A RITZ METHOD
FOR AN OPTIMAL CONTROL PROBLEM

by

Martin H. Schultz

The preparation of this manuscript was supported in part by the Office of Naval Research (NR 044-401).
In this paper we generalize the results and greatly simplify the proofs of the basic papers of Bosarge and Johnson cf. [2], [3], and [4], on a variational method for approximating the solution of the "state regulator problem" in optimal control. In particular, we consider the Lagrange formulation of the problem and show that the Lagrange multiplier can be characterized as the solution of the variational problem of minimizing a quadratic, positive definite functional, F, over an appropriate function space, ϕ^n.

We obtain approximate solutions by using Ritz's idea of minimizing F over finite dimensional subspaces of ϕ^n and derive general a priori error bounds for this procedure in terms of quantities in "approximation theory." Finally, we apply these results to obtain asymptotic error bounds for the special case of spline type subspaces of ϕ^n.

Let $Q(t)$ and $R(t)$ be an $n \times r$ symmetric, positive definite matrix and an $r \times r$ symmetric, positive definite matrix both of which are continuous functions of $t \in [0,T]$. For each $k \geq 0$ let ϕ^k denote the set of functions from $[0,T]$ to \mathbb{R}^k which are piecewise differentiable with bounded derivative.
The state regulator problem in optimal control is to find $u^* \in \Phi^r$ and $x^* \in \Phi^n$ which minimize

$$J[u,x] = 1/2 \int_0^T \{x(t),Q(t)x(t)\}_n + \langle u(t),R(t)u(t)\rangle_r \}dt$$

over all $u \in \Phi^r$, where $x(t)$ is given by

$$\dot{x}(t) = A(t)x(t) + B(t)u(t) , \ t > 0$$

and

$$x(0) = x_0 ,$$

$$|y|_n^2 = \langle y,y \rangle_n = \sum_{i=1}^n y_i^2 , \ \text{for all } y \in \mathbb{R}^n ,$$

$$|z|_r^2 = \langle z,z \rangle_r = \sum_{i=1}^r z_i^2 , \ \text{for all } z \in \mathbb{R}^r ,$$

$A(t)$ is an $n \times n$ matrix and $B(t)$ is an $n \times r$ matrix both of which are piecewise continuous with respect to $t \in [0,T]$.

By standard arguments in the calculus of variations, cf. [1], one can show that the above problem is equivalent to the variational problem of finding $\lambda^* \in \Phi^n$ which minimizes
(4) \[-L[u,x;\lambda,\gamma] \equiv J[u,x] + \int_0^T \langle \lambda(t), -\dot{x}(t) + A(t)x(t) + B(t)u(t) \rangle dt \]

\[+ \langle \psi, x(0) - x_0 \rangle_n.\]

subject to the constraint

(5) \[\lambda(T) = 0,\]

where \(\gamma, u(t), \text{ and } x(t)\) are given by

(6) \[\gamma = -\lambda(0),\]

(7) \[u(t) = -R^{-1}(t)B^T(t)\lambda(t), \text{ for all } t \in [0,T], \text{ and}\]

(8) \[x(t) = -Q^{-1}(t) \langle \dot{\lambda}(t) + A^T(t)\lambda(t) \rangle, \text{ for all } t \in [0,T].\]

Using the characterizations (6), (7), and (8), we can express

\(-L[u,x;\lambda,\gamma]\) in terms of only \(\lambda\). In fact,

\[-L[u,x;\lambda,\gamma] = -J[u,x] + \langle \lambda(t), x(t) \rangle_n \Big|_0^T - \int_0^T \langle \dot{\lambda} + A^T\lambda, x \rangle dt \]

\[-\int_0^T \langle B^T\lambda, u \rangle dt + \langle \lambda(0), x(0) - x_0 \rangle_n = J[u,x] - \langle \lambda(0), x_0 \rangle_n.\]
But \(\frac{1}{2} \int_{0}^{T} \langle u, Ru \rangle_n dt = \frac{1}{2} \int_{0}^{T} \langle R^{-1}B^T\lambda, RR^{-1}B^T\lambda \rangle_n \)

\[= \frac{1}{2} \int_{0}^{T} \langle BR^{-1}B^T\lambda, \lambda \rangle_n dt \]

and

\[\frac{1}{2} \int_{0}^{T} \langle x, Qx \rangle_n dt = \frac{1}{2} \int_{0}^{T} \langle Q^{-1}A^T\lambda + Q^{-1}A^T\lambda^* \rangle_n dt \]

\[= \frac{1}{2} \int_{0}^{T} \langle Q^{-1}A^T\lambda, \lambda \rangle_n dt + \frac{1}{2} \int_{0}^{T} \langle Q^{-1}A^T\lambda, \lambda \rangle_n dt \]

\[+ \frac{1}{2} \int_{0}^{T} \langle Q^{-1}A^T, \lambda \rangle_n dt + \frac{1}{2} \int_{0}^{T} \langle Q^{-1}A^T, \lambda \rangle_n dt \]

\[= \frac{1}{2} \int_{0}^{T} \langle Q^{-1}A^T, \lambda \rangle_n dt + \frac{1}{2} \int_{0}^{T} \langle AQ^{-1}A^T, \lambda \rangle_n dt \]

\[+ \int_{0}^{T} \langle AQ^{-1}A^T, \lambda \rangle_n dt. \text{ Thus,} \]

\[F[\lambda] = -L[u, x; \lambda, \delta] = \frac{1}{2} \int_{0}^{T} \langle Q^{-1}A^T, \lambda \rangle_n dt + \frac{1}{2} \int_{0}^{T} \langle AQ^{-1}A^T, \lambda \rangle_n dt \]

\[+ \frac{1}{2} \int_{0}^{T} \langle BR^{-1}B^T\lambda, \lambda \rangle_n dt + \int_{0}^{T} \langle AQ^{-1}A^T, \lambda \rangle_n dt - \langle \lambda(0), x_0 \rangle_n. \]
If we define

\begin{equation}
[\lambda, \eta] \equiv \int_0^T \langle Q^{-1} \dot{\lambda}, \eta \rangle_n dt + \int_0^T \langle A Q^{-1} A^T \lambda, \lambda \rangle_n dt
\end{equation}

\begin{equation*}
+ \int_0^T \langle B R^{-1} B T \lambda, \lambda \rangle_n dt + \int_0^T \{ \langle A Q^{-1} \dot{\eta}, \eta \rangle_n + \langle A Q^{-1} \eta, \dot{\eta} \rangle_n \} dt,
\end{equation*}

for all \(\lambda \) and \(\eta \) in \(\phi^n \), then

\begin{equation}
F[\lambda] = \frac{1}{2} [\lambda, \lambda] - \langle \lambda(0), x_0 \rangle_n.
\end{equation}

If we use the notation that for any \(t \times t \) matrix \(M \), \(t > 0 \),

\[|M|_t \equiv \max \{|Mx|_t \mid x \in \mathbb{R}^t \text{ and } |x|_t = 1 \}, \]

we may prove

Theorem 1. The optimal Lagrange multiplier exists and is the unique solution in \(\phi^n_0 \equiv \{ \phi \in \phi^n \mid \phi(T) = 0 \} \) of

\begin{equation}
[\lambda, \eta] = \langle \eta(0), x_0 \rangle_n, \text{ for all } \eta \in \phi^n_0.
\end{equation}

Moreover, \([\lambda, \eta]\) is symmetric,

\begin{equation}
\|\dot{x}\|^2_2 \equiv \int_0^T \langle \dot{x}, \dot{x} \rangle_n dt \leq 2 \lambda^{-1}_Q \|Q\|_2 + \rho \|A^T\|_2 \|\lambda\| \|\lambda\|,\]
\end{equation}

and

\begin{equation}
\|\lambda\|^2_2 \leq 2 \lambda^{-1}_Q \rho^2 [\lambda, \lambda],
\end{equation}

where \(\rho \) is the largest eigenvalue of \(\dot{A} A^T \).
where \(\lambda_Q \equiv \min_{0 \leq t \leq T} \{ \lambda(t) | \lambda(t) \text{ is an eigenvalue of } Q(t) \} \),

\[
\|Q\|_2^2 \equiv \int_0^T |Q(t)|_n^2 \, dt, \quad \|A^T\|_2^2 \equiv \int_0^T |A^T(t)|_n^2 \, dt, \quad \|A^T\|_\infty \equiv \sup_{0 \leq t \leq T} |A^T(t)|_n
\]

and \(\rho \equiv \|Q\|_2 \left(2\|A^T\|_\infty \right)^{-1/2} e^{\|A^T\|_\infty T} \).

Proof. The existence part of the Theorem is a standard result in optimal control theory, cf. [1]. If \(\eta \in \Phi_0^n \) and \(\alpha \in \mathbb{R} \),

\(F[\lambda^* + \alpha \eta] \geq F[\lambda^*] \) with equality if and only if \(\alpha = 0 \). Hence, we must have \(\frac{\partial F}{\partial \alpha} [\lambda^* + \alpha \eta] (0) = 0 \) and this implies that (11) holds.

Clearly, \([\lambda, \eta]\) is symmetric in \(\lambda \) and \(\eta \) and

\[
[\lambda, \lambda] = \frac{1}{2} \int_0^T \langle u, Ru \rangle_r \, dt + \frac{1}{2} \int_0^T \langle x, Qx \rangle_n \, dt
\]

\[
\geq \frac{1}{2} \int_0^T \langle x, Qx \rangle_n \, dt \geq 1/2 \lambda_Q \int_0^T \langle x, x \rangle_n \, dt,
\]

where \(u \) and \(x \) are given by (7) and (8). From (8) we have

\[
|\lambda(t)| \equiv \langle \lambda(t), \lambda(t) \rangle_n^{1/2} \leq \|Q\|_2 \|x\|_2 + \int_t^T |A^T(s)| \, |\lambda(s)| \, ds.
\]

By Gronwall's inequality, cf. [5], this implies that

\[
\|\lambda\|_2 \leq \|Q\|_2 (2 \|A^T\|_\infty)^{-1/2} e^{\|A^T\|_\infty T} \|x\|_2 \equiv \rho \|x\|_2.
\]

Thus \([\lambda, \lambda] \geq 1/2 \lambda_Q^{-2} \|\lambda\|_2^2 \), which proves (13).
Moreover,

$$\|\tilde{\lambda}\|_2 \leq \|Q\|_2 \|z\|_2 + \|A^T\|_2 \|\lambda\|_2 \leq \|\|Q\|_2 + \rho \|A^T\|_2 \|x\|_2$$

and hence

$$[\lambda, \lambda] \geq 1/2 \lambda \rho^{-2} \|\lambda - \mu\|_2^2$$

which proves (12).

Moreover, if λ and μ both satisfy (11), then

$$0 = [\lambda - \mu, \lambda - \mu] \geq 1/2 \lambda \rho^{-2} \|\lambda - \mu\|_2^2$$

and $\lambda = \mu$ which proves the uniqueness result. Q.E.D.

To define the Ritz approximation method, let S be any finite dimensional subspace of ϕ^1_0. We find an approximation, λ_S, to λ^* by minimizing F over S and determine an approximation, u_S, to u via equation (7). When we apply the computed control we obtain the state x_S determined by (2). It is important to note that x_S is not the state which can be computed via equation (8).

We now show that the Ritz procedure yields a unique approximation.

Theorem 2. There exists a unique $\lambda_S \in S$ which minimizes F over S.

Proof. Let $\{B_i(t)\}_{i=1}^M$ be a basis for S.

Considering

$$F \left[\sum_{i=1}^M B_i \right] = 1/2 \left[\sum_{i=1}^M \beta_i B_i \right] \sum_{i=1}^M \beta_i B_i \right] - \left[\sum_{i=1}^M \beta_i B_i \right]_{n}$$

as a function of β \in \mathbb{R}^M, it is clear that F is twice continuously
differentiable and hence F has a minimum at β^* if and only if

$$(14) \quad \frac{\partial F}{\partial \beta_i} [\beta^*] = 0, \quad \text{for all } 1 \leq i \leq M,$$

and the Hessian matrix of F, $H \equiv \begin{bmatrix} \frac{\partial^2 F}{\partial x_i \partial x_j} \end{bmatrix}$, is positive definite.

Calculating the equations (14) we obtain

$$(15) \quad \frac{\partial F}{\partial \beta_i} [\beta^*] = \sum_{j=1}^{M} \beta_j \begin{bmatrix} P_{x_i} B_j \end{bmatrix} - \langle B_j(0), x_0 \rangle_n, \quad 1 \leq i \leq M,$$

or

$$(16) \quad A_{\beta}^* = k,$$

where

$$(17) \quad A \equiv \begin{bmatrix} [B_i, B_j] \end{bmatrix},$$

and

$$(18) \quad k \equiv \langle B_j(0), x_0 \rangle_n.$$

Clearly A is symmetric and positive definite. In fact, if $\beta \neq 0$, then

$$\beta^T A_{\beta} \geq \frac{1}{2} \lambda Q^{-2} \| \sum_{i=1}^{M} \beta_i R_i \|_2^2 > 0,$$

where we have used (13). Moreover, it follows from (15) that $H = A$ and hence β^* is the unique minimum of F over \mathbb{R}^M. Q.E.D.
We now obtain a general error bound.

Theorem 3. If λ_S denotes the minimizing element of F over S,

\[|\lambda^* - \lambda_S| \equiv [\lambda^* - \lambda_S, \lambda^* - \lambda_S]^{1/2} = \inf_{w \in S} |\lambda^* - w|. \]

Proof. If $w \in S$, $F[w] = 1/2 [w, w] - \langle w(0), x_0 \rangle_n$ and

\[F[w] - F[\lambda^*] = 1/2 [w, w] - 1/2 [\lambda^*, \lambda^*] + \langle x_0, \lambda^*(0) - w(0) \rangle_n. \]

But taking $\eta = \lambda^*$ in (11) gives that $[\lambda^*, \lambda^*] = \langle x_0, \lambda^*(0) \rangle_n$ and hence

\[F[w] - F[\lambda^*] = 1/2 [w, w] + 1/2 [\lambda^*, \lambda^*] + \langle x_0, -w(0) \rangle_n. \]

Taking $\eta = w$ in (11) gives that $[\lambda^*, w] = \langle x_0, w(0) \rangle_n$ and hence

\[F[w] - F[\lambda^*] = 1/2[w, w] + 1/2 [\lambda^*, \lambda^*] - [\lambda^*, w] \]

\[= 1/2 [\lambda^* - w, \lambda^* - w] = 1/2|\lambda^* - w|^2. \]

Thus, $|\lambda^* - \lambda_S|^2 = 2(F[\lambda_S] - F[\lambda^*]) \leq 2(F[w] - F[\lambda^*]) = |\lambda^* - w|^2$,

and we have $\inf_{w \in S} |\lambda^* - w| \leq |\lambda^* - \lambda_S| \leq \inf_{w \in S} |\lambda^* - w|$. Q.E.D.

Combining Theorems 1 and 3, we have the following

Corollary. If λ_S denotes the minimizing element of F over S,

\[||\lambda^* - \lambda_S||_2 \leq (2\lambda_O^{-1})^{1/2} \rho \inf_{w \in S} |\lambda^* - w|. \]
and

\[(21) \quad \|\lambda^* - \hat{\lambda}_S\|_2 \leq (2\lambda_Q^{-1})^{1/2} (\|Q\|_2 + \rho \|A^T\|_2) \inf_{w \in S} |\lambda^* - w| . \]

Using the results of this Corollary we may prove the following results.

Theorem 4. If \(u_S(t) = -R^{-1}(t)B^T(t)\lambda_S(t), \) \(0 \leq t \leq T, \)
is the computed optimal control,

\[(22) \quad \|u^* - u_S\|_2 \leq \|R^{-1}B^T\|_\infty (2\lambda_Q^{-1})^{1/2} \rho \inf_{w \in S} |\lambda^* - w| , \]

where \(\|R^{-1}B^T\|_\infty \equiv \sup_{0 \leq t \leq T} \|R^{-1}(t)B^T(t)\|_r . \)

Proof. In fact, \(\delta_S(t) = u^*(t) - u_S(t) \) satisfies the equation

\[\delta_S(t) = -R^{-1}(t)B^T(t)(\lambda^* - \lambda_S(t))\]

and (22) follows from

\[\|\delta_S\|_2 = \|R^{-1}B^T(\lambda^* - \lambda_S)\|_2 \leq \|R^{-1}B^T\|_\infty \|\lambda^* - \lambda_S\|_2 \]

and (20). Q.E.D.

Theorem 5. If \(x_S(t) = \Lambda(t)x_S(t) + B(t)u_S(t), \) \(0 \leq t \leq T \) and \(x_S(0) = x_0, \)

\[(23) \quad \|x^* - x_S\|_2 \leq \Gamma \|R^{-1}B^T\|_\infty (2\lambda_Q^{-1})^{1/2} \rho \inf_{w \in S} |\lambda^* - w| \]

and

\[(24) \quad \|x^* - x_S\|_2 \leq (\Gamma \|A\|_\infty + \|B\|_\infty) \|R^{-1}B^T\|_\infty (2\lambda_Q^{-1})^{1/2} \rho \inf_{w \in S} |\lambda^* - w| , \]
where \(\Gamma \equiv \|B\|_2 \int_0^T |A(z)|_n \, dz \), \(\|A\|_\infty \equiv \sup_{0 \leq t \leq T} |A(t)|_n \),
and \(\|B\|_\infty \equiv \sup_{0 \leq t \leq T} \{ |B(w)|_n \mid w \in \mathbb{R}^r \text{ and } |w|_r = 1 \} \).

Proof. Let \(\varepsilon_S(t) \equiv x^*(t) - x_S(t) \), \(0 \leq t \leq T \). Then

\[
\dot{\varepsilon}_S(t) = A(t)\varepsilon_S(t) + B(t)(u^*(t) - u_S(t)), \quad 0 \leq t \leq T,
\]
and \(\varepsilon_S(0) = 0 \). This implies that

\[
\varepsilon_S(t) = \int_0^t A(z)\varepsilon_S(z) \, dz + \int_0^t B(z)\delta_S(z) \, dz.
\]

By the Gronwall inequality, cf. [5],

\[
|\varepsilon_S(t)|_n \leq T^{1/2} \|B\|_\infty \|\delta_S\|_2 e^{\int_0^T |A(z)|_n \, dz}
\]

and

\[
\|\varepsilon_S\|_2^2 = \int_0^T |\varepsilon_S(t)|_n^2 \, dt \leq T^2 \|B\|_2^2 \|\delta_S\|_2^2 e^{2 \int_0^T |A(z)|_n \, dz}
\]

\[
= \Gamma^2 \|u^* - u_S\|_2^2,
\]
which when combined with (22), proves (23). Moreover,

\[
|\varepsilon_S(t)|_n \leq \|A\|_\infty |\varepsilon_S(t)|_n + \|B\|_\infty |u^*(t) - u_S(t)|_r, \quad 0 \leq t \leq T,
\]

and hence

\[
\|\varepsilon_S\|_2 \leq \|A\|_\infty \|\varepsilon_S\|_2 + \|B\|_\infty \|u^* - u_S\|_2 \leq (\Gamma \|A\|_\infty + \|B\|_\infty) \|u^* - u_S\|_2.
\]
Inequality (24) follows by using (22) to bound $\|u^* - u_S\|_2$. Q.E.D.

We now prove a result which gives us an error bound for the cost criteria, i.e., if we actually use the computed control $u_S(t)$ and the system behaves according to $x_S(t)$ how does $J[u_S, x_S]$ compare with $J[u^*, x^*]$. The proof is essentially the same as the one for the analogous result in [4].

Theorem 6. Under the above hypotheses,

(25) \[J[u^*, x^*] \leq J[u_S, x_S] \]

\[\leq J[u^*, x^*] + \|R^{-1}B\|_\infty^2 \lambda^{-1}_Q \rho^2 \inf_{w \in S} |\lambda^* - w|^2 \left(\|Q\|_\infty R^2 + \|R\|_\infty \right). \]

Proof. If $\delta_S(t) \equiv u^*(t) - u_S(t)$, $0 \leq t \leq T$, and

$\epsilon_S(t) \equiv x^*(t) - x_S(t)$, $0 \leq t \leq T$,

\[J[u_S, x_S] = 1/2 \int_0^T \langle x_S(t), Q(t)x_S(t) \rangle_n \, dt + 1/2 \int_0^T \langle u_S(t), R(t)u_S(t) \rangle_x \, dt \]

\[= 1/2 \int_0^T \langle x^* + \epsilon_S, Q(x^* + \epsilon_S) \rangle_n \, dt + 1/2 \int_0^T \langle u^* + \delta_S, R(u^* + \delta_S) \rangle_x \, dt \]

\[= J[u^*, x^*] + \int_0^T \langle \delta_S, Ru^* \rangle_x \, dt + \int_0^T \langle \epsilon_S, Qx^* \rangle_n \, dt \]

\[+ 1/2 \int_0^T \langle \delta_S, R\delta_S \rangle_x \, dt + 1/2 \int_0^T \langle \epsilon_S, Q\epsilon_S \rangle_n \, dt. \]
But since (7) must hold for the optimal λ^* and u^*, we have

(26) $\int_0^T \langle \delta_S', R u^* \rangle_r \ dt = - \int_0^T \langle \delta_S', B^T \lambda^* \rangle_n \ dt = - \int_0^T \langle B \delta_S', \lambda^* \rangle_n$.

However, from the dynamical equation (2) we have that

$\dot{\delta}_S(t) = A(t) \delta_S(t) + B(t) \delta_S(t)$ and combining this with (26) yields

(27) $\int_0^T \langle \delta_S', R u^* \rangle_r \ dt = - \int_0^T \langle \dot{\delta}_S - A \delta_S, \lambda^* \rangle_n \ dt$.

Integrating the right-hand side of (27) by parts, using the boundary conditions on δ_S and λ^*, and using (8) for λ^* and x^* yields

$\int_0^T \langle \delta_S', R u^* \rangle_r \ dt = \int_0^T \langle \delta_S, \lambda^* \rangle_n + \langle \delta_S, A^T \lambda^* \rangle_n \ dt = - \int_0^T \langle \delta_S, Q x^* \rangle_n \ dt$.

Thus,

$J[u_S, x_S] = J[u^*, x^*] + \frac{1}{2} \int_0^T \langle \delta_S', R \delta_S \rangle_r \ dt + \frac{1}{2} \int_0^T \langle \delta_S, \lambda^* \rangle_n \ dt$

$\leq J[u^*, x^*] + \frac{1}{2} \| R \|_\infty \| \lambda^* \|_2^2 + \frac{1}{2} \| Q \|_\infty \| \delta_S \|_2^2$

$\leq J[u^*, x^*] + \frac{1}{2} \| Q \|_\infty \rho^2 \| R^{-1} B^T \|_\infty^2 \| (2\lambda_Q)^{-1} \rho^2 \inf_{\nu \in \mathcal{S}} |\lambda^* - \nu|^2$

$+ \frac{1}{2} \| R^{-1} B \|_\infty^2 \lambda_Q^{-1} \rho^2 \inf_{\nu \in \mathcal{S}} |\lambda^* - \nu|^2 (\| Q \|_\infty \rho^2 + \| R \|_\infty)$,

where we have used (22) and (23). Q.E.D.
We now consider how these error bounds can be used for the example of finite dimensional spaces of smooth polynomial spline functions. Let $\Delta: 0 = x_0 < x_1 < \cdots < x_{N+1} = T$ be a partition of $[0,T]$, $S_0^d(d,\Delta) \equiv \{ \text{piecewise polynomials, } S(x), \text{ of degree } d \text{ with respect to } \Delta \mid S(x) \in C^d[0,T] \text{ and } S(T) = 0 \}$, and

$$h \equiv \max_{0<i\leq N} (x_{i+1} - x_i).$$

As is well known, cf. [6], these spline spaces have a convenient set of basis functions, $\{ B_{d,i}^p(t) \}_{i=1}^{\#}, p \equiv \dim S_0^d(d,\Delta)$, which have small support i.e., $\text{supp } B_{d,i}^p(t) \equiv \{ t \in [0,T] \mid B_{d,i}^p(t) \neq 0 \}$ is "thin" in $[0,T]$. Thus, if we use a finite dimensional subspace of ϕ^N_0 of the form $S_d^p(\Delta) \equiv \{ \sum_{i=1}^{\#} B_{d,i}^p B_{d,i}(t) \mid B_{d,i}^p \in \mathbb{R}^N, 1 \leq i \leq \# \}$ we will obtain for the matrix A in (15) a sparse block-banded matrix, cf. [2], [3], and [4]. Moreover, if every component of λ^* is $d+1$ times piecewise, continuously differentiable with respect to t there exists a positive constant, K_d, independent of Δ, such that

$$\inf_{\omega \in S_d^p} |\lambda^* - \lambda| \leq K_d h^d \| D^{d+1} \lambda^* \|_2,$$

where K_d can be explicitly determined, cf. [6]. Combining these results we obtain

Theorem 7. If each component of λ^* is $d+1$ times piecewise continuously differentiable with respect to t, there exists a positive
constant, K_d, independent of Δ, such that

$$
\| \lambda^* - \lambda_{S_d}(\Delta) \|_2 \leq (2\lambda_Q^{-1})^{1/2} \rho K_d h^d \| D^{d+1} \lambda \|_2,
$$

$$
\| u^* - u_{S_d}(\Delta) \|_2 \leq \| R^{-1}B \|_\infty (2\lambda_Q^{-1})^{1/2} \rho K_d h^d \| D^{d+1} \lambda \|_2,
$$

and

$$
J[u^*, x^*] \leq J[u_{S_d}(\Delta), x_{S_d}(\Delta)] \leq J[u^*, x^*] + \| R^{-1}B \|_\infty \lambda_Q^{-1} \rho^2 (\| Q \|_\infty)^2 + \| R \|_\infty K_d^2 h^{2d} \| D^{d+1} \lambda \|_2.
$$
References

