate, when the client need to finish the failed request task

and catch up with the new scheduling. Note most instantaneous dips do not lead to viewer

visible freezes because of the streaming buffer. Actually, in all 6 cases, we can view the

entire video without seeing the rebuffering wheel.

Third, the active client prefers primary1 over backup1. For example, in (d),

primary1 recovers at 250s and its utilization starts to increase, and at time 280s all

requests have shifted from backup1 back to primary1. One can also observe this

“shifting-back” in (e) at time 160s-210s.

Fourth, as a contrast to the previous observation, our active client achieves “stickiness”.

For example, comparing (a)(b) with (d)(e), we observe that in (a) and (b), there is no

shifting-back to primary1, as primary2 can handle the load alone and belongs to the

same CDN as primary1.

Fifth, the active client performs relatively the worst in (f), when there is a single pri-

mary CDN server and the capacity of the server fluctuates widely. We observe multiple

downloading spikes. Detailed logs show the reason is the recovery from low rates resulted

from HTTP request timeouts. In practical deployment, it is recommended that a content

publisher uses a primary CDN which offers client multiple edge servers. The fluctuation

of client downloading rates reflects server capacity fluctuations.
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PlanetLab experiments: We next evaluate the statistical performance for both passive

and active clients with real PlanetLab experiments. First, we measure the freezes and the

smoothness ratio. Figure 4.11(a) shows the results. We observe that with passive clients,

8% clients experience at least one freeze. Thus, the smoothness ratio is 92%, which is

considered as high performance in industry. Our adaptive clients further improve the client

QoE and reduce the percentage of freezing clients to only 3.8%. Thus, our active client

algorithm reduces QoE degradation by 51%. We also calculate from the figure that the

active clients reduce the average number of freezes from 4.78 (for passive clients) to 2.19.

Second, Figure 4.11(b) shows the buffering time performance. Active clients reduce the

average buffering time from 9.6 seconds to less than half at 4.5 seconds.

Cost impact of client adaptation: The active clients might increase publisher cost for two

reasons. First, the optimization algorithm considers the impact of active clients by predict-

ing the amount of traffic shifted to backup. Reality may be different from the prediction.

Second, for simplicity, during evaluation, our optimization algorithm does not consider

the number of requests increase due to backup protection.

We evaluate the cost impact of client adaptation by comparing the computed optimal

cost, the real cost during our PlanetLab experiments (after scaling up the traffic), and the

cost of using round-robin CDN assignment. To better understand this impact, we further

break down the cost into “traffic cost” and ”per-request cost”. Figure 4.11(c) shows the

result. We observe the cost impact in total is less than 5.6% (∼8, 000 USD added to

∼142, 000). Traffic deviation is less than 2.1% from prediction and contributes to 1.4% of

the total 5.6% difference. The addition number of requests accounts for 4.2% of the total

cost. Hence, it does not change the overall effectiveness in terms of cost savings.

Comments: in summary, we observe the client adaptation algorithm can achieve the fol-

lowing :

• Protected per-view QoE: for an individual viewer, if at any time, all the CDN servers (in
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Figure 4.11: Per-view QoE in PlanetLab experiments.

the guidance list) together can serve all the requests (from this viewer and other clients),

the viewer can achieve the target QoE, even if the primary CDN has insufficient capacity.

• Guided traffic distribution: if each CDN has sufficient capacity to serve all the assigned

(by optimizer) clients at any time, the traffic distribution will follow the optimization

guidance.

If some CDN server’s capacity is insufficient to serve all assigned clients at a given time,
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then the clients try to fully utilize the server’s capacity.

• Stable persistent downloading: if there exists a single primary CDN server who can

serve all requests at any time, then a client tries to download only from one primary

CDN server and maintains only one persistent connection.

4.8 Related Work

The importance of content multihoming has led to substantial industrial related work. We

divide these industrial systems and efforts into three categories [26].

A first category is software systems which we name CDN switchers (e.g., [8, 66])

and integrators (e.g., [9, 64]. For example, the One Pica Image CDN extension [66] of

the Magento Commerce platform provides an API to support the integration with multiple

CDNs, including Amazon S3, Coral CDN, Mosso/Rackspace Cloud Files, and any CDN

server or service that supports FTP, FTPS, or SFTP. Their objective, however, is not on the

algorithms to effectively use multiple CDNs, but rather on usability issues such as seamless

switching from one CDN provider to another. Commercial systems such as [9,64] provide

CDN services based on aggregation of multiple CDNs. They can benefit from using our

algorithms.

Going beyond the CDN switchers and integrators is a category of systems named CDN

Load balancers. There are many CDN load balancers commercially available, including

Cotendo CDN balancer [30], LimeLight traffic load balancer [58], Level 3 intelligent traf-

fic management [57], and Dyn CDN manager [33]. Some of these systems offer quite

flexible specification of rules to split CDN traffic among multiple CDNs. For example,

Cotendo CDN balancer allows a content publisher to specify balancing rules including

weighted allocation, geographic location, geographic distance, time of day, and any com-

bination. In particular, the weighted allocation rule allows a publisher to specify: x percent
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to CDN one, y percent to CDN two, and so on. A key missing component of the exist-

ing systems, however, is the key algorithms to compute the allocation, for example, the

percentage. Hence, the output of our optimizer can use the existing systems as implemen-

tation.

There are also client based CDN load balancers. One interesting example is Con-

viva [29], whose video player plug-in performs continuous video quality monitoring, and

could perform automatic CDN and/or source server switching during video playback. The

exact details of their algorithm, however, is unknown.

A third category of related industrial efforts is CDN interconnect. In [65], a CDN

interconnect (CDNi) architecture has been proposed so that a content publisher contracts

with a few upstream CDNs, who may delegate some requests to downstream CDNs. The

delegation relationship can be recursive to form a directional delegation graph, and all

of the involved CDNs are said to form a CDN federation [22]. Our algorithms can be

extended to the CDNi setting by considering a set of connected CDNs as a single logical

CDN.

So far content multihoming has not been a focus of academic research. A related

recent academic work is a measurement study of NetFlix [11]. The paper shows that

similar to many content publishers, Netflix uses content multihoming. The paper conducts

a measurement study and shows that there are indeed potential performance benefits of

using content multihoming.

We refer to our system as content multihoming to draw an analogy with traditional

Internet multihoming (e.g., [12, 41]). However, content multihoming is quite different

from traditional ISP multihoming. For example, while ISPs typically have a uniform price

based on traffic, CDNs charge customers by regions.
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4.9 Summary

In this chapter, we have conducted the first systematic study on content multihoming, by

introducing the CMO algorithm and the client adaptation algorithm to optimize both the

cost and the performance for content multihoming. Our realistic evaluations show that our

content multihoming algorithms reduce publishing cost by up to 40%, and reduce viewer

QoE degradation by 51%.
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Chapter 5

Conclusions

In conclusion, this dissertation is about network dynamics. Traditionally, people usually

treat dynamics in networks as exceptions and only handle them after they occur. In this

dissertation, we introduce an alternate approach and show that it is better to understand the

nature of traffic behaviors under network dynamics and protect traffic proactively in traffic

planning. By doing so, we were able to design novel and efficient models and algorithms,

and build practical systems that manage traffic intra-datacenter, inter-datacenter and inter-

infrastructure in a smooth and safe way. Specifically, we make the following contributions:

• We propose and realize Forward Fault Correction (FFC) which is the first proactive

approach to handling both data-plane and control-plane faults in traffic engineering.

• We propose and realize Smooth traffic Distribution Transition (SDT) which is the

first network maintenance primitive which avoids congestion during network routing

updates when routing rules in network devices are inconsistent.

• We propose and realize Content Multihoming Optimization (CMO) which is the

first framework that optimizes users’ quality of experience and content publishers’

infrastructure usage cost jointly for latency sensitive content services.
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5.1 Future Work

Latency sensitive applications are becoming more and more critical in people’s daily life.

Therefore, how we can protect the performance of latency sensitive applications under

limitations in reality will be continuously a hot and crucial topic in the future. In this

dissertation, we focus on exploring the strategic traffic planning that helps to avoid con-

gestion on network and server links inside infrastructures, because most of the applications

are using clouds as their backends, and congestion in clouds is one of the major cause of

performance degradation.

However, latency sensitive applications could also suffer from other factors, such as

delays and congestion on edge networks. Edge networks are the networks from the edges

of clouds to users’ access networks (e.g. ADSL, WiFi, 3/4G) and devices. The difficulty

for directly using the approaches presented in this dissertation to avoid congestion on

edge networks lies on the fact that clouds and edge networks are controlled by different

providers. Therefore, it is not easy to make these providers coordinate together to optimize

their networks for one type of applications. One potential solution is that the providers of

edge networks open their network controls via some APIs to cloud providers or application

providers. Another way is that cloud providers deploy edge servers that are “closer in

network ” to end users and move appropriate backend processing into the edge servers.

The approaches presented in this dissertation can also be improved in several ways.

For instance, FFC currently operates on a given network topology, while an interesting

research problem is whether we could improve the network topology to increase network

throughput with robustness via FFC. In addition, zUpdate is using linear programming

(LP), which is computational intensive, to find an update plan. How to replace the large

scale LP with some smaller scale LPs or discrete algorithms to accelerate and computation

is also important for zUpdate’s practicality.
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