Research Report Number 71 - 3
Department of Computer Science
YALE UNIVERSITY
New Haven, Connecticut 06520
April 1971

DISCRETE TCHEBYCHEFF APPROXIMATION

FOR MULTIVARIATE SPLINES

by

Martin H. Schultz 71-3

The preparation of this manuscript was supported in part by the Office of Naval Research (NR 044-401).
In this paper we give the theoretical analysis for the combination of two ideas in numerical analysis. The first is to approximate the Tchebycheff approximation to a function over a continuum, X, in \mathbb{R}^M by Tchebycheff approximations over finite, discrete subsets of X, cf. [4], [5], [7], and [8], and the second is the use of multivariate spline functions as approximators. Experimental results for this combination have previously been reported in [5].

To be precise, let X be a compact subset of \mathbb{R}^M. If Y is any closed subset of X and g is a real-valued, continuous function on Y, let

$$||g||_Y = \max \{|g(y)| \mid y \in Y\}.$$

Given a real-valued, continuous function f and n linearly independent, real-valued, continuous basis functions $\{B_j(x)\}_{j=1}^n$, a common problem in numerical analysis is to solve the optimization problem

$$\inf \left\{ \left| |f - \sum_{j=1}^n \beta_j B_j \right|_X \mid \beta \in \mathbb{R}^n \right\}.$$

The standard difficulties are that (i) f is usually given only on a finite discrete point set, (ii) the basis functions $\{B_j\}_{j=1}^n$ don't satisfy the Neur condition in general so that Reineck type algorithms don't work, and (iii) interpolation type schemes are impossible to define for general domains in \mathbb{R}^M, $M \geq 2$.
The approach studied in this paper is to replace X by an appropriate discrete subset Y and to consider the approximate optimization problem

$$(2) \quad \inf \left\{ \| f - \sum_{j=1}^{n} \beta_j B_j \|_Y \mid \beta \in \mathbb{R}^n \right\},$$

which, following [4], [5], and [7], is solved by being reformulated as a linear programming problem, which in turn is solved by either the simplex or dual simplex method.

We now consider a reformulation of problem (2). Let

$$\mathbb{R}^{n+1} \cap K = \{ \alpha \in \mathbb{R}^{n+1} \mid \alpha_i \geq 0, 1 \leq i \leq n+1 \}$$

and consider

$$(3) \quad \inf \left\{ \| f - \sum_{j=1}^{n+1} \alpha_j B_j \|_Y \mid \alpha \in \mathbb{R}^{n+1} \cap K \right\}$$

where $B_{n+1} = -\sum_{j=1}^{n} B_j$. The following standard equivalence result is easy to prove.

Theorem 1. The two formulations (2) and (3) of the optimization problem are equivalent.

Proof. It suffices to show that

$$\{ \sum_{j=1}^{n} \beta_j B_j \mid \beta \in \mathbb{R}^n \} = \{ \sum_{j=1}^{n+1} \alpha_j B_j \mid \alpha \in \mathbb{R}^{n+1} \cap K \}.$$
Clearly the right-hand side is a subset of the left-hand side and hence it suffices to show the converse. Given $\beta \in \mathbb{R}$, let $\alpha_{n+1} = \max \left(0, -\min_{1 \leq j \leq n} \beta_j \right)$ and $\alpha_j = \alpha_{n+1} + \beta_j$, $1 \leq j \leq n$. Then

$$\sum_{j=1}^{n} \beta_j B_j = \sum_{j=1}^{n} \beta_j B_j + \alpha_{n+1} B_{n+1} = \sum_{j=1}^{n} \alpha_j B_j + \alpha_{n+1} B_{n+1} = \sum_{j=1}^{n+1} \alpha_j B_j.$$

QED.

Let $Y \equiv \{y_i\}_{i=1}^{N}$, $f_i = f(y_i)$, and $B_{ij} = B_j(y_i)$, for all $1 \leq j \leq n+1$, $1 \leq i \leq N$. Then, if $\varepsilon(\alpha) = ||f - \sum_{j=1}^{n+1} \alpha_j B_j||_Y$, we wish to minimize ε with respect to all $(\alpha, \varepsilon) \in \mathbb{R}^{n+2} \cap K$ subject to the constraints

$$\varepsilon \leq f_i - \sum_{j=1}^{n+1} \alpha_j B_{ij} \leq \varepsilon, \quad 1 \leq i \leq N,$$

i.e., there are $n+2$ unknowns and $2N$ constraints. Rewriting (4) we have

$$\varepsilon - \sum_{j=1}^{n+1} \alpha_j B_{ij} \geq -f_i, \quad 1 \leq i \leq N,$$

and

$$\varepsilon + \sum_{j=1}^{n+1} \alpha_j B_{ij} \geq f_i, \quad 1 \leq i \leq N.$$
But this is the form of a standard linear programming problem, i.e.,
given $b \in \mathbb{R}^{n+2}$, A a real $2N \times (n+2)$ matrix, and $c \in \mathbb{R}^{2N}$, minimize
(y, b) with respect to $y \in \mathbb{R}^{n+2} \cap K$ subject to the constraint
that $A y \geq c$. This problem has the dual problem of maximizing (x, c)
with respect to $x \in \mathbb{R}^{2N} \cap K$ subject to the constraint that
\[
x^T A \leq b, \text{ cf. [6].}
\]

In this case, $b = (0, \ldots, 0, 1), c = (c, a_1, \ldots, a_{n+1})$,
\[
c = (-f_1, \ldots, -f_N, f_1, \ldots, f_N),
\]
and
\[
A = \begin{bmatrix}
\vdots & \begin{array}{c}
- B \\
\end{array} \\
\vdots & \begin{array}{c}
\end{array} \\
\vdots & \begin{array}{c}
B \\
\end{array}
\end{bmatrix}
\]
where $B = [B_{ij}]$. Since, in general

we use the simplex method to solve a linear program the number of
arithmetic operations involved is directly proportional to the number
of constraints and in general $2N > (n+2)$. Hence, we expect that
the dual program, solved by the simplex method, will be more efficient,
 cf. [6]. Furthermore, we remark that in general we expect to obtain
a "degenerate" programming problem. However, such problems present
no difficulties for the simplex method, cf. [1], [3], [4], and [6].
Hence, in general we seek to maximize
\[\sum_{i=1}^{N} \left(s_i f_i + t_i (-f_i) \right) = \sum_{i=1}^{N} f_i (s_i - t_i) \] with respect to
\[(s, t) \in \mathbb{R}^{2N} \cap \mathcal{K} \] subject to the constraints
\[\sum_{i=1}^{N} B_{ij} (s_i - t_i) \leq 0, \]
\[1 \leq i \leq n + 1 \] and
\[\sum_{i=1}^{N} (s_i + t_i) \leq 1. \]

We turn now to the choice of the basis functions, \(\{ B_j \}_{j=1}^{n} \).

We first examine the one dimensional case of \(\mathcal{X} = [0, 1] \). The classical choice for basis functions are the algebraic polynomials, cf. [8]. However, polynomials are numerically unstable and give rise to unwanted oscillations in the approximation. Moreover, the matrices \(A \) are dense and many function evaluations are needed. To remedy these we consider polynomial spline basis functions.

In particular, let \(P \) denote the set of all partitions, \(\Delta \), of \([0, 1] \) of the form, \(\Delta : \ 0 = x_0 < \cdots < x_N < x_{N+1} = 1 \) and for each \(\Delta \in P \) and each positive integer \(d \), \(S(\Delta, d) \) denote the set of functions \(s(x) \) which are a polynomial of degree \(d \) on each sub-interval \([x_i, x_{i+1}] \) defined by \(\Delta \) and which are in \(C^{d-1}[0,1] \). We remark that all the results of this paper may easily be extended to the case in which \(s(x) \) is assumed to be in \(C^{d} \), \(0 \leq z_i \leq d-1 \), at each interior knot \(x_i, 1 \leq i \leq N \).
To define suitable basis functions for $S(\Delta, d)$, we follow [2]

and augment the partition $\Delta : 0 = x_0 < \cdots < x_{N+1} = 1$ with the

points $x_{-d} < x_{-d+1} < \cdots < x_{-1} < x_0$ and $x_{N+1} < x_{N+1+1} < \cdots < x_{N+1+d}$

to form a new partition $\widetilde{\Delta} : x_{-d} < \cdots < x_0 < \cdots < x_{N+1} < x_{N+1+d}$.

Letting $x_+^\Delta \equiv \begin{cases} x^d, & \text{if } x \geq 0, \\ 0, & \text{if } x < 0, \end{cases}$ and $W_i(\Delta) \equiv \prod_{k=0}^{d+1} (x-x_i^{1+k})$

for $-d \leq i \leq N$, we define $M_{d, i}(x; \Delta) \equiv \sum_{k=0}^{d+1} \frac{(x^{1+k} - x_i^d)^+}{W_i(x^{1+k})}$

for $-d \leq i \leq M$. As a basis for $S(\Delta, d)$ we take the restriction of the

functions $\{ M_{d, i}(x; \Delta) \}_{i=-d}^{N}$ to the interval $[0,1]$.

If Y is a finite subset of $[0,1]$ and $|Y| \equiv \max_{x \in [0,1]} \min_{y \in Y} |x-y|$, then we obtain the following new error bound which relates the error in approximating f by a solution, s_Y, of the discrete optimization problem to the error in approximating f by a solution s_Δ of the continuous optimization problem. The proof uses a technique developed in [5] for the case of polynomial basis functions.
Theorem 2. If \(\Delta \in \mathcal{P} \) and \(2d \Delta^{-1} |Y| < 1 \), where \(\Delta = \min_{0 \leq i < N} (x_{i+1} - x_i) \), then
\[
||f - s_Y||_X \leq \left[2 (1 - 2d \Delta^{-1} |Y|)^{-1} + 1 \right] ||f - s_X||_X.
\]

Proof. By the triangle inequality
\[
||f - s_Y||_X \leq ||f - s_X||_X + ||s_X - s_Y||_X.
\]

Let \(t \in [0,1] \) be such that \(|(s_X - s_Y)(t)| = ||s_X - s_Y||_X \).

Then there exists \(y \in Y \) such that \(|t - y| \leq |Y| \) and
\[
|(s_X - s_Y)(t)| \leq |(s_X - s_Y)(y)| + |Y| ||s_X - s_Y||_X.
\]

Hence, using the Markov inequality for polynomial splines, cf. [9],
\[
||s_X - s_Y||_X \leq ||s_X - s_Y||_Y + |Y| 2d \Delta^{-1} ||s_X - s_Y||_X
\]

and
\[
||s_X - s_Y||_X \leq (1 - |Y| 2d \Delta^{-1})^{-1} ||s_X - s_Y||_Y
\]
\[
\leq (1 - |Y| 2d \Delta^{-1})^{-1} (||f - s_X||_Y + ||f - s_Y||_Y)
\]
\[
\leq (1 - |Y| 2d \Delta^{-1})^{-1} (2 ||f - s_X||_X). \text{ The required result}
\]

now follows from the triangle inequality and (7) and (8). QED.
If we assume a certain regularity of the function \(f \), then we can bound the right hand side of (7). Using results of deBoor, cf. [2], we obtain

Corollary 1. Let \(2d^2 \Delta^{-1} |Y| < 1 \) and \(f \in W^{t,\infty} [0,1] \), \(0 \leq t \leq d+1 \), i.e., \(D^{t-1} f \) is absolutely continuous and \(D^t f \in L^\infty [0,1] \).

There exists a positive constant, \(K_{d,t} \), such that if \(\Delta \in \mathcal{P} \) and \(2d^2 \Delta^{-1} |Y| < 1 \) then

\[
\|f - s_Y\|_X \leq [2(1 - 2d^2 \Delta^{-1} |Y|)^{-1} + 1] K_{d,t} \Delta^{-1} \|D^t f\|_X,
\]

where \(\Delta = \max_{0 \leq i < N} (x_{i+1} - x_i) \).

We remark that for \(S(\Delta, d) \), \(|Y| \) need only be of order \(\Delta \), for Theorem 2 to hold. While for polynomials of degree \(n \), \(|Y| \) need be of order \(n^{-2} \), for the corresponding result to hold, cf. [8].

We may obtain still a further Corollary about computing the maximum absolute value of a polynomial spline function, \(s(x) \). The idea is that by sampling the size of a spline at a sufficiently large number of points we may give a rigorous estimate of it everywhere.
Corollary 2. If $\Delta \in P$, $s(x) \in S(\Delta,d)$, and $2d^2 \Delta^{-1} |Y| < 1$, then

$$\|s\|_Y \leq \|s\|_X \leq (1 - 2d^2 \Delta^{-1} |Y|)^{-1} \|s\|_Y,$$

and

$$0 \leq \|s\|_Y - \|s\|_Y \leq \left(1 - 2d^2 \Delta^{-1} |Y| \right)^{-1} \|s\|_Y \leq (2d^2 \Delta^{-1} |Y|) \left(1 - 2d^2 \Delta^{-1} |Y| \right)^{-1} \|s\|_Y.$$

We now turn to the multivariate case. Let $\Omega \in \mathbb{R}^M$ be a closed set contained in the unit cube $\prod_{i=1}^M [0,1]_i$ in \mathbb{R}^M and for each $1 \leq i \leq N$ let $\Delta_i : 0 = x_0 < x_1 < x_2 < \cdots < x_{N_i} < x_{N_i + 1} = 1$

be a partition of $[0,1]_i$. Let P_M denote the set of all partitions, P, of the cube of the form $P = \prod_{i=1}^M \Delta_i$, $P = \max_{1 \leq i \leq M} \{\Delta_i\}$, and $P = \min_{1 \leq i \leq M} \{\Delta_i\}$, i.e., P is the minimum distance between two partition points. Furthermore, let $S(d,P) = \prod_{i=1}^N S(d,\Delta_i)$, i.e., $S(d,P)$ is the space of multivariate polynomial spline functions of degree d with respect to P, $\Omega_P = \{x \in \Omega \mid$ the "N" - cell of P containing x is contained in $\Omega\}$, and $Y_P = \{y \in Y \mid y \in \Omega_P\}$.
Finally, let \(|Y_p| \equiv \max_{x \in \Omega_p} \min_{y \in Y_p} \inf_{\alpha \in \Gamma(x,y)} \|\alpha\|_{\ell_1} \|\Gamma(x,y)\|_{\ell_1}\) is a piecewise smooth curve all of whose points lie in \(\Omega_p\) and which connect \(y\) to \(x\), i.e., given \(x \in \Omega_p\) there exists \(y \in Y_p\) such that the \(\ell_1\)-distance in \(\Omega_p\) between \(x\) and \(y\) is no more than \(|Y_p|\).

The following result is a multivariate analogue of Theorem 2.

Theorem 3. If \(\Delta \in P\) and, \(2d^2 \frac{P^{-1}}{|Y_p|} < 1\), then

\[
||f - s_{Y_p}||_{\Omega_p} \leq \left[2 \left(1 - 2d^2 \frac{P^{-1}}{|Y_p|} \right)^{-1} + 1 \right] ||f - s_{\hat{\Omega}_p}||_{\Omega_p}.
\]

Proof.

\[
||f - s_{Y_p}||_{\Omega_p} \leq ||f - s_{\hat{\Omega}_p}||_{\Omega_p} + ||s_{Y_p} - s_{\hat{\Omega}_p}||_{\Omega_p}.
\]

Let \(t \in \Omega_p\) be such that \(|s(t)| = |s_{Y_p}(t) - s_{\hat{\Omega}_p}(t)|\)

\[
= ||s_{Y_p} - s_{\hat{\Omega}_p}||_{\Omega_p}.
\]

There exists a point \(y \in Y_p\) such that

\[
|s(t)| \leq |s(y)| + \sum_{i=1}^{N} D_1 s(x_i) \left| y_i - t_i \right|
\]

\[
\leq \|s\|_{\hat{\Omega}_p} + \sum_{i=1}^{N} \|D_1 s\|_{\Omega_p} \left| y_i - t_i \right|
\]

\[
\leq \|s\|_{\hat{\Omega}_p} + \frac{N}{\Delta^{-1}} \|s\|_{\Omega_p} \left| y_i - t_i \right|
\]
\[\left\| s_{Y_P} - s_{\Omega_P} \right\|_{\Omega_P} \leq (1 - |Y_P| 2d^2 P^{-1})^{-1} \left\| s_{Y_P} - s_{\Omega_P} \right\|_{Y_P}, \]

Thus, and the result follows as in Theorem 2.

QED.

Let \(W^{t,\infty}(\Omega) \) denote the closure of the set of real-valued, infinitely differentiable functions on \(\Omega \) with respect to the norm

\[\left\| \phi \right\|_{W^{t,\infty}(\Omega)} \equiv \max_{|\alpha| \leq t} \left\| D^\alpha \phi \right\|_{L^\infty(\Omega)}. \]

Using the results of [9] we obtain the following multivariate analogue of Corollary 1 of Theorem 2.

Corollary 1. Let \(f \in W^{t,\infty}(\Omega), \ 0 \leq t \leq d+1. \)

There exists a positive constant, \(C_{d,t} \), such that if \(P \in P_M \)

and \(2d^2 P^{-1} |Y_P| < 1 \), then

\[\left\| f - s_{Y_P} \right\|_{\Omega_P} \leq \left[2 (1 - 2d^2 P^{-1} |Y_P|)^{-1} + 1 \right] C_{d,t} P^t \left\| f \right\|_{W^{t,\infty}(\Omega)} \]

Similarly, we can prove the following multivariate analogue of

Corollary 2 of Theorem 2.
Corollary 2. If $P \in P_{M'}$, $s \in S(P, d)$ and $2d^2 \frac{1}{P} < 1$, then

\begin{align}
(15) \quad \| s \|_{Y_P} & \leq \| s \|_{\Omega_P} \leq (1 - |Y| \cdot 2d^2 \frac{1}{P})^{-1} \| s \|_{Y_P}, \quad \text{and} \\
(16) \quad 0 & \leq \| s \|_{\Omega_P} - \| s \|_{Y_P} \leq [(1 - |Y| \cdot 2d^2 \frac{1}{P})^{-1} - 1] \| s \|_{Y_P}
\end{align}

\begin{align*}
\leq (2d^2 \cdot \frac{1}{P}) \cdot (1 - |Y| \cdot 2d^2 \frac{1}{P})^{-1} \| s \|_{Y_P}.
\end{align*}
References

