The Laplace transform is frequently encountered in mathematics, physics, engineering and other areas. However, the spectral properties of the Laplace transform tend to complicate its numerical treatment; therefore, the closely related "truncated" Laplace transforms are often used in applications. In this dissertation, we construct efficient algorithms for the evaluation of the singular value decomposition (SVD) of such operators. The approach of this dissertation is somewhat similar to that introduced by Slepian et al. for the construction of prolate spheroidal wavefunctions in their classical study of the truncated Fourier transform. The resulting algorithms are applicable to all environments likely to be encountered in applications, including the evaluation of singular functions corresponding to extremely small singular values (e.g. 10^{-1000}).

On the Analytical and Numerical Properties of the Truncated Laplace Transform.

Roy R. Lederman ${ }^{\dagger}$
Technical Report YALEU/DCS/TR-1490

May, 2014

[^0]Keywords: Truncated Laplace Transform, SVD.

On the Analytical and Numerical Properties of the Truncated Laplace Transform

A Dissertation
Presented to the Faculty of the Graduate School
of
Yale University
in Candidacy for the Degree of
Doctor of Philosophy
by
Roy R. Lederman

Dissertation Director: Vladimir Rokhlin

May 2014

Copyright © by Roy Rabinu Lederman
All rights reserved.

Contents

1 Introduction 1
2 Mathematical preliminaries 4
2.1 Legendre Polynomials 4
2.2 Legendre Functions of the second kind 7
2.3 Laguerre functions 11
2.4 The complete elliptic integral 13
2.5 Singular value decomposition (SVD) of integral operators 13
2.6 Tridiagonal and five-diagonal matrices 14
2.7 The truncated Laplace transform 18
2.8 The SVD of the truncated Laplace transform 18
2.9 A differential operator related to the right singular functions u_{n} 20
2.10 The function ψ_{n} associated with the right singular function u_{n} 21
2.11 A differential operator related to the left singular functions v_{n} 23
2.12 The functions $\left(\mathcal{L}_{a, b}\right)^{*}\left(\Phi_{k}\right)$ 24
3 Analytical apparatus 26
3.1 On the scaling properties of the truncated Laplace transform 26
3.2 The transform C_{γ} 29
3.3 The symmetry property of u_{n} and U_{n} 32
3.4 The differential operator D_{x} and the expansion of ψ_{n} in the basis of $\overline{P_{k}^{*}}$ 33
3.5 The differential operator \hat{D}_{ω} and the expansion of v_{n} in the basis of Φ_{k} 38
3.6 A remark about the limit $\gamma \rightarrow 1$ 50
3.7 A relation between the $n+1$-th and $m+1$-th singular functions, and the ratioα_{n} / α_{m}51
3.8 A relation between $v_{n}(0), h_{0}^{n}$ and the singular value α_{n} 52
3.9 A closed form approximation of the eigenvalues $\tilde{\chi}_{n}, \chi_{n}^{*}, \chi_{n}$ and singular values α_{n} 54
4 Algorithms 55
4.1 Evaluation of the right singular functions u_{n} 55
4.2 Evaluation of the left singular functions v_{n} 56
4.3 Evaluation of the singular values α_{n} 56
5 Implementation and numerical results 59
6 Conclusions and generalizations 71

List of Figures

5.1 Singular functions of \mathcal{L}_{γ}, where $\gamma=1.1$. 61
5.2 Singular functions of \mathcal{L}_{γ}, where $\gamma=10$. 62
5.3 Singular functions of \mathcal{L}_{γ}, where $\gamma=10^{5}$. 63
5.4 Singular values α_{n} of \mathcal{L}_{γ}. 64
5.5 The magnitude of the eigenvalues χ_{n}^{*} of the differential operator \hat{D}_{ω} 65
$5.6 u_{n}(1 /(2 \sqrt{\gamma}))$. The right singular functions, evaluated at $t=a=1 /(2 \sqrt{\gamma})$. 66
$5.7 v_{n}(0)$. The left singular functions, evaluated at $\omega=0$ 67

List of Tables

5.1 Singular values α_{n} of \mathcal{L}_{γ} 68
5.2 Eigenvalues χ_{n}^{*} of the differential operator \hat{D}_{ω} 69
5.3 Examples of singular values α_{n} smaller than 10^{-1000} 70

Acknowledgements

I would like to thank my advisor, Professor Vladimir Rokhlin, for his guidance in this dissertation. I would like to express my deep gratitude to Professor Ronald R. Coifman and Professor Vladimir Rokhlin for their superb mentorship and wise advice, for everything they taught me about mathematics and science, for many hours of discussions, and for their valued friendship.

I would like to thank Professor Peter Jones for his guidance and useful advice, and Dr. Andrei Osipov for many fruitful discussions. I would also like to thank Dr. Ronen Talmon for our productive brainstorming meetings, and Professor Gregory Beylkin for his help.

In addition, I would like to thank Karen Kavanaugh, Chris Hatchell and the Mathematics staff for their assistance. I would like to thank my professors, colleagues and classmates for making this journey not only possible, but also enjoyable.

I would also like to thank Laura and my dear friends for their support and understanding, and I would like to thank Moshe for his help.

Finally, I would like to thank Bella, Gil, Oren, Marcelle, Shaike, Manya and Shmuel for many years of love and support.

Chapter 1

Introduction

The Laplace transform $\tilde{\mathcal{L}}$ is a linear mapping $L^{2}(0, \infty) \rightarrow L^{2}(0, \infty)$; for a function $f \in L^{2}(0, \infty)$, it is defined by the formula:

$$
\begin{equation*}
(\tilde{\mathcal{L}}(f))(\omega)=\int_{0}^{\infty} e^{-t \omega} f(t) \mathrm{d} t \tag{1.1}
\end{equation*}
$$

As is well-known, $\tilde{\mathcal{L}}$ has a continuous spectrum, and $\tilde{\mathcal{L}}^{-1}$ is not continuous (see, for example, [1]). These and related properties tend to complicate the numerical treatment of $\tilde{\mathcal{L}}$.

In addressing these problems, we find it useful to draw an analogy between the numerical treatment of the Laplace transform, and the numerical treatment of the Fourier transform $\tilde{\mathcal{F}}$; for a function $f \in L^{1}(\mathbb{R})$, the later is defined by the formula:

$$
\begin{equation*}
(\tilde{\mathcal{F}}(f))(\omega)=\int_{-\infty}^{\infty} e^{-i t \omega} f(t) \mathrm{d} t \tag{1.2}
\end{equation*}
$$

where $\omega \in \mathbb{R}$.
In various applications in mathematics and engineering, it is useful to define the "truncated" Fourier transform $\tilde{\mathcal{F}}_{c}: L^{2}(-1,1) \rightarrow L^{2}(-1,1)$; for a given $c>0, \tilde{\mathcal{F}}_{c}$ of a function $f \in L^{2}(-1,1)$
is defined by the formula:

$$
\begin{equation*}
\left(\tilde{\mathcal{F}}_{c}(f)\right)(\omega)=\int_{-1}^{1} e^{-i c t \omega} f(t) \mathrm{d} t . \tag{1.3}
\end{equation*}
$$

The operator $\tilde{\mathcal{F}}_{c}$ has been analyzed extensively; one of the most notable discoveries, made by Slepian et al. in 1960 , was that the integral operator $\tilde{\mathcal{F}}_{c}$ commutes with a second order differential operator (see [2]). This property of $\tilde{\mathcal{F}}_{c}$ was used in analytical and numerical investigation of the eigendecomposition of this operator, for example in [3] and [4].

For $0<a<b<\infty$, the linear mapping $\mathcal{L}_{a, b}: L^{2}(a, b) \rightarrow L^{2}(0, \infty)$, defined by the formula

$$
\begin{equation*}
\left(\mathcal{L}_{a, b}(f)\right)(\omega)=\int_{a}^{b} e^{-t \omega} f(t) \mathrm{d} t \tag{1.4}
\end{equation*}
$$

will be referred to as the truncated Laplace transform of f; obviously, $\mathcal{L}_{a, b}$ is a bounded compact operator (see, for example, [1]).

Bertero and Grünbaum discovered that each of the symmetric operators $\left(\mathcal{L}_{a, b}\right)^{*} \circ \mathcal{L}_{a, b}$ and $\mathcal{L}_{a, b} \circ\left(\mathcal{L}_{a, b}\right)^{*}$ commutes with a differential operator (see [5]). These properties were used in the analysis of the truncated Laplace transform (see [5], [6]).

Despite the result in [5], more is known about the numerical and analytical properties of $\tilde{\mathcal{F}}_{c}$ than about the properties of $\mathcal{L}_{a, b}$.

In this dissertation, we introduce an algorithm for the efficient evaluation of the singular value decomposition (SVD) of $\mathcal{L}_{a, b}$, and analyze some of its properties. A more detailed analysis of the asymptotic properties of $\mathcal{L}_{a, b}$ will be presented in a separate paper.

The dissertation is organized as follows. Chapter 2 summarizes various standard mathematical facts and certain simple derivations that are used later in this dissertation. Chapter 2 also contains a definition of the SVD of the truncated Laplace transform and a summary of some known properties of the truncated Laplace transform. Chapter 3 contains the derivation of various properties of the truncated Laplace transform, which are used in the algorithms.

Chapter 4 describes the algorithms for the evaluation of the singular functions, singular values and associated eigenvalues. Chapter 5 contains numerical results obtained using the algorithms. Chapter 6 contains generalizations and conclusions.

Remark 1.1. Some authors define the truncated Laplace transform as in (1.4), but allow $a=0$, or define the operator as a linear mapping $L^{2}(a, b) \rightarrow L^{2}(a, b)$. See, for example, [7].

Chapter 2

Mathematical preliminaries

In this chapter we introduce notation and summarize standard mathematical facts which we use in this dissertation. In addition, we present a brief derivation of some useful facts which we have failed to find in the literature.

2.1 Legendre Polynomials

Definition 2.1. The Legendre polynomial P_{k} of degree $k \geq 0$, is defined by the formula

$$
\begin{equation*}
P_{k}(x)=\frac{1}{2^{k} k!} \frac{\mathrm{d}^{k}}{\mathrm{~d} x^{k}}\left(x^{2}-1\right)^{k} . \tag{2.1}
\end{equation*}
$$

As is well-known, the Legendre Polynomials of degrees $k=0,1 \ldots$ form an orthogonal basis in $L^{2}(-1,1)$. The following well-known properties of the Legendre polynomials can be found inter alia in [8], 9]:

$$
\begin{equation*}
\int_{-1}^{1}\left(P_{k}(x)\right)^{2} \mathrm{~d} x=\frac{2}{2 k+1} \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
(k+1) P_{k+1}(x)=(2 k+1) x P_{k}(x)-k P_{k-1}(x) \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\left(1-x^{2}\right) \frac{\mathrm{d}}{\mathrm{~d} x} P_{k}(x)=-k x P_{k}(x)+k P_{k-1}(x) \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(1-x^{2}\right) \frac{\mathrm{d}}{\mathrm{~d} x} P_{k}(x)\right)=-k(1+k) P_{k}(x) \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
(2 k+1) P_{k}(x)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(P_{k+1}(x)-P_{k-1}(x)\right) \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
P_{1}(x)=x \tag{2.8}
\end{equation*}
$$

For all $k \geq 1$,

$$
\begin{equation*}
(k+1) P_{k+1}(x)=(2 k+1) x P_{k}(x)-k P_{k-1}(x) \tag{2.9}
\end{equation*}
$$

In this dissertation we will analyze functions in $L^{2}(0,1)$; it is therefore convenient to use
the shifted Legendre polynomials, which are defined on the interval $(0,1)$.

Definition 2.2. The shifted Legendre polynomial of degree $k \geq 0$, which we will be denoting by P_{k}^{*}, is defined via the Legendre polynomial P_{k} by the formula

$$
\begin{equation*}
P_{k}^{*}(x)=P_{k}(2 x-1) . \tag{2.10}
\end{equation*}
$$

Clearly, the polynomials P_{k}^{*} form an orthogonal basis in $L^{2}(0,1)$. The following properties of the shifted Legendre polynomials are easily derived from the properties of the Legendre polynomials by substituting (2.10) into $2.2,2.7$.

$$
\begin{equation*}
\int_{0}^{1}\left(P_{k}^{*}(x)\right)^{2} \mathrm{~d} x=\frac{1}{2 k+1} \tag{2.11}
\end{equation*}
$$

$$
\begin{equation*}
x P_{k}^{*}(x)=\frac{1}{2}\left(\frac{k P_{k-1}^{*}(x)}{1+2 k}+P_{k}^{*}(x)+\frac{(1+k) P_{k+1}^{*}(x)}{1+2 k}\right) \tag{2.12}
\end{equation*}
$$

$$
\begin{equation*}
x(1-x) \frac{\mathrm{d}}{\mathrm{~d} x} P_{k}^{*}(x)=\frac{k(1+k)}{2(1+2 k)}\left(P_{k-1}^{*}(x)-P_{k+1}^{*}(x)\right) \tag{2.13}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x(1-x) \frac{\mathrm{d}}{\mathrm{~d} x} P_{k}^{*}(x)\right)=-k(1+k) P_{k}^{*}(x) \tag{2.14}
\end{equation*}
$$

$$
\begin{equation*}
P_{0}^{*}(x)=1 \tag{2.15}
\end{equation*}
$$

As is evident from (2.2) and (2.11), neither the Legendre polynomials nor the shifted Legendre polynomials are normalized. In the discussion of the space of functions $L^{2}(0,1)$, we will find it convenient to use the orthonormal basis of the functions $\overline{P_{k}^{*}}(x)$.

Definition 2.3. We define $\overline{P_{k}^{*}}(x)$ by the formula:

$$
\begin{equation*}
\overline{P_{k}^{*}}(x)=P_{k}^{*}(x) \sqrt{2 k+1}, \tag{2.16}
\end{equation*}
$$

where $k=0,1, \ldots$.
Clearly, the polynomials $\overline{P_{k}^{*}}$ are an orthonormal basis in $L^{2}(0,1)$.
Observation 2.4. $\overline{P_{0}^{*}}$ is a constant

$$
\begin{equation*}
\overline{P_{0}^{*}}(x)=1 \tag{2.17}
\end{equation*}
$$

Observation 2.5. The derivative of $\overline{P_{k}^{*}}$ is a linear combination of $\overline{P_{l}^{*}}$, where $l<k$. The following expressions for the derivative are easily verified using (2.6), 2.16) and (2.10) :

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} x} \overline{P_{2 j}^{*}}(x)=2 \sqrt{2(2 j)+1} \sum_{l=0}^{j-1} \sqrt{2(2 l+1)+1} \overline{P_{2 l+1}^{*}}(x) \tag{2.18}\\
& \frac{\mathrm{d}}{\mathrm{~d} x} \overline{P_{2 j+1}}(x)=2 \sqrt{2(2 j+1)+1} \sum_{l=0}^{j-1} \sqrt{2(2 l)+1} \overline{P_{2 l}}(x) \tag{2.19}
\end{align*}
$$

2.2 Legendre Functions of the second kind

Definition 2.6. The Legendre function of the second kind $Q_{k}(z)$ is defined by the formula

$$
\begin{equation*}
Q_{k}(z)=\frac{1}{2} \int_{-1}^{1}(z-t)^{-1} P_{k}(t) \mathrm{d} t \tag{2.20}
\end{equation*}
$$

where $P_{k}(t)$ is defined in (2.1).

The following identities can be found, for example, in [8], [9]:

$$
\begin{align*}
& Q_{k}(z)=(-1)^{k+1} Q_{k}(-z), \tag{2.21}\\
& Q_{k}(z)=\int_{0}^{\infty} \frac{\mathrm{d} \phi}{\left(z+\sqrt{z^{2}-1} \cosh (\phi)\right)^{k+1}} . \tag{2.22}
\end{align*}
$$

Having defined the shifted Legendre polynomials, we find it convenient to also define a shifted version of the Legendre function of the second kind.

Definition 2.7. We define the shifted Legendre function of the second kind of degree k, which we will be denoting by Q_{k}^{*}, by the formula

$$
\begin{equation*}
Q_{k}^{*}(z)=Q_{k}(2 z-1) \tag{2.23}
\end{equation*}
$$

By (2.16), (2.20), (2.21) and (2.23),

$$
\begin{equation*}
\int_{0}^{1}(x+y)^{-1} \overline{P_{k}^{*}}(x) \mathrm{d} x=2(-1)^{k} Q_{k}^{*}(y+1) \sqrt{2 k+1} \quad y>0 \tag{2.24}
\end{equation*}
$$

and

$$
\begin{equation*}
Q^{*}{ }_{k}(1+\delta / 2)={Q^{*}}_{k}(1+\delta)=\int_{0}^{\infty} \frac{\mathrm{d} \phi}{\left((1+\delta)+\sqrt{(1+\delta)^{2}-1} \cosh (\phi)\right)^{k+1}} \tag{2.25}
\end{equation*}
$$

For a given $x>1, Q_{k}^{*}(x)$ decays rapidly as k grows. The following lemma gives an upper bound for $\left|Q_{k}^{*}(z)\right|$, where $z \geq x$, as k grows.

Lemma 2.8. Let $\delta>0$. We introduce the notation $\tilde{\delta}=\sqrt{(1+\delta)^{2}-1}$. Then, for all $y \geq 0$,

$$
\begin{equation*}
\left|Q_{k}^{*}(1+\delta / 2+y)\right|<\frac{1}{(1+\tilde{\delta})^{k+1}}\left(\log \left(2 \frac{1+\tilde{\delta}}{\tilde{\delta}}\right)+1\right) \tag{2.26}
\end{equation*}
$$

where Q_{k}^{*} is defined in 2.23.

Proof. By (2.25),

$$
\begin{align*}
\left|Q_{k}^{*}(1+\delta / 2+y)\right| & =\left|Q_{k}(1+\delta+2 y)\right|= \\
& =\int_{0}^{\infty} \frac{\mathrm{d} \phi}{\left((1+\delta+y)+\sqrt{(1+\delta+y)^{2}-1} \cosh (\phi)\right)^{k+1}} . \tag{2.27}
\end{align*}
$$

Since $(1+\delta+y) \geq(1+\delta)$,

$$
\begin{align*}
\left|Q_{k}^{*}(1+\delta / 2+y)\right| & =\left|Q_{k}(1+\delta+2 y)\right| \leq \\
& \leq \int_{0}^{\infty} \frac{\mathrm{d} \phi}{\left((1+\delta)+\sqrt{(1+\delta)^{2}-1} \cosh (\phi)\right)^{k+1}} . \tag{2.28}
\end{align*}
$$

Clearly, $\tilde{\delta}=\sqrt{(1+\delta)^{2}-1}>0$, and by 2.22,

$$
\begin{equation*}
\left|Q_{k}^{*}(1+\delta / 2+y)\right|<\int_{0}^{\infty} \frac{\mathrm{d} \phi}{(1+\tilde{\delta} \cosh (\phi))^{k+1}} \tag{2.29}
\end{equation*}
$$

We define

$$
\begin{equation*}
\nu=\log \left(2 \frac{1+\tilde{\delta}}{\tilde{\delta}}\right) \tag{2.30}
\end{equation*}
$$

and break the integral in (2.29) into integrals on the two intervals $[0, \nu)$ and $[\nu, \infty)$:

$$
\begin{equation*}
\left|Q^{*}{ }_{k}(1+\delta / 2+y)\right|<\int_{0}^{\nu} \frac{\mathrm{d} \phi}{(1+\tilde{\delta} \cosh (\phi))^{k+1}}+\int_{\nu}^{\infty} \frac{\mathrm{d} \phi}{(1+\tilde{\delta} \cosh (\phi))^{k+1}} . \tag{2.31}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
\frac{1}{(1+\tilde{\delta} \cosh (\phi))^{k+1}} \leq \frac{1}{(1+\tilde{\delta})^{k+1}} \tag{2.32}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{(1+\tilde{\delta} \cosh (\phi))^{k+1}} \leq \frac{1}{(\tilde{\delta} \exp (\phi) / 2)^{k+1}} \tag{2.33}
\end{equation*}
$$

so that,

$$
\begin{equation*}
\left|Q_{k}^{*}(1+\delta / 2+y)\right|<\frac{\nu}{(1+\tilde{\delta})^{k+1}}+\int_{\nu}^{\infty} \frac{\mathrm{d} \phi}{(\tilde{\delta} \exp (\phi) / 2)^{k+1}} . \tag{2.34}
\end{equation*}
$$

Substituting (2.30) into the last inequality, we obtain

$$
\begin{equation*}
\left|Q_{k}^{*}(1+\delta / 2+y)\right|<\frac{1}{(1+\tilde{\delta})^{k+1}}\left(\log \left(2 \frac{1+\tilde{\delta}}{\tilde{\delta}}\right)+\frac{1}{k+1}\right) \tag{2.35}
\end{equation*}
$$

and from it, we obtain (2.26).

2.3 Laguerre functions

Definition 2.9. The generalized Laguerre polynomial $L_{k}^{(\alpha)}(x)$ of order $\alpha>-1$ and degree $k \geq 0$, is defined by the formula

$$
\begin{equation*}
L_{k}^{(\alpha)}(x)=\sum_{m=0}^{k}(-1)^{m}\binom{k+\alpha}{k-m} \frac{1}{m!} x^{m} \tag{2.36}
\end{equation*}
$$

Definition 2.10. The Laguerre polynomial $L_{k}(x)$ is the generalized Laguerre polynomial of order 0 :

$$
\begin{equation*}
L_{k}(x)=L_{k}^{(0)}(x) \tag{2.37}
\end{equation*}
$$

As is well-known, the Laguerre polynomials are an orthonormal basis in the Hilbert space induced by the inner product

$$
\begin{equation*}
(f, g)=\int_{0}^{\infty} e^{-x} f(x) g(x) \mathrm{d} x \tag{2.38}
\end{equation*}
$$

The following well-known properties of the generalized Laguerre polynomials can be found, inter alia, in [8]:

$$
\begin{equation*}
L_{k}^{\alpha-1}(x)=L_{k}^{\alpha}(x)-L_{k-1}^{\alpha}(x) \tag{2.39}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d}{\mathrm{~d} x} L_{k}(x)=-L_{k-1}^{(1)} \tag{2.40}
\end{equation*}
$$

$$
\begin{equation*}
x L_{k}(x)=-(k+1) L_{k+1}(x)+(2 k+1) L_{k}(x)-k L_{k-1}(x) \tag{2.41}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{\infty} e^{-x t} L_{k}(x) \mathrm{d} x=(t-1)^{k} t^{-k-1} \tag{2.42}
\end{equation*}
$$

$$
\begin{equation*}
L_{k}(0)=1 \tag{2.43}
\end{equation*}
$$

$$
\begin{equation*}
L_{1}(x)=1-x \tag{2.45}
\end{equation*}
$$

For all $k \geq 1$,

$$
\begin{equation*}
(k+1) L_{k+1}(x)=(2 k+1-x) L_{k}(x)-k L_{k-1}(x) \tag{2.46}
\end{equation*}
$$

It is convenient to use functions which are orthonormal in the standard $L^{2}(0, \infty)$ sense. Therefore, we will use the Laguerre functions, as defined below, rather than the Laguerre polynomials.

Definition 2.11. We define the Laguerre function, which we will be denoting by Φ_{k}, via the
formula

$$
\begin{equation*}
\Phi_{k}(x)=e^{-x / 2} L_{k}(x) \tag{2.47}
\end{equation*}
$$

Clearly, the Laguerre functions $\Phi_{k}(x)$ are an orthonormal basis in the standard $L^{2}(0, \infty)$ sense.

Observation 2.12. The derivative of a Laguerre function of degree k is a linear combination of Laguerre functions of degree k and lower. The following expression is easy to verify using (2.40) and (2.47):

$$
\begin{equation*}
\frac{d}{\mathrm{~d} x} \Phi_{k}(x)=-\frac{1}{2} \Phi_{k}(x)-\sum_{l=0}^{k-1} \Phi_{l}(x) \tag{2.48}
\end{equation*}
$$

2.4 The complete elliptic integral

Several slightly different definitions of the complete elliptic integral of the first kind can be found in the literature. In this dissertation, we will use the following definition.

Definition 2.13. The complete elliptic integral of the first kind $K(m)$ is defined by the formula

$$
\begin{equation*}
K(m)=\int_{0}^{\pi / 2}\left(1-m \sin ^{2}(\theta)\right)^{-1 / 2} \mathrm{~d} \theta \tag{2.49}
\end{equation*}
$$

2.5 Singular value decomposition (SVD) of integral operators

The SVD of integral operators and its key properties are summarized in the following theorem, which can be found in [10].

Theorem 2.14. Suppose that the function $K:(c, d) \times(a, b) \rightarrow \mathbb{R}$ is square integrable, and let
$T: L^{2}(a, b) \rightarrow L^{2}(c, d) b e$

$$
\begin{equation*}
(T(f))(x)=\int_{a}^{b} K(x, t) f(t) \mathrm{d} t . \tag{2.50}
\end{equation*}
$$

Then, there exist two orthonormal sequences of functions $u_{n}:(a, b) \rightarrow \mathbb{R}$ and $v_{n}:(c, d) \rightarrow \mathbb{R}$ and a sequence $s_{n} \in \mathbb{R}$, for $n=0, \ldots \infty$, such that

$$
\begin{equation*}
K(x, t)=\sum_{n=0}^{\infty} v_{n}(x) s_{n} u_{n}(t) \tag{2.51}
\end{equation*}
$$

and that $s_{0} \geq s_{1} \geq \ldots \geq 0$. The sequence s_{n} is uniquely determined by K. Furthermore, the functions u_{n} are eigenfunctions of the operator $T^{*} \circ T$ and the values s_{n} are the square roots of the eigenvalues of $T^{*} \circ T$.

Observation 2.15. The function K can be approximated by discarding of small singular values (see [10]):

$$
\begin{equation*}
K(x, t) \simeq \sum_{n=0}^{p} v_{n}(x) s_{n} u_{n}(t) \tag{2.52}
\end{equation*}
$$

2.6 Tridiagonal and five-diagonal matrices

In this section, we briefly describe a standard method for calculating eigenvectors and eigenvalues of symmetric tridiagonal and five-diagonal matrices.

2.6.1 Sturm sequence for tridiagonal and five-diagonal matrices

The Sturm sequence is a method for calculating the number of roots that a polynomial has in a given interval. In this dissertation, the Sturm sequence method for band matrices is used to calculate the number of negative eigenvalues of a matrix. The following theorems can be found, for example, in [11] and [12.

Theorem 2.16. Sturm sequence for tridiagonal matrices. Let A be a symmetric $N \times N$ tridiagonal matrix, and let $A_{k, k}=a_{1}$ where $k=1 . . N$, $A_{k, k+1}=A_{k+1, k}=b_{k+1}$ where $k=$ 1.. $N-1$. All other elements of A are 0.

We define the sequences m_{k} and q_{k} as

$$
\begin{align*}
& m_{0}=1 \\
& m_{1}=a_{1} \tag{2.53}\\
& m_{k}=a_{1} m_{k-1}-b_{k}^{2} m_{k-2} \quad, \quad k=2,3, \ldots, N
\end{align*}
$$

The number of sign changes in the sequence m_{k} is the number of eigenvalues of A that are smaller than 0 .

Theorem 2.17. Sturm sequence for symmetric five-diagonal matrices. Let A be a symmetric $N \times N$ five-diagonal matrix, and let $A_{k, k}=a_{1}$ where $k=1 . . N, A_{k, k+1}=A_{k+1, k}=$ b_{k+1} where $k=1 . . N-1$ and $A_{k, k+2}=A_{k+2, k}=c_{k+2}$ where $k=1 . . N-2$.

We define the sequences m_{k} and q_{k} as

$$
\begin{align*}
& q_{k}=0 \quad, \quad k \leq 0 \\
& m_{k}=0 \quad, \quad k<0 \\
& m_{0}=1 \tag{2.54}\\
& q_{k-2}=b_{k-1} m_{k-3}-c_{k-1} q_{k-3} \quad, \quad k=3,4, \ldots, N \\
& m_{k}= \\
& =a_{k} m_{k-1}-b_{k}^{2} m_{k-2}-c_{k}^{2}\left(a_{k-1} m_{k-3}-c_{k-1}^{2} m_{k-4}\right)+2 b_{k} c_{k} q_{k-2}, \\
& \quad k=1,2, \ldots, N
\end{align*}
$$

The number of sign changes in the sequence m_{k} is the number of eigenvalues of A that are smaller than 0 .

Remark 2.18. In implementations of this method, some scaling of the sequence is sometimes required in order to avoid overflows and underflows (see, for example, [13]).

Suppose that we wish to calculate λ_{n}, the n-th largest eigenvalue of the tridiagonal or five-diagonal matrix A. Let $\delta>0$. We observe that the n-th largest eigenvalue of the matrix $\left(A-\left(\lambda_{n}+\delta\right) I\right)$ is negative. Therefore, the number of sign changes in the sequence m_{k} for the matrix $\left(A-\left(\lambda_{n}+\delta\right) I\right)$ is no smaller than n. Similarly, the n-th largest eigenvalue of the matrix $\left(A-\left(\lambda_{n}-\delta\right) I\right)$ is positive. Therefore, the number of sign changes in the sequence m_{k} for the matrix $\left(A-\left(\lambda_{n}-\delta\right) I\right)$ is strictly smaller than n.

We set a search range (α_{1}, α_{2}); we use the Sturm sequence to verify that λ_{n} is in the range, otherwise we extend the search range. We then use bisection to narrow the range (α_{1}, α_{2}) until $\alpha_{2}-\alpha_{1}$ is smaller than the desired precision. λ_{n} is contained within the range, so $\left(\alpha_{1}+\alpha_{2}\right) / 2$ is a sufficient approximation for λ_{n}.

2.6.2 The inverse power method for tridiagonal and five-diagonal matrices

Let B be a symmetric matrix, and let $\lambda_{n} \neq 0$ be eigenvalue of B with the largest magnitude. Suppose that there is some $\delta>0$ such that for any other eigenvalue λ_{m} of B, we have $\left|\lambda_{n}\right|>$ $(1+\delta)\left|\lambda_{m}\right|$. The power method is a well-known method for calculating the eigenvector v and the eigenvalue λ_{n} by iterative calculation of

$$
\begin{equation*}
v^{(k+1)}=B v^{(k)} . \tag{2.55}
\end{equation*}
$$

After a sufficient number of iterations,

$$
\begin{equation*}
B v^{(k)} \approx \lambda_{n} v^{(k)} \tag{2.56}
\end{equation*}
$$

Let A be a symmetric tridiagonal or five-diagonal matrix, and let $\lambda_{n} \neq 0$ be an eigenvalue of A with multiplicity one. Then there exists $\delta>0$ such that for any other eigenvalue λ_{m} of $A,\left|\lambda_{n}\right|(1+\delta)<\left|\lambda_{m}\right|$. The inverse power method is a well-known method for calculating the eigenvector v and the eigenvalue λ_{n}, using the power method on $B=A^{-1}$. Instead of
computing $B=A^{-1}$ explicitly, the power iteration $v^{(k+1)}=B v^{(k)}$ is computed by solving

$$
\begin{equation*}
A v^{(k+1)}=v^{(k)} \tag{2.57}
\end{equation*}
$$

2.6.3 Calculating an eigenvector and an eigenvalue of a tridiagonal or fivediagonal matrix

Let A be a symmetric tridiagonal or five-diagonal matrix. Suppose that we would like to calculate the n-th largest eigenvalue λ_{n} and the corresponding eigenvector v of A, such that

$$
\begin{equation*}
A v=\lambda_{n} v \tag{2.58}
\end{equation*}
$$

Assume that λ_{n} has multiplicity one.
First, we approximate the n-th eigenvalue λ_{n} using the Sturm sequence method described in theorems 2.16 and 2.17. We require the approximation $\tilde{\lambda}_{n}$ to be close to λ_{n} compared to the difference between λ_{n} and any other eigenvalue of A, but not equal to λ_{n}. In other words:

$$
\begin{equation*}
\left|\lambda_{n}-\tilde{\lambda}_{n}\right| \neq 0 \tag{2.59}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\lambda_{n}-\tilde{\lambda}_{n}\right| \ll\left|\lambda_{n}-\lambda_{m}\right| \quad, \forall m \neq n \tag{2.60}
\end{equation*}
$$

Next, we consider the matrix $\left(A-\tilde{\lambda}_{n} I\right)$. We observe that the eigenvector v that we wish to calculate is also an eigenvector of $\left(A-\tilde{\lambda}_{n} I\right)$, with the eigenvalue $\sigma_{n}=\lambda_{n}-\tilde{\lambda}_{n} \neq 0$. We observe that σ_{n} is smaller in magnitude than any other eigenvalue σ_{m} of $\left(A-\tilde{\lambda}_{n} I\right)$. We use the inverse power method to calculate v.

Finally, we obtain a better estimate for eigenvalue λ_{n} using (2.58).

2.7 The truncated Laplace transform

Definition 2.19. For given $0<a<b<\infty$, the truncated Laplace transform $\mathcal{L}_{a, b}$ is a linear mapping $L^{2}(a, b) \rightarrow L^{2}(0, \infty)$, defined by the formula

$$
\begin{equation*}
\left(\mathcal{L}_{a, b}(f)\right)(\omega)=\int_{a}^{b} e^{-t \omega} f(t) \mathrm{d} t \tag{2.61}
\end{equation*}
$$

where $0 \leq \omega<\infty$.

The adjoint operator of $\mathcal{L}_{a, b}$ is denoted by $\left(\mathcal{L}_{a, b}\right)^{*}$. Obviously:

$$
\begin{equation*}
\left(\left(\mathcal{L}_{a, b}\right)^{*}(g)\right)(t)=\int_{0}^{\infty} e^{-t \omega} g(\omega) \mathrm{d} \omega . \tag{2.62}
\end{equation*}
$$

The operators $\mathcal{L}_{a, b}$ and $\left(\mathcal{L}_{a, b}\right)^{*}$ are compact and injective, the range of $\left(\mathcal{L}_{a, b}\right)^{*}$ is dense in $L^{2}(a, b)$ and the range of $\mathcal{L}_{a, b}$ is dense in $L^{2}(0, \infty)$ (see, for example, [1).

2.8 The SVD of the truncated Laplace transform

In this section, we present the SVD of the truncated Laplace transform, which is the main tool we use to investigate the properties of this operator in this dissertation.

The kernel $K:(0, \infty) \times(a, b) \rightarrow \mathbb{R}$ of the integral operator $\mathcal{L}_{a, b}$ (defined in (2.61)) is defined by the formula

$$
\begin{equation*}
K(\omega, t)=e^{-\omega t}, \tag{2.63}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left(\mathcal{L}_{a, b}(f)\right)(\omega)=\int_{a}^{b} K(\omega, t) f(t) \mathrm{d} t . \tag{2.64}
\end{equation*}
$$

By theorem 2.14, there exist two orthonormal sequences of functions $u_{n} \in L^{2}(a, b)$ and $v_{n} \in$ $L^{2}(0, \infty)$ such that

$$
\begin{align*}
& K(\omega, t)=\sum_{n=0}^{\infty} v_{n}(\omega) s_{n} u_{n}(t), \tag{2.65}\\
& \mathcal{L}_{a, b}\left(u_{n}\right)=\alpha_{n} v_{n}, \tag{2.66}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\mathcal{L}_{a, b}\right)^{*}\left(v_{n}\right)=\alpha_{n} u_{n} . \tag{2.67}
\end{equation*}
$$

We refer to the functions $u_{n}(t)$ as the right singular functions, and to the functions $v_{n}(\omega)$ as the left singular functions. We refer to $\alpha_{n} \geq 0$ as the singular values. The functions are numbered $n=0,1, .$. , and they are sorted according to the singular values, in descending order.

Observation 2.20. The multiplicity of α_{n} in this decomposition of $\mathcal{L}_{a, b}$ is one (see [5]).
Observation 2.21. A simple calculation shows that $\left(\mathcal{L}_{a, b}\right)^{*} \circ \mathcal{L}_{a, b}$ of a function $f \in L^{2}(a, b)$ is given by the formula

$$
\begin{equation*}
\left(\left(\left(\mathcal{L}_{a, b}\right)^{*} \circ \mathcal{L}_{a, b}\right)(f)\right)(t)=\int_{a}^{b} \frac{1}{t+s} f(s) \mathrm{d} s \tag{2.68}
\end{equation*}
$$

Clearly, $\left(\mathcal{L}_{a, b}\right)^{*} \circ \mathcal{L}_{a, b}$ is a symmetric positive semidefinite compact operator. By theorem 2.14 the right singular functions u_{n} of the operator $\mathcal{L}_{a, b}$ are also the eigenfunctions of the operator $\left(\mathcal{L}_{a, b}\right)^{*} \circ \mathcal{L}_{a, b}$, and the singular values α_{n} are the square roots of the eigenvalues of
$\left(\mathcal{L}_{a, b}\right)^{*} \circ \mathcal{L}_{a, b}$. In other words,

$$
\begin{equation*}
\left(\left(\left(\mathcal{L}_{a, b}\right)^{*} \circ \mathcal{L}_{a, b}\right)\left(u_{n}\right)\right)(t)=\int_{a}^{b} \frac{1}{t+s} u_{n}(s) \mathrm{d} s=\alpha_{n}^{2} u_{n}(t) \tag{2.69}
\end{equation*}
$$

Observation 2.22. Similarly, $\mathcal{L}_{a, b} \circ\left(\mathcal{L}_{a, b}\right)^{*}$ of a function $g \in L^{2}(0, \infty)$ is given by the formula

$$
\begin{equation*}
\left(\left(\left(\mathcal{L}_{a, b} \circ\left(\mathcal{L}_{a, b}\right)^{*}\right)(g)\right)(\omega)=\int_{0}^{\infty} \frac{e^{-a(\omega+\rho)}+e^{-b(\omega+\rho)}}{\omega+\rho} g(\rho) \mathrm{d} \rho .\right. \tag{2.70}
\end{equation*}
$$

By theorem 2.14, the left singular functions v_{n} of $\mathcal{L}_{a, b}$ are the eigenfunctions of $\mathcal{L}_{a, b} \circ\left(\mathcal{L}_{a, b}\right)^{*}$ and the singular values α_{n} are the square roots of the eigenvalues of $\mathcal{L}_{a, b} \circ\left(\mathcal{L}_{a, b}\right)^{*}$. In other words,

$$
\begin{equation*}
\left(\left(\mathcal{L}_{a, b} \circ\left(\mathcal{L}_{a, b}\right)^{*}\right)\left(v_{n}\right)\right)(\omega)=\int_{0}^{\infty} \frac{e^{-a(\omega+\rho)}+e^{-b(\omega+\rho)}}{\omega+\rho} v_{n}(\rho) \mathrm{d} \rho=\alpha_{n}^{2} v_{n}(\omega) . \tag{2.71}
\end{equation*}
$$

2.9 A differential operator related to the right singular functions u_{n}

It has been observed in [5] that the integral operator $\left(\mathcal{L}_{a, b}\right)^{*} \circ \mathcal{L}_{a, b}$ (defined in 2.68) commutes with a differential operator.

Theorem 2.23. The differential operator \tilde{D}_{t}, defined by the formula

$$
\begin{equation*}
\left(\tilde{D}_{t}(f)\right)(t)=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left(t^{2}-a^{2}\right)\left(b^{2}-t^{2}\right) \frac{\mathrm{d}}{\mathrm{~d} t} f(t)\right)-2\left(t^{2}-a^{2}\right) f(t) \tag{2.72}
\end{equation*}
$$

commutes with the integral operator $\left(\mathcal{L}_{a, b}\right)^{*} \circ \mathcal{L}_{a, b}$ (defined in 2.68) in $L^{2}(a, b)$.
It has also been shown in [5] that the eigenvalues of the operators $\left(\mathcal{L}_{a, b}\right)^{*} \circ \mathcal{L}_{a, b}$ and \tilde{D}_{t} have a multiplicity of one. It follows from theorem 2.23 , and the multiplicity of the eigenvalues, that
the eigenfunctions of the integral operator $\left(\mathcal{L}_{a, b}\right)^{*} \circ \mathcal{L}_{a, b}$ are the regular eigenfunctions of the differential operator \tilde{D}_{t}. By 2.69, these functions are the right singular functions u_{n} of $\mathcal{L}_{a, b}$.

Furthermore, it has been shown that if the eigenfunctions of \tilde{D}_{t} are sorted according to the eigenvalues of \tilde{D}_{t}, in descending order, the n-th eigenfunction of \tilde{D}_{t} is the n-th singular function of $\mathcal{L}_{a, b}$. Therefore, u_{n} is both the $n+1$-th right singular function of $\mathcal{L}_{a, b}$, the $n+1$-th eigenfunction of $\left(\mathcal{L}_{a, b}\right)^{*} \circ \mathcal{L}_{a, b}$, and the $n+1$-th eigenfunction of \tilde{D}_{t}.

We denote the eigenvalues of the differential operator \tilde{D}_{t} by $\tilde{\chi}_{n}$. By theorem $2.23, u_{n}$ is the solution to the differential equation

$$
\begin{equation*}
\left(\tilde{D}_{t}\left(u_{n}\right)\right)(t)=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left(t^{2}-a^{2}\right)\left(b^{2}-t^{2}\right) \frac{\mathrm{d}}{\mathrm{~d} t} u_{n}(t)\right)-2\left(t^{2}-a^{2}\right) u_{n}(t)=\tilde{\chi}_{n} u_{n}(t) . \tag{2.73}
\end{equation*}
$$

2.10 The function ψ_{n} associated with the right singular function

$$
u_{n}
$$

The right singular functions u_{n} of $\mathcal{L}_{a, b}$ (the operator defined in 2.61) are defined on the interval (a, b). It is convenient to scale and shift the interval (a, b) to $(0,1)$.

We define the variable $x \in(0,1)$ by the formula

$$
\begin{equation*}
x=\frac{t-a}{b-a}, \quad t=a+(b-a) x . \tag{2.74}
\end{equation*}
$$

The functions ψ_{k} are defined using the change of variables (2.74), as follows.
Definition 2.24. The function $\psi_{n}(x)$ is defined via the corresponding right singular function u_{n}, by the formula

$$
\begin{equation*}
\psi_{n}(x)=\sqrt{b-a} u_{n}(a+(b-a) x) \tag{2.75}
\end{equation*}
$$

Observation 2.25. Since the function u_{n} is normalized on (a, b), it is clear from 2.75 that ψ_{n} is normalized on $(0,1)$

$$
\begin{equation*}
\int_{0}^{1}\left(\psi_{n}(x)\right)^{2} \mathrm{~d} x=1 \tag{2.76}
\end{equation*}
$$

and that the sequence of functions ψ_{n} forms an orthonormal basis in $L^{2}(0,1)$.

By (2.68) and (2.74), the functions ψ_{n} are the eigenfunctions of the integral operator $T^{*} \circ T$, where $T^{*} \circ T$ of a function f is defined by the formula

$$
\begin{equation*}
\left(\left(T^{*} \circ T\right) \tilde{f}\right)(x)=\int_{0}^{1} \frac{1}{x+y+\beta} \tilde{f}(y) \mathrm{d} y \tag{2.77}
\end{equation*}
$$

and where β is defined by the the formula:

$$
\begin{equation*}
\beta=\frac{2 a}{b-a} \tag{2.78}
\end{equation*}
$$

Clearly, $T^{*} \circ T$ has the same eigenvalues as $\left(\mathcal{L}_{a, b}\right)^{*} \circ \mathcal{L}_{a, b}$:

$$
\begin{equation*}
\left(\left(T^{*} \circ T\right)\left(\psi_{n}\right)\right)(x)=\int_{0}^{1} \frac{1}{x+y+\beta} \psi_{n}(y) \mathrm{d} y=\alpha_{n}^{2} \psi_{n}(x) \tag{2.79}
\end{equation*}
$$

Similarly, by 2.72 and $2.74, \psi_{n}$ are the eigenfunctions of the differential operator D_{x}, which is defined by the formula

$$
\begin{equation*}
\left(D_{x}(f)\right)(x)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(x(1-x)(\beta+x)(\beta+1+x) \frac{\mathrm{d}}{\mathrm{~d} x} f(x)\right)-2 x(x+\beta) f(x) \tag{2.80}
\end{equation*}
$$

In other words,

$$
\begin{align*}
& \left(D_{x}\left(\psi_{n}\right)\right)(x)= \\
& \frac{\mathrm{d}}{\mathrm{~d} x}\left(x(1-x)(\beta+x)(\beta+1+x) \frac{\mathrm{d}}{\mathrm{~d} x} \psi_{n}(x)\right)-2 x(x+\beta) \psi_{n}(x)= \tag{2.81}\\
& \chi_{n} \psi_{n}(x)
\end{align*}
$$

where χ_{n} are the eigenvalues of D_{x}.

2.11 A differential operator related to the left singular functions v_{n}

It has been observed in [5] that the integral operator $\mathcal{L}_{a, b} \circ\left(\mathcal{L}_{a, b}\right)^{*}$ (defined in 2.70) commutes with a differential operator.

Theorem 2.26. The differential operator \hat{D}_{ω}, defined by the formula

$$
\begin{align*}
& \left(\hat{D}_{\omega}(f)\right)(\omega)=\left(\left(\mathcal{L}_{a, b} \circ \tilde{D} \circ\left(\mathcal{L}_{a, b}\right)^{-1}\right)(f)\right)(\omega)= \\
& -\frac{\mathrm{d}^{2}}{\mathrm{~d} \omega^{2}}\left(\omega^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} \omega^{2}} f(\omega)\right)+\left(a^{2}+b^{2}\right) \frac{\mathrm{d}}{\mathrm{~d} \omega}\left(\omega^{2} \frac{\mathrm{~d}}{\mathrm{~d} \omega} f(\omega)\right)+\left(-a^{2} b^{2} \omega^{2}+2 a^{2}\right) f(\omega), \tag{2.82}
\end{align*}
$$

commutes with the integral operator $\mathcal{L}_{a, b} \circ\left(\mathcal{L}_{a, b}\right)^{*}$ (defined in 2.70). The left singular functions v_{n} are the eigenfunctions of \hat{D}_{ω}.

We denote the eigenvalues of \hat{D}_{ω} by χ_{k}^{*}. By theorem 2.26, the function v_{n} is the solution
of the differential equation

$$
\begin{align*}
& \left(\hat{D}_{\omega}\left(v_{k}\right)\right)(\omega)= \\
& =-\frac{\mathrm{d}^{2}}{\mathrm{~d} \omega^{2}}\left(\omega^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} \omega^{2}} v_{k}(\omega)\right)+\left(a^{2}+b^{2}\right) \frac{\mathrm{d}}{\mathrm{~d} \omega}\left(\omega^{2} \frac{\mathrm{~d}}{\mathrm{~d} \omega} v_{k}(\omega)\right)+\left(-a^{2} b^{2} \omega^{2}+2 a^{2}\right) v_{k}(\omega)= \\
& =\chi_{k}^{*} v_{k}(\omega) \tag{2.83}
\end{align*}
$$

Observation 2.27. The eigenvalues of \hat{D}_{ω} are equal to the eigenvalues of \tilde{D}_{t} :

$$
\begin{equation*}
\tilde{\chi}_{n}=\chi_{n}^{*} \tag{2.84}
\end{equation*}
$$

2.12 The functions $\left(\mathcal{L}_{a, b}\right)^{*}\left(\Phi_{k}\right)$

Having introduced the operator $\mathcal{L}_{a, b}$ in 2.61) and its adjoint $\left(\mathcal{L}_{a, b}\right)^{*}$ in 2.62), we now discuss the properties of the function generated by applying $\left(\mathcal{L}_{a, b}\right)^{*}$ to the Laguerre function Φ_{k} (defined in (2.47). By (2.42), (2.47) and (2.61),

$$
\begin{align*}
\left(\left(\mathcal{L}_{a, b}\right)^{*}\left(\Phi_{k}\right)\right)(t) & =\int_{0}^{\infty} e^{-\omega t} \Phi_{k}(\omega) \mathrm{d} \omega=\int_{0}^{\infty} e^{-\omega(t+1 / 2)} L_{k}(\omega) \mathrm{d} \omega= \\
& =\left(t-\frac{1}{2}\right)^{k}\left(t+\frac{1}{2}\right)^{-k-1} \tag{2.85}
\end{align*}
$$

In particular, at $t=1 / 2$, 2.85) becomes

$$
\left(\left(\mathcal{L}_{a, b}\right)^{*}\left(\Phi_{k}\right)\right)(1 / 2)=\int_{0}^{\infty} e^{-q / 2} \Phi_{k}(q) \mathrm{d} q= \begin{cases}1 & \text { if } k=0 \tag{2.86}\\ 0 & \text { otherwise }\end{cases}
$$

Differentiating (2.85), we obtain

$$
\begin{equation*}
\left(\left(\mathcal{L}_{a, b}\right)^{*}\left(\Phi_{k}\right)\right)^{\prime}(t)=(8 k-8 t+4)(2 t-1)^{k-1}(2 t+1)^{-k-2} \tag{2.87}
\end{equation*}
$$

which, at $t=1 / 2$, becomes

$$
\left(\left(\mathcal{L}_{a, b}\right)^{*}\left(\Phi_{k}\right)\right)^{\prime}(1 / 2)=\left\{\begin{align*}
-1 & \text { if } k=0 \tag{2.88}\\
1 & \text { if } k=1 \\
0 & \text { otherwise }
\end{align*}\right.
$$

Chapter 3

Analytical apparatus

In this part of the dissertation, we discuss certain useful properties of the truncated Laplace transform; we begin with a brief discussion of the scaling properties of the truncated Laplace transform, and with a definition of a standard form of the truncated Laplace transform. We proceed to define the transform C_{γ} and discuss various symmetry properties associated with it. We then discuss the expansions of u_{n} and v_{n} in orthonormal bases, and show that the calculations of u_{n} and v_{n} can be phrased as benign eigensystem calculations. This chapter is concluded with brief discussions of several miscellaneous useful properties.

3.1 On the scaling properties of the truncated Laplace transform

The truncated Laplace transform (as defined in (2.61)) can be generalized to the form

$$
\begin{equation*}
\left(\mathcal{L}_{a, b, c}(f)\right)(\omega)=\int_{a}^{b} e^{-c t \omega} f(t) \mathrm{d} t \tag{3.1}
\end{equation*}
$$

with arbitrary $0<c<\infty, 0<a<b<\infty$.

Observation 3.1. The properties of the truncated Laplace transform are determined by the ratio

$$
\begin{equation*}
\gamma=b / a>1 \tag{3.2}
\end{equation*}
$$

(see, for example, [1]).

Observation 3.2. The particular choice

$$
\begin{align*}
a & =\frac{1}{2 \sqrt{\gamma}} \\
b & =\frac{\sqrt{\gamma}}{2} \tag{3.3}\\
c & =1
\end{align*}
$$

yields several useful properties, which we will discuss in this dissertation.

Due to observations 3.2 and 3.1 , in the remainder of this dissertation we will be assuming without loss of generality that the values of a, b and c are as defined in (3.3). In other words, we will restrict our attention to the following form of the truncated Laplace transform:

Definition 3.3. For a given $1<\gamma<\infty$, we will denote by $\mathcal{L}_{\gamma}: L^{2}\left(\frac{1}{2 \sqrt{\gamma}}, \frac{\sqrt{\gamma}}{2}\right) \rightarrow L^{2}(0, \infty)$ the operator defined by

$$
\begin{equation*}
\mathcal{L}_{\gamma}=\mathcal{L}_{\frac{1}{2 \sqrt{\gamma}}, \frac{\sqrt{\gamma}}{2}}=\mathcal{L}_{\frac{1}{2 \sqrt{\gamma}}, \frac{\sqrt{\gamma}}{2}, 1} \tag{3.4}
\end{equation*}
$$

The operator \mathcal{L}_{γ} will be referred to as the "standard form" of the truncated Laplace transform.

Obviously, \mathcal{L}_{γ} of a function $f \in L^{2}\left(\frac{1}{2 \sqrt{\gamma}}, \frac{\sqrt{\gamma}}{2}\right)$ is defined by the formula

$$
\begin{equation*}
\left(\mathcal{L}_{\gamma}(f)\right)(\omega)=\left(\mathcal{L}_{\frac{1}{2 \sqrt{\gamma}}, \frac{\sqrt{\gamma}}{2}, 1}(f)\right)(\omega)=\int_{\frac{1}{2 \sqrt{\gamma}}}^{\frac{\sqrt{\gamma}}{2}} e^{-t \omega} f(t) \mathrm{d} t \tag{3.5}
\end{equation*}
$$

Where there is no danger of confusion, we write \mathcal{L} instead of $\mathcal{L}_{\gamma}, \mathcal{L}_{a, b}$ and $\mathcal{L}_{a, b, c}$, and we denote the adjoint of \mathcal{L} by \mathcal{L}^{*}.

Remark 3.4. Combining (3.2) with 2.78, we observe that the quantity β (defined in (2.78)) is related to γ by the formula

$$
\begin{equation*}
\beta=\frac{2 a}{b-a}=\frac{2}{\gamma-1} . \tag{3.6}
\end{equation*}
$$

Remark 3.5. Let $\tilde{u}_{n}, \tilde{v}_{n}$ and $\tilde{\alpha}_{n}$ be the $n+1$-th right singular function, left singular function and singular value of $\mathcal{L}_{\tilde{a}, \tilde{b}, \tilde{c}}$, such that

$$
\begin{equation*}
\mathcal{L}_{\tilde{a}, \tilde{b}, \tilde{c}}\left(\tilde{u}_{n}\right)=\tilde{\alpha}_{n} \tilde{v}_{n} . \tag{3.7}
\end{equation*}
$$

Let $\gamma=\tilde{b} / \tilde{a}$ and let u_{n}, v_{n} and α_{n} be the $n+1$-th singular functions and singular value of \mathcal{L}_{γ}. Then, the SVD of $\mathcal{L}_{\tilde{a}, \tilde{b}, \tilde{c}}$ is related to the SVD of the standard form \mathcal{L}_{γ} by:

$$
\begin{align*}
& \tilde{u}_{n}(t)=\sqrt{\frac{a}{\tilde{a}}} u_{n}(t a / \tilde{a}), \tag{3.8}\\
& \tilde{v}_{n}(\omega)=\sqrt{\frac{\tilde{a} c}{a}} v_{n}(\omega c \tilde{a} / a), \tag{3.9}
\end{align*}
$$

and

$$
\begin{equation*}
\tilde{\alpha}_{n}=\alpha_{n} / \sqrt{c} . \tag{3.10}
\end{equation*}
$$

3.2 The transform C_{γ}

In this section we define the transform C_{γ} which is useful in the discussion of certain symmetry properties.

Definition 3.6. We define the new variable $s \in \mathbb{R}$ via

$$
\begin{equation*}
s=2 \log (2 t) / \log (\gamma) . \tag{3.11}
\end{equation*}
$$

For $\gamma>1$, we define the transform C_{γ} of a function f by the the formula

$$
\begin{equation*}
\left(C_{\gamma}(f)\right)(s)=\gamma^{s / 4} f\left(\gamma^{s / 2} / 2\right) . \tag{3.12}
\end{equation*}
$$

Observation 3.7. A simple calculation shows that

$$
\begin{equation*}
\int_{s\left(t_{1}\right)}^{s\left(t_{2}\right)}\left(C_{\gamma}(f)\right)(s)\left(C_{\gamma}(g)\right)(s) \mathrm{d} s=\frac{4}{\log \gamma} \int_{t_{1}}^{t_{2}} f(t) g(t) \mathrm{d} t . \tag{3.13}
\end{equation*}
$$

We are particularly interested in the case where a, b are as defined in (3.3). In this case, C_{γ} becomes a mapping $L^{2}\left(\frac{1}{2 \sqrt{\gamma}}, \frac{\sqrt{\gamma}}{2}\right) \rightarrow L^{2}(-1,1)$.

3.2.1 The functions $\left(C_{\gamma} \circ \mathcal{L}^{*}\right)\left(\Phi_{k}\right)$

In this subsection, we discuss certain properties of the Laguerre functions Φ_{k} (defined in 2.47)), related to the operator C_{γ} (defined in (3.12)).

A simple calculation shows that C_{γ} of the function $\mathcal{L}^{*}\left(\Phi_{k}\right)$ (see 2.85) is given by

$$
\begin{equation*}
\left(\left(C_{\gamma} \circ \mathcal{L}^{*}\right)\left(\Phi_{k}\right)\right)(s)=\gamma^{s / 4}\left(\gamma^{s / 2}-1\right)^{k}\left(\gamma^{s / 2}+1\right)^{-k-1} \tag{3.14}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
\left|\left(\left(C_{\gamma} \circ \mathcal{L}^{*}\right)\left(\Phi_{k}\right)\right)(s)\right|=\frac{\gamma^{s / 4}}{\gamma^{s / 2}+1}\left|\frac{\gamma^{s / 2}-1}{\gamma^{s / 2}+1}\right|^{k}, \tag{3.15}
\end{equation*}
$$

from which it immediately follows that

$$
\begin{equation*}
\left|\left(\left(C_{\gamma} \circ \mathcal{L}^{*}\right)\left(\Phi_{k}\right)\right)(s)\right| \leq \frac{1}{2}\left|\frac{\gamma^{s / 2}-1}{\gamma^{s / 2}+1}\right|^{k} \tag{3.16}
\end{equation*}
$$

Observation 3.8. For all $1<\gamma<\infty$ and $s \in \mathbb{R}$, we have $\left|\frac{\gamma^{s / 2}-1}{\gamma^{s / 2}+1}\right|<1$; it is therefore obvious from (3.15) that $\left|\left(\left(C_{\gamma} \circ \mathcal{L}^{*}\right)\left(\Phi_{k}\right)\right)(s)\right|$ decays exponentially as k grows.

Observation 3.9. By (3.14),

$$
\begin{equation*}
\left(\left(C_{\gamma} \circ \mathcal{L}^{*}\right)\left(\Phi_{k}\right)\right)(s)=(-1)^{k}\left(\left(C_{\gamma} \circ \mathcal{L}^{*}\right)\left(\Phi_{k}\right)\right)(-s) . \tag{3.17}
\end{equation*}
$$

In other words, for an even k, the function $\left(C_{\gamma} \circ \mathcal{L}^{*}\left(\Phi_{k}\right)\right)(s)$ is even; and for an odd k, it is odd.

Observation 3.10. By (3.14), at the point $s=0$,

$$
\left(\left(C_{\gamma} \circ \mathcal{L}^{*}\right)\left(\Phi_{k}\right)\right)(0)=\left\{\begin{align*}
1 / 2 & \text { if } k=0 \tag{3.18}\\
0 & \text { otherwise }
\end{align*}\right.
$$

Observation 3.11. By differentiating (3.14) and setting $s=0$ we obtain:

$$
\left(\left(C_{\gamma} \circ \mathcal{L}^{*}\right)\left(\Phi_{k}\right)\right)^{\prime}(0)=\left\{\begin{align*}
\log (\gamma) / 4 & \text { if } k=1 \tag{3.19}\\
0 & \text { otherwise }
\end{align*}\right.
$$

3.2.2 C_{γ} of the right singular function u_{n}

Definition 3.12. We introduce the function U_{n}, which we define by the formula

$$
\begin{equation*}
U_{n}(s)=\left(C_{\gamma}\left(u_{n}\right)\right)(s), \tag{3.20}
\end{equation*}
$$

where u_{n} is a right singular function of the operator $\mathcal{L}_{a, b}$, and C_{γ} is defined in 3.12.
By 3.13 , and since u_{n} is normalized on (a, b), the norm of U_{n} on $\left(2 \frac{\log (2 a)}{\log (\gamma)}, 2 \frac{\log (2 b)}{\log (\gamma)}\right)$ is:

$$
\begin{equation*}
\int_{2}^{2 \frac{\log (2 b)}{\log (2 a)}}\left(U_{n}(s)\right)^{2} \mathrm{~d} s=\frac{4}{\log (\gamma)}, \tag{3.21}
\end{equation*}
$$

Equation (3.21) holds for an arbitrary choice of a and b such that $b / a=\gamma$. In this dissertation we assume $a=\frac{1}{2 \sqrt{\gamma}}, b=\frac{\sqrt{\gamma}}{2}$ (as defined in 3). By substituting $\sqrt{3.3}$) into 3.21 , the interval $s \in\left(2 \frac{\log (2 a)}{\log (\gamma)}, 2 \frac{\log (2 b)}{\log (\gamma)}\right)$ becomes $s \in(-1,1)$.

In the case of \mathcal{L}_{γ} (the standard form of the truncated Laplace transform, defined in (3.5), by 2.72 and 3.20, the functions U_{n} are the eigenfunctions of the differential operator $\tilde{\tilde{D}} s$, defined by the formula

$$
\begin{align*}
\left(\tilde{\tilde{D}}_{s}(f)\right)(s)= & (\log (\sqrt{\gamma}))^{-2} \frac{\mathrm{~d}}{\mathrm{~d} s}\left(\gamma^{2}+1-2 \gamma \cosh (2 s \log (\sqrt{\gamma}))\right) \frac{\mathrm{d}}{\mathrm{~d} s} f(s) \\
& -\left(\frac{3}{2} \gamma \cosh (2 s \log (\sqrt{\gamma}))+\frac{1}{4} \gamma^{2}-\frac{7}{4}\right) f(s) . \tag{3.22}
\end{align*}
$$

A simple calculation shows that the eigenvalues of $\tilde{\tilde{D}}_{s}$, which we denote by μ_{n}, are related to the eigenvalues $\tilde{\chi}_{n}$ (defined in 2.72) by the formula:

$$
\begin{equation*}
\mu_{n}=4 \gamma \tilde{\chi}_{n} \tag{3.23}
\end{equation*}
$$

3.3 The symmetry property of u_{n} and U_{n}

By [5], the right singular functions u_{n} of $\mathcal{L}_{a, b}$ (the operator defined in 2.61) satisfy a form of symmetry around the point $\sqrt{a b}$. In the case of the standard form \mathcal{L}_{γ}, defined in $\sqrt[3.5]{ }$, we have $\sqrt{a b}=1 / 2$, and the symmetry relation is:

$$
\begin{equation*}
u_{n}\left(\frac{1}{4 t}\right)=(-1)^{n} 2 t u_{n}(t) \tag{3.24}
\end{equation*}
$$

Observation 3.13. In the case of standard form \mathcal{L}_{γ}, it follows from (3.20), that the functions U_{n} (defined in (3.20) are even and odd functions in the regular sense:

$$
\begin{equation*}
U_{n}(s)=\left(C_{\gamma}\left(u_{n}\right)\right)(s)=(-1)^{n} U_{n}(-s) . \tag{3.25}
\end{equation*}
$$

In particular, at the point $s=0$, we have:

$$
\begin{equation*}
U_{2 j+1}(0)=\left(C_{\gamma}\left(u_{2 j+1}\right)\right)(0)=0 \tag{3.26}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{2 j}^{\prime}(0)=\left(C_{\gamma}\left(u_{2 j}\right)\right)^{\prime}(0)=0 . \tag{3.27}
\end{equation*}
$$

Remark 3.14. The functions U_{n} are even and odd functions around the point $s=0$ in the case of the standard form \mathcal{L}_{γ} (as defined in (3.5). Similar symmetry exists for C_{γ} of the right singular functions of $\mathcal{L}_{a, b}$ (as defined in 2.61), however the center of symmetry is not necessarily $s=0$.

3.4 The differential operator D_{x} and the expansion of ψ_{n} in the basis of $\overline{P_{k}^{*}}$

In this section we consider the expansion of functions $f \in L^{2}(0,1)$ in the orthonormal basis of the polynomials $\overline{P_{k}^{*}}$ (defined in 2.16):

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty} h_{k} \overline{P_{k}^{*}}(x) . \tag{3.28}
\end{equation*}
$$

Lemma 3.15 describes the operation of D_{x} (defined in 2.80) on a basis function $\overline{P_{k}^{*}}$. The result is used to express the functions ψ_{n} (defined in (2.75) via a five-terms recurrence relation or a solution to a benign eigensystem, specified in theorem 3.16.

Lemma 3.15. Applying the differential operator D_{x} to the polynomial $\overline{P_{k}^{*}}$ yields a linear combination of $\overline{P_{k-2}^{*}}, \overline{P_{k-1}^{*}}, \overline{P_{k}^{*}}, \overline{P_{k+1}^{*}}$ and $\overline{P_{k+2}^{*}}$:

$$
\begin{align*}
& \left(D_{x}\left(\overline{P_{k}^{*}}\right)\right)(x)= \\
& =-\frac{(k-1)^{2} k^{2}}{4 \sqrt{2 k-3(2 k-1) \sqrt{2 k+1}} \overline{P_{k-2}^{*}}(x)} \\
& -\frac{k^{3}(1+\beta)}{\sqrt{2 k-1} \sqrt{2 k+1}} \overline{P_{k-1}^{*}}(x) \tag{3.29}\\
& -\frac{\left(-4-6 \beta-2 k \beta(2+3 \beta)+k^{2}\left(7+12 \beta+2 \beta^{2}\right)+\left(2 k^{3}+k^{4}\right)\left(7+16 \beta+8 \beta^{2}\right)\right)}{2(2 k-1)(2 k+3)} \overline{P_{k}^{*}}(x) \\
& -\frac{(k+1)^{3}(1+\beta)}{\sqrt{2 k+1} \sqrt{2 k+3}} \overline{P_{k+1}^{*}}(x) \\
& -\frac{(k+1)^{2}(k+2)^{2}}{4 \sqrt{2 k+1}(2 k+3) \sqrt{2 k+5}} \overline{P_{k+2}^{*}}(x),
\end{align*}
$$

where $\beta=\frac{2 a}{b-a}=\frac{2}{\gamma-1}$ (as defined in 3.6).
Proof. By the definition of D_{x} (in (2.80),

$$
\begin{align*}
& \left(D_{x}\left(P_{k}^{*}\right)\right)(x)= \\
& =\frac{d}{\mathrm{dx}}\left((\beta+x)(\beta+1+x) x(1-x) \frac{d}{\mathrm{dx}} P_{k}^{*}(x)\right)-2 x(x+\beta) P_{k}^{*}(x) . \tag{3.30}
\end{align*}
$$

Using the chain rule,

$$
\begin{align*}
& \left(D_{x}\left(P_{k}^{*}\right)\right)(x)= \\
= & \left(\frac{d}{\mathrm{dx}}(\beta+x)(\beta+1+x)\right)\left(x(1-x) \frac{d}{\mathrm{dx}} P_{k}^{*}(x)\right) \\
& +(\beta+x)(\beta+1+x) \frac{d}{\mathrm{dx}}\left(x(1-x) \frac{d}{\mathrm{dx}} P_{k}^{*}(x)\right)-2 x(x+\beta) P_{k}^{*}(x)= \\
= & (1+2 x+2 \beta)\left(x(1-x) \frac{d}{\mathrm{dx}} P_{k}^{*}(x)\right) \tag{3.31}\\
& +\left(x^{2}+x(1+2 \beta)+\beta+\beta^{2}\right) \frac{d}{\mathrm{dx}}\left(x(1-x) \frac{d}{\mathrm{dx}} P_{k}^{*}(x)\right) \\
& -2 x(x+\beta) P_{k}^{*}(x)
\end{align*}
$$

Using identities (2.12), (2.13) and (2.14),

$$
\begin{align*}
& \left(D_{x}\left(P_{k}^{*}\right)\right)(x)= \\
& -\frac{(-1+k)^{2} k^{2} P_{k-2}^{*}(x)}{4(-1+2 k)(1+2 k)} \\
& -\frac{k^{3}(1+\beta) P_{k-1}^{*}(x)}{1+2 k} \\
& -\frac{\left(-4+7 k^{2}+14 k^{3}+7 k^{4}-6 \beta-4 k \beta+12 k^{2} \beta+32 k^{3} \beta+16 k^{4} \beta-6 k \beta^{2}+2 k^{2} \beta^{2}+16 k^{3} \beta^{2}+8 k^{4} \beta^{2}\right)}{2(-1+2 k)(3+2 k)} P_{k}^{*}(x) \\
& -\frac{(1+k)^{3}(1+\beta) P_{k+1}^{*}(x)}{1+2 k} \\
& -\frac{(1+k)^{2}(2+k)^{2} P_{k+2}^{*}(x)}{4(1+2 k)(3+2 k)} . \tag{3.32}
\end{align*}
$$

Finally, substituting (2.11) into (3.32) gives (3.29).
Theorem 3.16. Let the function $\psi_{n}(x)$ be as defined in 2.75). Let $h^{n}=\left(h_{0}^{n}, h_{1}^{n}, \ldots\right)^{\top}$ be the
vector of coefficients in the expansion of $\psi_{n}(x)$ in the basis of the polynomials $\overline{P_{k}^{*}}$:

$$
\begin{equation*}
\psi_{n}(x)=\sum_{k=0}^{\infty} h_{k}^{n} \overline{P_{k}^{*}}(x) \tag{3.33}
\end{equation*}
$$

Then, h^{n} is the $n+1$-th eigenvector of M :

$$
\begin{equation*}
M h^{n}=\chi_{n} h^{n} \tag{3.34}
\end{equation*}
$$

where M is the five-diagonal matrix

$$
\begin{align*}
M_{k-2, k} & =-\frac{(k-1)^{2} k^{2}}{4 \sqrt{2 k-3}(2 k-1) \sqrt{2 k+1}} \\
M_{k-1, k} & =-\frac{k^{3}(1+\beta)}{\sqrt{2 k-1} \sqrt{2 k+1}} \\
M_{k, k} & =-\frac{\left(-4-6 \beta-2 k \beta(2+3 \beta)+k^{2}\left(7+12 \beta+2 \beta^{2}\right)+\left(2 k^{3}+k^{4}\right)\left(7+16 \beta+8 \beta^{2}\right)\right)}{2(2 k-1)(2 k+3)} \tag{3.35}\\
M_{k+1, k} & =-\frac{(k+1)^{3}(1+\beta)}{\sqrt{2 k+1} \sqrt{2 k+3}} \\
M_{k+2, k} & =-\frac{(k+1)^{2}(k+2)^{2}}{4 \sqrt{2 k+1}(2 k+3) \sqrt{2 k+5}},
\end{align*}
$$

and where χ_{n} are the eigenvalues of the differential operator D_{x}, and $k=0,1,2 \ldots$.

Proof. By 2.81), $\psi_{n}(x)$ is an eigenfunction of D_{x}, with the eigenvalue χ_{n}. Since the differential operator is linear,

$$
\begin{equation*}
\left(D_{x}\left(\psi_{n}\right)\right)(x)=\sum_{k=0}^{\infty} h_{k}^{n}\left(D_{x}\left(\overline{P_{k}^{*}}\right)\right)(x)=\chi_{n} \sum_{k=0}^{\infty} h_{k}^{n} \overline{P_{k}^{*}}(x) \tag{3.36}
\end{equation*}
$$

Using lemma 3.15, (3.36) becomes (3.34).

Observation 3.17. Clearly, h_{k}^{n} is the inner product of ψ_{n} and $\overline{P_{k}^{*}}$:

$$
\begin{equation*}
h_{k}^{n}=\int_{0}^{1} \overline{P_{k}^{*}}(x) \psi_{n}(x) \mathrm{d} x \tag{3.37}
\end{equation*}
$$

3.4.1 The decay of the coefficients in the expansion of ψ_{n}

Since the functions ψ_{n} are smooth regular solutions of a differential operator, they can be efficiently expressed using an orthogonal basis of polynomials. In other words, we expect the coefficients in the expansion of ψ_{n} in terms of the polynomials $\overline{P_{k}^{*}}$ to decay rapidly. In this subsection, we obtain a bound for this decay.

Lemma 3.18. Let $0<\beta<\infty$ and $0 \leq y \leq 1$. We introduce the notation

$$
\begin{equation*}
\tilde{\beta}=\sqrt{\left(1+(2 \beta)^{2}\right)-1}=\sqrt{4 \beta(1+\beta)} . \tag{3.38}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\int_{0}^{1}\left(\int_{0}^{1} \frac{1}{x+y+\beta} \overline{P_{k}^{*}}(x) \mathrm{d} x\right)^{2} \mathrm{~d} y \leq\left(\frac{2 \sqrt{2 k+1}}{(1+\tilde{\beta})^{k+1}}\left(\log \left(2 \frac{1+\tilde{\beta}}{\tilde{\beta}}\right)+1\right)\right)^{2} \tag{3.39}
\end{equation*}
$$

where $\overline{P_{k}^{*}}$ is defined in 2.16.
Proof. We recall from (2.24) that

$$
\begin{equation*}
\left|\int_{0}^{1}(x+y+\beta)^{-1} \overline{P_{k}^{*}}(x) \mathrm{d} x\right|=2 Q_{k}^{*}(y+\beta+1) \sqrt{2 n+1} \tag{3.40}
\end{equation*}
$$

where Q_{k}^{*} is defined in 2.23 . So, by lemma 2.8 ,

$$
\begin{equation*}
\left|\int_{0}^{1}(x+y+\beta)^{-1} \overline{P_{k}^{*}}(x) \mathrm{d} x\right|<\frac{2 \sqrt{2 k+1}}{(1+\tilde{\beta})^{k+1}}\left(\log \left(2 \frac{1+\tilde{\beta}}{\tilde{\beta}}\right)+1\right) \tag{3.41}
\end{equation*}
$$

By squaring (3.41) and integrating over y, we obtain (3.39).
Lemma 3.19. Let h_{k}^{n} be the $k+1$-th coefficient in the expansion defined in (3.33), of the
function ψ_{n} (defined in 2.75) in the basis of the polynomials $\overline{P_{k}^{*}}$ (defined in 2.16). Then,

$$
\begin{equation*}
\left|h_{k}^{n}\right| \leq \alpha_{n}^{-2} \frac{2 \sqrt{2 k+1}}{(1+\tilde{\beta})^{k+1}}\left(\log \left(2 \frac{1+\tilde{\beta}}{\tilde{\beta}}\right)+1\right) \tag{3.42}
\end{equation*}
$$

Where

$$
\begin{equation*}
\tilde{\beta}=\sqrt{\left(1+(2 \beta)^{2}\right)-1}=\sqrt{4 \beta(1+\beta)} \tag{3.43}
\end{equation*}
$$

and β is as defined in (3.6).

Proof. We substitute (2.79) into (3.37) and change the order of integration:

$$
\begin{align*}
& h_{k}^{n}=\alpha_{n}^{-2} \int_{0}^{1} \int_{0}^{1} \frac{1}{x+y+\beta} \overline{P_{k}^{*}}(x) \psi_{n}(y) \mathrm{d} x \mathrm{~d} y= \\
& =\alpha_{n}^{-2} \int_{0}^{1} \psi_{n}(y)\left(\int_{0}^{1} \frac{1}{x+y+\beta} \overline{P_{k}^{*}}(x) \mathrm{d} x\right) \mathrm{d} y \tag{3.44}
\end{align*}
$$

By the Cauchy-Schwarz inequality,

$$
\begin{equation*}
\left|h_{k}^{n}\right| \leq \alpha_{n}^{-2} \sqrt{\int_{0}^{1}\left(\psi_{n}(y)\right)^{2} \mathrm{~d} y} \sqrt{\int_{0}^{1}\left(\int_{0}^{1} \frac{1}{x+y+\beta} \overline{P_{k}^{*}}(x) \mathrm{d} x\right)^{2} \mathrm{~d} y} \tag{3.45}
\end{equation*}
$$

By (2.76) and (3.39,

$$
\begin{equation*}
\left|h_{k}^{n}\right| \leq \alpha_{n}^{-2} \sqrt{1}\left(\frac{2 \sqrt{2 k+1}}{(1+\tilde{\beta})^{k+1}}\left(\log \left(2 \frac{1+\tilde{\beta}}{\tilde{\beta}}\right)+1\right)\right) \tag{3.46}
\end{equation*}
$$

3.5 The differential operator \hat{D}_{ω} and the expansion of v_{n} in the basis of Φ_{k}

In this section we consider the expansion of functions $g \in L^{2}(0, \infty)$ in the basis of the Laguerre functions Φ_{k} (the functions defined in (2.47)):

$$
\begin{equation*}
g(\omega)=\sum_{k=0}^{\infty} \eta_{k} \Phi_{k}(\omega) . \tag{3.47}
\end{equation*}
$$

Lemma 3.21 describes the operation of the differential operator \hat{D}_{ω} (define in 2.83) on Φ_{k}. This relation is used to express the expansion of the left singular function v_{n} of the operator $\mathcal{L}_{a, b}$ (the operator defined in (2.61) via a five-terms recurrence relation, or as a solution to a benign eigensystem described in theorem 3.22 .

Remark 3.20. Lemma 3.21, theorem 3.22 and the discussion in section 3.5 .5 apply to the operators associated with $\mathcal{L}_{a, b}$ (defined in (2.61)) with an arbitrary choice of $0<a<b<\infty$. Subsections 3.5 .1 and 3.5 .2 apply to the special cases of $\mathcal{L}_{1 / 2, \gamma / 2}$ and $\mathcal{L}_{1 /(2 \gamma), 1 / 2}$. Subsections 3.5 .3 and 3.5 .4 treat to the standard form of the truncated Laplace transform \mathcal{L}_{γ}, as defined in (3.5).

Lemma 3.21. Applying the differential operator \hat{D}_{ω} (defined in (2.83)) to the Laguerre function Φ_{k} (defined in 2.47) yields a linear combination of the Laguerre functions Φ_{k-2}, Φ_{k-1},
Φ_{k}, Φ_{k+1} and Φ_{k+2} :

$$
\begin{align*}
& \left(\hat{D}_{\omega}\left(\Phi_{k}\right)\right)(\omega)= \\
& -\frac{1}{16}\left(4 a^{2}-1\right)\left(4 b^{2}-1\right)(k-1) k \Phi_{k-2}(\omega) \\
& +\frac{1}{4} k^{2}\left(16 a^{2} b^{2}-1\right) \Phi_{k-1}(\omega) \\
& +\frac{1}{8}\left(k(k+1)\left(-48 a^{2} b^{2}-4 a^{2}-4 b^{2}-3\right)+\left(-16 a^{2} b^{2}+12 a^{2}-4 b^{2}-1\right)\right) \Phi_{k}(\omega) \\
& +\frac{1}{4}(k+1)^{2}\left(16 a^{2} b^{2}-1\right) \Phi_{k+1}(\omega) \\
& -\frac{1}{16}\left(4 a^{2}-1\right)\left(4 b^{2}-1\right)(k+2)(k+1) \Phi_{k+2}(\omega) . \tag{3.48}
\end{align*}
$$

Proof. Applying \hat{D}_{ω} to a Laguerre function Φ_{k} yields

$$
\begin{align*}
& \left(\hat{D}_{\omega}\left(\Phi_{k}\right)\right)(x)= \\
& =-\frac{\mathrm{d}^{2}}{\mathrm{~d} \omega^{2}} \omega^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} \omega^{2}} \Phi_{k}(\omega)+\left(a^{2}+b^{2}\right) \frac{\mathrm{d}}{\mathrm{~d} \omega} \omega^{2} \frac{\mathrm{~d}}{\mathrm{~d} \omega} \Phi_{k}(x)+\left(-a^{2} b^{2} \omega^{2}+2 a^{2}\right) \Phi_{k}(\omega) \tag{3.49}
\end{align*}
$$

A somewhat tedious derivation from (3.49), using identities (2.39), 2.40) and (2.41), yields (3.48).

Theorem 3.22. Let $v_{n}(\omega)$ be the $n+1$-th left singular function of the truncated Laplace transform. Let $\eta^{n}=\left(\eta_{0}^{n}, \eta_{1}^{n}, \ldots\right)^{\top}$ be the vector of coefficients in the expansion of $v_{n}(\omega)$ in the basis of Laguerre functions Φ_{k} (the functions defined in 2.47), such that

$$
\begin{equation*}
v_{n}(\omega)=\sum_{k=0}^{\infty} \eta_{k}^{n} \Phi_{k}(\omega) \tag{3.50}
\end{equation*}
$$

Then, η^{n} is the $n+1$-th eigenvector of \hat{M} :

$$
\begin{equation*}
\hat{M} \eta^{n}=\chi_{n}^{*} \eta^{n} \tag{3.51}
\end{equation*}
$$

where \hat{M} is the symmetric five-diagonal matrix

$$
\begin{align*}
\hat{M}_{k-2, k} & =-\frac{1}{16}\left(4 a^{2}-1\right)\left(4 b^{2}-1\right)(k-1) k \\
\hat{M}_{k-1, k} & =+\frac{1}{4} k^{2}\left(16 a^{2} b^{2}-1\right) \\
\hat{M}_{k, k} & =+\frac{1}{8}\left(k(k+1)\left(-48 a^{2} b^{2}-4 a^{2}-4 b^{2}-3\right)+\left(-16 a^{2} b^{2}+12 a^{2}-4 b^{2}-1\right)\right) \\
\hat{M}_{k+1, k} & =+\frac{1}{4}(k+1)^{2}\left(16 a^{2} b^{2}-1\right) \\
\hat{M}_{k+2, k} & =-\frac{1}{16}\left(4 a^{2}-1\right)\left(4 b^{2}-1\right)(k+2)(k+1), \tag{3.52}
\end{align*}
$$

and where χ_{n}^{*} are the eigenvalues of \hat{D}_{ω} (defined in 2.83), and $k=0,1,2 \ldots$
Proof. By (2.83), the left singular function v_{n} is an eigenfunction of the differential operator \hat{D}_{ω}, and therefore

$$
\begin{equation*}
\left(\hat{D}_{\omega}\left(v_{n}\right)\right)(\omega)=\chi^{*} v_{n}(\omega) . \tag{3.53}
\end{equation*}
$$

Substituting (3.50) into (3.53) and using the linearity of the differential operator, we obtain:

$$
\begin{equation*}
\sum_{k=0}^{\infty} \eta_{k}^{n}\left(\hat{D}_{\omega}\left(\Phi_{k}\right)\right)(\omega)=\chi^{*} \sum_{k=0}^{\infty} \eta_{k}^{n} \Phi_{k}(\omega) . \tag{3.54}
\end{equation*}
$$

Using lemma 3.21 and (3.54), we obtain (3.51).

Observation 3.23. Clearly,

$$
\begin{equation*}
\eta_{k}^{n}=\int_{0}^{\infty} v_{n}(\omega) \Phi_{k}(\omega) \mathrm{d} \omega . \tag{3.55}
\end{equation*}
$$

Remark 3.24. Expressing the left singular functions v_{n} in a similar way, using Hermite polynomials or parabolic cylinder functions, yields a similar framework, with a seven-diagonal matrix \hat{M}.

3.5.1 A special case of theorem 3.22; $a=1 / 2$

We observe that there are two special choices of a and b for which the matrix \hat{M} (defined in (3.52)) becomes tridiagonal. We briefly describe these two cases in this subsection and in the next subsection.

The substitution of $a=1 / 2, b=\gamma / 2$ into (3.52) yields the first tridiagonal case of \hat{M} :

$$
\begin{align*}
\hat{M}_{k-1, k} & =+\frac{1}{4}\left(\gamma^{2}-1\right) k^{2} \\
\hat{M}_{k, k} & =+\frac{1}{4}\left(-\gamma^{2}-2\left(\gamma^{2}+1\right) k^{2}-2\left(\gamma^{2}+1\right) k+1\right) \tag{3.56}\\
\hat{M}_{k+1, k} & =+\frac{1}{4}\left(\gamma^{2}-1\right)(k+1)^{2}
\end{align*}
$$

3.5.2 A special case of theorem 3.22; $b=1 / 2$

A substituting of $a=\frac{1}{2 \gamma}, b=1 / 2$ into 3.52 yields the second tridiagonal case of \hat{M} :

$$
\begin{align*}
\hat{M}_{k-1, k} & =-\frac{\left(\gamma^{2}-1\right) k^{2}}{4 \gamma^{2}} \\
\hat{M}_{k, k} & =-\frac{\left(2\left(\gamma^{2}+1\right) k^{2}+2\left(\gamma^{2}+1\right) k+\gamma^{2}-1\right)}{4 \gamma^{2}} \tag{3.57}\\
\hat{M}_{k+1, k} & =-\frac{\left(\gamma^{2}-1\right)(k+1)^{2}}{4 \gamma^{2}}
\end{align*}
$$

3.5.3 A special case of theorem 3.22; the standard form of the truncated Laplace transform, as defined in 3.5

We now consider theorem 3.22 in the case of the standard form \mathcal{L}_{γ} (defined in (3.5)); in other words, we set $a=\frac{1}{2 \sqrt{\gamma}}$ and $b=\frac{\sqrt{\gamma}}{2}$ (as defined in 2.61). We will show that in this case, the even-numbered left singular functions $v_{2 j}$ are expanded using only the even-numbered Laguerre functions $\Phi_{2 m}$, and that the odd-numbered left singular functions $v_{2 j+1}$ are expanded using only the odd-numbered Laguerre functions $\Phi_{2 m+1}$. Furthermore, we will show that the expansions of $v_{2 j}$ and $v_{2 j+1}$ can be obtained from two benign tridiagonal eigensystems.

Observation 3.25. We substitute $a=\frac{1}{2 \sqrt{\gamma}}, b=\frac{\sqrt{\gamma}}{2}$ (as specified in 3.3) into 3.50 . We observe that the first off diagonal of \hat{M} vanishes, but the second off diagonal does not vanish:

$$
\begin{align*}
\hat{M}_{k-2, k} & =+\frac{(\gamma-1)^{2}(k-1) k}{16 \gamma} \\
\hat{M}_{k, k} & =+\frac{\left(\left(-\gamma^{2}-6 \gamma-1\right) k(k+1)-\gamma^{2}-2 \gamma+3\right)}{8 \gamma} \tag{3.58}\\
\hat{M}_{k+2, k} & =+\frac{(\gamma-1)^{2}(k+1)(k+2)}{16 \gamma}
\end{align*}
$$

Let $\hat{M}_{i, j}$ be an entry of \hat{M} that does not vanish. Then, we observe that both i and j must be even or both must be odd. In other words, the non-zero elements can be found only in evennumbered columns of even-numbered rows, and in odd-numbered columns of odd-numbered rows of \hat{M}.

We split the matrix \hat{M} into two matrices; one of the matrices contains all the even rows of all the even columns, and the other matrix contains all the odd rows of all the odd columns.

These are the two tridiagonal matrices $\hat{M}^{\text {even }}$ and $\hat{M}^{\text {even }}$, specified by the formulas:

$$
\begin{align*}
& \hat{M}_{j-1, j}^{\text {even }}=\frac{(\gamma-1)^{2}(2 j-1) 2 j}{16 \gamma} \\
& \hat{M}_{j, j}^{\text {even }}=\frac{\left(\left(-\gamma^{2}-6 \gamma-1\right) 2 j(2 j+1)-\gamma^{2}-2 \gamma+3\right)}{8 \gamma} \tag{3.59}\\
& \hat{M}_{j+1, j}^{\text {even }}=\frac{(\gamma-1)^{2}(2 j+1)(2 j+2)}{16 \gamma}
\end{align*}
$$

and

$$
\begin{align*}
\hat{M}_{j-1, j}^{o d d} & =\frac{(\gamma-1)^{2}(2 j)(2 j+1)}{16 \gamma} \\
\hat{M}_{j, j}^{\text {odd }} & =\frac{\left(\left(-\gamma^{2}-6 \gamma-1\right)(2 j+1)(2 j+2)-\gamma^{2}-2 \gamma+3\right)}{8 \gamma} \tag{3.60}\\
\hat{M}_{j+1, j}^{o d d} & =\frac{(\gamma-1)^{2}(2 j+2)(2 j+3)}{16 \gamma} .
\end{align*}
$$

We introduce the notation $\eta^{\text {even }, j}$ and $\chi_{j}^{*, \text { even }}$ for the $j+1$-th eigenvector and eigenvalue of $\hat{M}^{\text {even }}$, and $\eta^{\text {odd }, j}$ and $\chi_{j}^{*, \text { odd }}$ for the $j+1$-th eigenvector and eigenvalue of $\hat{M}^{\text {odd }}$;

$$
\begin{equation*}
\hat{M}^{\text {even }} \eta^{\text {even }, j}=\chi_{j}^{*, \text { even }} \eta^{\text {even }, j}, \tag{3.61}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{M}^{\text {odd }} \eta^{o d d, j}=\chi_{j}^{*, o d d} \eta^{o d d, j} \tag{3.62}
\end{equation*}
$$

Observation 3.26. Let χ^{*} be an eigenvalue of \hat{M}. Then, χ^{*} is either an eigenvalue of $\hat{M}^{\text {even }}$, or an eigenvalue of $\hat{M}^{\text {odd }}$. Any eigenvalue of $\hat{M}^{\text {even }}$ or $\hat{M}^{\text {odd }}$ is an eigenvalue of \hat{M}.

Observation 3.27. The vector $\left(\eta_{0}^{\text {even, } j}, 0, \eta_{1}^{\text {even, } j}, 0, \ldots .\right)^{\top}$ is an eigenvector of \hat{M} with the eigenvalue $\chi_{j}^{*, \text { even }}$.
Observation 3.28. The vector $\left(0, \eta_{0}^{\text {odd }, j}, 0, \eta_{1}^{\text {odd,j }}, 0, \ldots .\right)^{\top}$ is an eigenvector of \hat{M} with the
eigenvalue $\chi_{j}^{*, \text { odd }}$.
We introduce the notation $v_{j}^{\text {even }}(\omega), v_{j}^{\text {odd }}(\omega)$:

$$
\begin{align*}
& v_{j}^{e v e n}(\omega)=\sum_{l=0}^{\infty} \eta_{l}^{e v e n, j} \Phi_{2 l}(\omega) \tag{3.63}\\
& v_{j}^{o d d}(\omega)=\sum_{l=0}^{\infty} \eta_{l}^{o d d, j} \Phi_{2 l+1}(\omega) . \tag{3.64}
\end{align*}
$$

Observation 3.29. Each function in the sequences $v_{j}^{e v e n}$ and $v_{j}^{o d d}$ is a left singular function. Each left singular function is either in the sequence of functions $v_{j}^{\text {even }}$, or in the sequence $v_{j}^{\text {odd }}$.

It remains to be shown which function, in which of the two sequences $v_{j}^{\text {even }}$ and $v_{j}^{\text {odd }}$, corresponds to the $n+1$-th left singular function v_{n}.

Lemma 3.30. Let $\eta^{\text {even }, j}$ be the $j+1$-th eigenvector of $\hat{M}^{\text {even }}$ and let $v_{j}^{\text {even }}$ be as defined in (3.63).

Let $\eta^{\text {odd, } j}$ be the $j+1$-th eigenvector of $\hat{M}^{\text {odd }}$ (defined in 3.60) and let $v_{j}^{\text {odd }}$ be as defined in (3.64).

Then,

$$
\begin{align*}
v_{2 j}(\omega) & =v_{j}^{\text {even }}(\omega) \tag{3.65}\\
v_{2 j+1}(\omega) & =v_{j}^{\text {odd }}(\omega) .
\end{align*}
$$

Proof. By observation 3.29. $v_{j}^{\text {even }}$ is a left singular function. Let u_{m} be the corresponding right singular function of the truncated Laplace transform \mathcal{L} (the operator defined in (3.5). By (3.63) and (2.67),

$$
\begin{equation*}
u_{m}=\alpha_{m}^{-1} \sum_{l=0}^{\infty} \eta_{l}^{\text {even }, j}\left(\mathcal{L}_{\gamma}\right)^{*}\left(\Phi_{2 l}\right) \tag{3.66}
\end{equation*}
$$

We multiply both sides of (3.66) by the operator C_{γ} (as defined in (3.12), and use the definition of U_{n} in (3.20), to obtain

$$
\begin{equation*}
U_{m}=\alpha_{m}^{-1} \sum_{l=0}^{\infty} \eta_{l}^{\text {even }, j}\left(C_{\gamma} \circ\left(\mathcal{L}_{\gamma}\right)^{*}\right)\left(\Phi_{2 l}\right) . \tag{3.67}
\end{equation*}
$$

By 3.17), the functions $\left(\left(C_{\gamma} \circ\left(\mathcal{L}_{\gamma}\right)^{*}\right)\left(\Phi_{2 l}\right)\right)(s)$ are even functions, so U_{m} is an even function; therefore, by $3.25, m$ must be an even number. In other words, $v_{j}^{\text {even }}$ is the evennumbered left singular function v_{m}.

By a similar argument, $v_{j}^{\text {odd }}$ is an odd-numbered left singular function. In other words, the sequence of functions $v_{j}^{e v e n}$ is the sequence of even-numbered left singular functions v_{n} and the sequence of functions $v_{j}^{\text {odd }}$ is the sequence of odd-numbered left singular functions v_{n}. Based on these facts, it is a matter of simple bookkeeping to obtain (3.65) using observation 3.26.

3.5.4 Additional properties of v_{n} in the case of the standard form of the truncated Laplace transform

η_{0}^{n} and η_{1}^{n}, the first two coefficients in the expansion 3.50 of v_{n}, are related to $U_{n}(0)$ (the function defined in (3.20), at the $s=0$) and to the value of the derivative $U_{n}^{\prime}(0)$.

Lemma 3.31. Let u_{n} and v_{n} be the $n+1$-th right and left singular function of \mathcal{L}_{γ} (defined in (3.5)). Let η_{0}^{n} and η_{1}^{n} be the first and second coefficients in the expansion defined in (3.50), of v_{n} in the basis of Laguerre functions Φ_{k} (the functions defined in 2.47)). Let U_{n} be $C_{\gamma} u_{n}$, as defined in (3.20). Then:

$$
\begin{equation*}
U_{n}(0)=\alpha_{n}^{-1} \eta_{0}^{n} / 2, \tag{3.68}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{n}^{\prime}(0)=\alpha_{n}^{-1} \eta_{1}^{n} \log (\gamma) / 4 \tag{3.69}
\end{equation*}
$$

Proof. By (3.50) and (2.67),

$$
\begin{equation*}
u_{n}=\alpha_{n}^{-1} \sum_{k=0}^{\infty} \eta_{k}^{n}\left(\mathcal{L}_{\gamma}\right)^{*}\left(\Phi_{k}\right) . \tag{3.70}
\end{equation*}
$$

We apply the operator C_{γ} (defined in (3.12)) to (3.70), and use (3.20) to obtain

$$
\begin{equation*}
U_{n}(s)=\alpha_{n}^{-1} \sum_{k=0}^{\infty} \eta_{k}^{n}\left(\left(C_{\gamma} \circ\left(\mathcal{L}_{\gamma}\right)^{*}\right)\left(\Phi_{k}\right)\right)(s) . \tag{3.71}
\end{equation*}
$$

In particular, at the point $s=0$,

$$
\begin{equation*}
U_{n}(0)=\alpha_{n}^{-1} \sum_{k=0}^{\infty} \eta_{k}^{n}\left(\left(C_{\gamma} \circ\left(\mathcal{L}_{\gamma}\right)^{*}\right)\left(\Phi_{k}\right)\right)(0) \tag{3.72}
\end{equation*}
$$

We then use (3.18) to obtain (3.68).
We differentiate (3.71) and set $s=0$;

$$
\begin{equation*}
U_{n}^{\prime}(0)=\alpha_{n}^{-1} \sum_{k=0}^{\infty} \eta_{k}^{n}\left(\left(C_{\gamma} \circ\left(\mathcal{L}_{\gamma}\right)^{*}\right)\left(\Phi_{k}\right)\right)^{\prime}(0) . \tag{3.73}
\end{equation*}
$$

We use (3.19) to obtain (3.69).

Remark 3.32. Similar relations for the value of the right singular function $u_{n}(1 / 2)$ of \mathcal{L}_{γ} 3.5 at $t=1 / 2$ and for the derivative $u_{n}^{\prime}(1 / 2)$ are easy to obtain from lemma 3.31 or by a similar construction.

Remark 3.33. In the other spacial cases of $\mathcal{L}_{a, b}$, where $a=1 / 2$ or $b=1 / 2$, similar relations exist between the value of the function u_{n} at the ends of the interval $[a, b]$ and the first
coefficients in the expansion.

3.5.5 Decay of the coefficients in the expansion of v_{n} in the basis of Φ_{k}

The left singular functions v_{n} are smooth functions, and they are therefore efficiently expressed using Laguerre functions Φ_{k} (the functions defined in (2.47)). In other words, we expect the coefficients in the expansion (3.50) to decay rapidly. In this section we derive a bound for the rate of decay of these coefficients.

Lemma 3.34. Given an arbitrary choice of $0<a<b<\infty$, we consider the SVD of the operator $\mathcal{L}_{a, b}$ (defined in 2.61). Let η_{k}^{n} be the $k+1$-th coefficient in the expansion of the $n+1$ th left singular function v_{n} in the basis of Laguerre functions (the functions Φ_{k}, defined in (2.47).

We define $\gamma=b / a$ and introduce the notation

$$
\begin{equation*}
s_{\max }=\max \left(\left|2 \frac{\log 2 a}{\log \gamma}\right|,\left|2 \frac{\log 2 b}{\log \gamma}\right|\right) . \tag{3.74}
\end{equation*}
$$

Then,

$$
\begin{equation*}
s_{\max } \geq 1 \tag{3.75}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\eta_{k}^{n}\right| \leq \alpha_{n}^{-1} \sqrt{\frac{2}{\log \gamma}}\left|\frac{\gamma_{\max }^{s_{\max } / 2}-1}{\gamma^{s_{\max } / 2}+1}\right|^{k} \tag{3.76}
\end{equation*}
$$

In particular, in the case $\mathcal{L}_{\gamma}=\mathcal{L}_{\frac{1}{2 \sqrt{\gamma}}}, \frac{\sqrt{\gamma}}{2}$ (as defined in (3.5),

$$
\begin{equation*}
\left|\eta_{k}^{n}\right| \leq \alpha_{n}^{-1} \sqrt{\frac{2}{\log \gamma}}\left|1-\frac{2}{1+\sqrt{\gamma}}\right|^{k} \tag{3.77}
\end{equation*}
$$

Proof. By (3.55) and (2.66),

$$
\begin{equation*}
\eta_{k}^{n}=\alpha_{n}^{-1} \int_{0}^{\infty}\left(\int_{a}^{b} e^{-\omega t} u_{n}(t) \mathrm{d} t\right) \Phi_{k}(\omega) \mathrm{d} \omega \tag{3.78}
\end{equation*}
$$

Changing the order of integration and using 2.62,

$$
\begin{equation*}
\eta_{k}^{n}=\alpha_{n}^{-1} \int_{a}^{b} u_{n}(t)\left(\left(\mathcal{L}_{a, b}\right)^{*}\left(\Phi_{k}\right)\right)(t) \mathrm{d} t . \tag{3.79}
\end{equation*}
$$

A simple calculation using (3.11), (3.12) and (3.20) shows that

$$
\begin{equation*}
\eta_{k}^{n}=\alpha_{n}^{-1} \int_{2 \frac{\log 2 a}{\log \gamma}}^{2 \frac{\log 2 b}{\log \gamma}} U_{n}(s)\left(\left(C_{\gamma} \circ\left(\mathcal{L}_{a, b}\right)^{*}\right)\left(\Phi_{k}\right)\right)(s) \mathrm{d} s . \tag{3.80}
\end{equation*}
$$

By the Cauchy-Schwarz inequality,

$$
\begin{equation*}
\left|\eta_{k}^{n}\right| \leq \alpha_{n}^{-1} \sqrt{\int_{2 \frac{\log 2 a}{2} \frac{\log 2 b}{\log \gamma}}^{\log \gamma}}\left(U_{n}(s)\right)^{2} \mathrm{~d} s \sqrt{\int_{2 \frac{\log 2 a}{2 \frac{\log 2 b}{\log \gamma}}}^{\log \gamma}}\left(\left(C_{\gamma} \circ\left(\mathcal{L}_{a, b}\right)^{*}\right)\left(\Phi_{k}\right)\right)^{2}(s) \mathrm{d} s, \tag{3.81}
\end{equation*}
$$

and by (3.21),

$$
\begin{equation*}
\left|\eta_{k}^{n}\right| \leq \alpha_{n}^{-1} \frac{2}{\sqrt{\log \gamma}} \sqrt{\int_{2 \frac{\log 2 a}{\log \gamma}}^{2 \frac{\log 2 b}{\log \gamma}}\left(\left(C_{\gamma} \circ\left(\mathcal{L}_{a, b}\right)^{*}\right)\left(\Phi_{k}\right)\right)^{2}(s) \mathrm{d} s} . \tag{3.82}
\end{equation*}
$$

We observe that $s_{\text {max }}$ is the supremum of $|s|$, where $s \in\left(2 \frac{\log 2 a}{\log \gamma}, 2 \frac{\log 2 b}{\log \gamma}\right)$. In other words, $s_{\max }$ is the largest magnitude of the variable s in the integration (3.82). It is easy to observe that $s_{\text {max }}$ is no smaller than 1 . By (3.16),

$$
\begin{equation*}
\left|\left(\left(C_{\gamma} \circ\left(\left(\mathcal{L}_{a, b}\right)^{*}\right)\left(\Phi_{k}\right)\right)\right)(s)\right| \leq \frac{1}{2}\left|\frac{\gamma^{s_{\max } / 2}-1}{\gamma^{s_{\max } / 2}+1}\right|^{k} . \tag{3.83}
\end{equation*}
$$

For a given ratio $\gamma=b / a$, it is easy to observe that the length of the interval $\left(2 \frac{\log 2 a}{\log \gamma}, 2 \frac{\log 2 b}{\log \gamma}\right)$
in the integral (3.82) is 2. So, by (3.82) and (3.83),

$$
\begin{equation*}
\left|\eta_{k}^{n}\right| \leq \alpha_{n}^{-1} \frac{\sqrt{2}}{\sqrt{\log \gamma}}\left|\frac{\gamma^{s_{\max } / 2}-1}{\gamma^{s_{\max } / 2}+1}\right|^{k} \tag{3.84}
\end{equation*}
$$

In the case of the standard form of the truncated Laplace transform \mathcal{L}_{γ}, where $a=\frac{1}{2 \sqrt{\gamma}}, b=$ $\frac{\sqrt{\gamma}}{2}$, this interval becomes $(-1,1)$, and $s_{\max }=1$. So, for the standard form of the truncated Laplace transform,

$$
\begin{equation*}
\left|\eta_{k}^{n}\right| \leq \alpha_{n}^{-1} \frac{\sqrt{2}}{\sqrt{\log \gamma}}\left|\frac{\gamma^{1 / 2}-1}{\gamma^{1 / 2}+1}\right|^{k}=\alpha_{n}^{-1} \frac{\sqrt{2}}{\sqrt{\log \gamma}}\left|1-\frac{2}{1+\sqrt{\gamma}}\right|^{k} \tag{3.85}
\end{equation*}
$$

Observation 3.35. Let \tilde{v}_{n} be the $n+1$-th left singular function of $\mathcal{L}_{a, b}$ (defined in 2.61). Let v_{n} be the $n+1$-th left singular function of \mathcal{L}_{γ} (the operator in the standard form, as defined in (3.5)), where $b / a=\gamma$. Let the vectors η^{n} and $\tilde{\eta}^{n}$ represent the expansions, defined in 3.50, of v_{n} and \tilde{v}_{n}.

In the case of \mathcal{L}_{γ}, we have $s_{\max }=1$, and it is easy to observe that the bound 3.77 for $\left|\eta_{k}^{n}\right|$ decays faster than the bound (3.76) for the general $\left|\tilde{\eta}_{k}^{n}\right|$.

3.6 A remark about the limit $\gamma \rightarrow 1$

Throughout this dissertation we have assumed that the parameter $\gamma=b / a$ in 3.5 is strictly larger than 0 . In this section, we describe some properties of the differential operator \hat{D}_{ω} (defined in (2.82)) and its eigenfunctions v_{n} at the limit $\gamma \rightarrow 1$. Other aspects of this limit are discussed in [6].

By substituting $b=a$ into (2.82),

$$
\begin{equation*}
\left(\hat{D}_{\omega}(f)\right)(\omega)=-\frac{\mathrm{d}^{2}}{\mathrm{~d} \omega^{2}} \omega^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} \omega^{2}} f(\omega)+2 a^{2} \frac{\mathrm{~d}}{\mathrm{~d} \omega} \omega^{2} \frac{\mathrm{~d}}{\mathrm{~d} \omega} f(\omega)+\left(-a^{4} \omega^{2}+2 a^{2}\right) f(\omega) \tag{3.86}
\end{equation*}
$$

In particular, substituting $a=b=1 / 2$ into 2.82 yields

$$
\begin{equation*}
\left(\hat{D}_{\omega}(f)\right)(\omega)=-\frac{\mathrm{d}^{2}}{\mathrm{~d} \omega^{2}} \omega^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} \omega^{2}} f(\omega)+\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} \omega} \omega^{2} \frac{\mathrm{~d}}{\mathrm{~d} \omega} f(\omega)+\left(-\frac{1}{16} \omega^{2}+\frac{1}{2}\right) f(\omega) \tag{3.87}
\end{equation*}
$$

Theorem 3.22 provides a relation between the operator \hat{D}_{ω} and the matrix $\hat{M}($ see 3.52$)$. By substituting $a=b=1 / 2$ into 3.52 , we obtain a diagonal matrix:

$$
\begin{equation*}
\hat{M}_{k, k}=-k(k+1) \tag{3.88}
\end{equation*}
$$

Clearly, the eigenvalues of this matrix are

$$
\begin{equation*}
\chi^{*}=-k(k+1) \tag{3.89}
\end{equation*}
$$

and the eigenvectors are simply $(0, . .0,1,0, \ldots)^{\top}$. By theorem 3.22 , this means that for $\gamma=1$, the $n+1$-th eigenfunction v_{n} of the differential operator \hat{D}_{ω}, is the Laguerre function Φ_{n} (the function defined in 2.47), and the $n+1$-th eigenvalue of \hat{D}_{ω} is $\chi_{n}^{*}=-n(n+1)$. In other
words, the Laguerre function Φ_{n} is the solution of the differential equation

$$
\begin{equation*}
-\frac{\mathrm{d}^{2}}{\mathrm{~d} \omega^{2}} \omega^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} \omega^{2}} \Phi_{n}+\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} \omega} \omega^{2} \frac{\mathrm{~d}}{\mathrm{~d} \omega} \Phi_{n}+\left(-\frac{1}{16} \omega^{2}+\frac{1}{2}+n(n+1)\right) \Phi_{n}=0 . \tag{3.90}
\end{equation*}
$$

3.7 A relation between the $n+1$-th and $m+1$-th singular functions, and the ratio α_{n} / α_{m}

Lemma 3.36. Let u_{n} and u_{m} be right singular functions, and let α_{n} and α_{m} be the corresponding singular values of $\mathcal{L}_{a, b}$ (defined in 2.61). Let ψ_{n} and ψ_{m} be the corresponding functions defined in (2.75). Then:

$$
\begin{equation*}
\frac{\alpha_{m}^{2}}{\alpha_{n}^{2}}=\frac{\int_{0}^{1} \psi_{n}^{\prime}(x) \psi_{m}(x) \mathrm{d} x}{\int_{0}^{1} \psi_{n}(x) \psi_{m}^{\prime}(x) \mathrm{d} x} \tag{3.91}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\alpha_{m}^{2}}{\alpha_{n}^{2}}=\frac{\int_{a}^{b} u_{n}^{\prime}(t) u_{m}(t) \mathrm{d} t}{\int_{a}^{b} u_{m}^{\prime}(t) u_{n}(t) \mathrm{d} t} \tag{3.92}
\end{equation*}
$$

if the integrals are not 0 .

Proof. We recall from (2.67) that

$$
\begin{equation*}
u_{n}(t)=\frac{1}{\alpha_{n}}\left(\mathcal{L}^{*}\left(v_{n}\right)\right)(t)=\frac{1}{\alpha_{n}} \int_{0}^{\infty} e^{-\omega t} v_{n}(\omega) \mathrm{d} \omega . \tag{3.93}
\end{equation*}
$$

Therefore, the derivative of $u_{n}(t)$ is

$$
\begin{equation*}
u_{n}^{\prime}(t)=\frac{1}{\alpha_{n}} \int_{0}^{\infty}(-\omega) e^{-\omega t} v_{n}(\omega) \mathrm{d} \omega . \tag{3.94}
\end{equation*}
$$

We multiply both sides of the expression by $u_{m}(t)$, integrate both sides, and change the order
of integration:

$$
\begin{equation*}
\int_{a}^{b} u_{n}^{\prime}(t) u_{m}(t) \mathrm{d} t=\frac{1}{\alpha_{n}} \int_{a}^{b}\left(\int_{0}^{\infty}(-\omega) e^{-\omega t} v_{n}(\omega) \mathrm{d} \omega\right) u_{m}(t) \mathrm{d} t \tag{3.95}
\end{equation*}
$$

By rearranging the result, we obtain

$$
\begin{equation*}
\int_{a}^{b} u_{n}^{\prime}(t) u_{m}(t) \mathrm{d} t=\frac{\alpha_{m}}{\alpha_{n}} \int_{0}^{\infty}(-\omega) v_{n}(\omega) v_{m}(\omega) \mathrm{d} \omega \tag{3.96}
\end{equation*}
$$

m and n are clearly interchangeable, so that

$$
\begin{equation*}
\int_{0}^{\infty}(-\omega) v_{n}(\omega) v_{m}(\omega) \mathrm{d} \omega=\frac{\alpha_{m}}{\alpha_{n}} \int_{a}^{b} u_{m}^{\prime}(t) u_{n}(t) \mathrm{d} t \tag{3.97}
\end{equation*}
$$

By substituting (3.97) into (3.96), we obtain (3.92). The identity (2.75) is used to obtain (3.91).

A similar relation exists for the left singular functions and their derivatives:

Lemma 3.37. Let v_{n} and v_{m} be left singular functions and let α_{n} and α_{m} be the corresponding singular values. Then:

$$
\begin{equation*}
\frac{\alpha_{m}^{2}}{\alpha_{n}^{2}}=\frac{\int_{0}^{\infty} v_{n}^{\prime}(\omega) v_{m}(\omega) \mathrm{d} \omega}{\int_{0}^{\infty} v_{n}(\omega) v_{m}^{\prime}(\omega) \mathrm{d} \omega} \tag{3.98}
\end{equation*}
$$

if the integrals are not equal to 0.

The proof is similar to the proof of lemma 3.36 .

3.8 A relation between $v_{n}(0), h_{0}^{n}$ and the singular value α_{n}

The following lemma provides the relation between h_{0}^{n} (the first coefficient in the expansion (3.33) of $\left.u_{n}\right), v_{n}(0)$, and the corresponding singular value α_{n}.

Lemma 3.38. Let $v_{n}(\omega)$ be a left singular functions of \mathcal{L}_{γ} (the operator defined in (3.5)). Let u_{k} be the corresponding right singular function, and let α_{n} be the corresponding singular value. Let ψ_{n} be as defined in (2.75) and let h^{n} be the vector of coefficients defined in 3.33). Then,

$$
\begin{equation*}
\alpha_{n}=\sqrt{\frac{\gamma-1}{2 \sqrt{\gamma}}} \frac{h_{0}^{n}}{v_{n}(0)} \tag{3.99}
\end{equation*}
$$

Proof. By the definition of the SVD (2.66),

$$
\begin{equation*}
\left(\mathcal{L}\left(u_{n}\right)\right)(\omega)=\alpha_{n} v_{n}(\omega) . \tag{3.100}
\end{equation*}
$$

In particular, at $\omega=0$:

$$
\begin{equation*}
\alpha_{n} v_{n}(0)=\left(\mathcal{L}\left(u_{n}\right)\right)(0)=\int_{a}^{b} u_{n}(t) \mathrm{d} t \tag{3.101}
\end{equation*}
$$

Using the change of variables (2.74), and substituting (2.79) into the last expression, we obtain:

$$
\begin{equation*}
\alpha_{n} v_{n}(0)=(b-a) \int_{0}^{1} u_{n}(a+(b-a) x) \mathrm{d} x=\sqrt{(b-a)} \int_{0}^{1} \psi_{n}(x) \mathrm{d} x \tag{3.102}
\end{equation*}
$$

Expressing ψ_{n} using the expansion defined in (3.33):

$$
\begin{equation*}
\alpha_{n} v_{n}(0)=\sqrt{(b-a)} \int_{0}^{1}\left(\sum_{m=0}^{\infty} h_{m}^{n} \overline{P_{m}^{*}}(x)\right) \mathrm{d} x \tag{3.103}
\end{equation*}
$$

By (2.17), $\overline{P_{0}^{*}}(x) \equiv 1$, and since all the other polynomials $\overline{P_{k}^{*}}$ are orthogonal to it,

$$
\begin{equation*}
\alpha_{n} v_{n}(0)=\sqrt{(b-a)} h_{0}^{n} \tag{3.104}
\end{equation*}
$$

Substituting the values of a and b, defined in (3.3) into (3.104), we obtain (3.99).

3.9 A closed form approximation of the eigenvalues $\tilde{\chi}_{n}, \chi_{n}^{*}, \chi_{n}$ and singular values α_{n}

The eigenvalues of differential operators \tilde{D}_{t}, D_{x} and \hat{D}, as the operators are defined in 2.72, (2.80) and (2.82), and as they appear in equations (2.73), (2.81) and (2.83), have closed form asymptotic expressions; in the case of the standard form \mathcal{L}_{γ} (the operator defined in (3.5)), the eigenvalues of the differential operators are:

$$
\begin{equation*}
\chi_{n} \frac{4 \gamma}{(\gamma-1)^{2}}=\tilde{\chi}_{n}=\chi_{n}^{*}=-\frac{2 \gamma^{2}+4 \gamma+\frac{\pi^{2}(\gamma+1)^{2}\left(n+\frac{1}{2}\right)^{2}}{K\left(\frac{(\gamma-1)^{2}}{(\gamma+1)^{2}}\right)^{2}}-6}{16 \gamma}\left(1+O\left(n^{-2}\right)\right) \tag{3.105}
\end{equation*}
$$

where $K(m)$ is the complete elliptic integral of the first kind (as defined in 2.49) . These eigenvalues are negative and roughly proportional to $-n(n+1)$. The proof for this asymptotic expression is involved, and it will be provided at a later date.

The singular values α_{n} also have a closed form asymptotic expression; in the case of the standard form \mathcal{L}_{γ}, the singular values are:

$$
\begin{equation*}
\alpha_{n}=\sqrt{2 \pi} \exp \left(-\frac{\sqrt{3-\gamma\left(\gamma+8 \chi_{n}^{*}+2\right)} K\left(\frac{4 \gamma}{(\gamma+1)^{2}}\right)}{\sqrt{2}(\gamma+1)}\right)\left(1+O\left(n^{-1}\right)\right) \tag{3.106}
\end{equation*}
$$

where $K(m)$ is the complete elliptic integral of the first kind (as defined in (2.49). The proof for this asymptotic expression is involved, and it will be provided at a later date.

Chapter 4

Algorithms

4.1 Evaluation of the right singular functions u_{n}

In this section we introduce an algorithm for the numerical evaluation of $u_{n}(t)$, the $n+1$-th right singular function of \mathcal{L}_{γ} (the operator defined in (3.5).

We recall that $u_{n}(t)$ can be easily calculated from the function $\psi_{n}(x)$ using 2.75. We also recall that $\psi_{n}(x)$ is efficiently represented in the basis of $\overline{P *}_{k}$ (the polynomials defined in (2.16) and that the expansion of $\psi_{n}(x)$ in ${\overline{P^{*}}}_{k}$ is related to the $n+1$-th eigenvector of the 5 -diagonal matrix specified in theorem 3.16 .

The algorithm for obtaining the right singular function $u_{n}(t)$ is therefore:

- Compute h^{n}, the $n+1$-th eigenvector of the matrix M, defined in (3.35).
- Compute the function $\psi_{n}(x)$ from h^{n}, using the expansion specified in (3.33).
- Obtain $u_{n}(t)$ from $\psi_{n}(x)$ using 2.75.

The calculation of the eigenvalues and eigenvectors is done using the Sturm sequence method and the inverse power method, as described in section 2.6.

4.2 Evaluation of the left singular functions v_{n}

In this section we introduce an algorithm for the numerical evaluation of v_{n}, the left singular functions of \mathcal{L}_{γ} (the operator defined in (3.5).

We recall that $v_{n}(\omega)$, is efficiently expressed in the basis of Laguerre functions as specified in 3.50. We recall that the coefficients of even-numbered left singular functions of \mathcal{L}_{γ} are given by the eigenvectors of the matrix $\hat{M}^{\text {even }}$, specified in 3.61). Therefore, the algorithm for computing an even-numbered left singular function v_{n} where $n=2 j$ is:

- Compute $\eta^{\text {even }, j}$, the $j+1$-th eigenvector of the matrix $\hat{M}^{\text {even }}$ specified in 3.59 .
- Compute the function $v_{j}^{\text {even }}(\omega)$ from $\eta^{\text {even, } j}$, using the expansion specified in 3.63.
- By (3.65), $v_{n}(\omega)=v_{j}^{\text {even }}(\omega)$.

Similarly, the algorithm for computing an odd-numbered left singular function v_{n} where $n=$ $2 j+1$ is:

- Compute $\eta^{o d d, j}$, the $j+1$-th eigenvector of the matrix $\hat{M}^{\text {odd }}$ specified in 3.60.
- Compute the function $v_{j}^{\text {odd }}(\omega)$ from $\eta^{o d d, j}$, using the expansion specified in 3.64.
- By 3.65, $v_{n}(\omega)=v_{j}^{\text {odd }}(\omega)$.

The calculation of the eigenvalues and eigenvectors is done using the Sturm sequence method and the inverse power method, as described in section 2.6 .

Remark 4.1. Clearly, the left singular functions of $\mathcal{L}_{a, b}$ (the operator defined in (2.61) can be computed directly, using the matrix \hat{M} described in theorem 3.22 .

4.3 Evaluation of the singular values α_{n}

In this section, we introduce two algorithms for computing the singular value α_{n} of \mathcal{L}_{γ} (the operator defined in (3.5).

4.3.1 Calculating the singular value α_{n} from α_{m}, via lemma 3.36 or lemma 3.37

Lemma 3.36 provides a way to calculate α_{n+1} from a known α_{n} using the right singular functions. Suppose that we have the first singular value α_{0}. Then, we calculate the functions ψ_{0} and ψ_{1} (the functions as defined in (2.75) and use (3.91) to calculate α_{1} from α_{0}. To obtain the other singular values, we calculate every α_{n+1} from the previous α_{n}, using ψ_{n+1} and ψ_{n}.

There are several obvious methods for evaluating α_{0} via numerical integration; for example:

$$
\begin{equation*}
\alpha_{0}=\sqrt{\frac{\left(\left(\mathcal{L}^{*} \circ \mathcal{L}\right)\left(u_{0}\right)\right)(t)}{u_{0}(t)}} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{0}=\frac{\left(\mathcal{L}\left(u_{0}\right)\right)(\omega)}{v_{0}(\omega)} \tag{4.2}
\end{equation*}
$$

We use the relation provided in lemma 3.38 to evaluate α_{0}; in section 4.3 .2 we use lemma 3.38 to calculate arbitrary α_{n} directly.

Remark 4.2. A similar algorithm, based on the left singular functions v_{n} rather than the right singular functions, is easy to construct using lemma 3.37 .

Remark 4.3. Clearly, if $\left(\left(\mathcal{L}^{*} \circ \mathcal{L}\right)\left(u_{n}\right)\right)(t)$ and $u_{n}(t)$ are available at sufficient precision, relations like (4.1) can be used to evaluate arbitrary singular values. However, in general, the condition number of the problem does not allow high precision calculation of small singular values using direct integration; and since α_{n} decays exponentially (see 3.106) , only very few singular values can be calculated by direct numerical integration. The method in section 4.3.2 provides an alternative way of evaluating the singular value α_{n}.

4.3.2 Calculating the singular value α_{n} via lemma (3.38)

Let $v_{n}(\omega)$ be the $n+1$-th left singular function of \mathcal{L}_{γ} (the operator defined in (3.5). Let α_{n} be the $n+1$-th singular value. Let h^{n} be the $n+1$-th eigenvector of the matrix M (the matrix defined in (3.35). By lemma 3.38 ,

$$
\begin{equation*}
\alpha_{n}=\sqrt{\frac{\gamma-1}{2 \sqrt{\gamma}}} \frac{h_{0}^{n}}{v_{n}(0)} \tag{4.3}
\end{equation*}
$$

The values of h_{0}^{n} and $v_{n}(0)$ are obtained through the evaluation of the right and left singular functions, as described in sections 4.1 and 4.2.

Remark 4.4. By (3.63), (3.64), (2.43) and (2.47), $v_{2 j}(0)$ is simply the sum of the entries in the eigenvector $\eta^{\text {even, } j}$ of $\hat{M}^{\text {even }}$ (the matrix defined in (3.59) and $v_{2 j+1}(0)$ is simply the sum of the entries in the eigenvector $\eta^{\text {odd }, j}$ of $\hat{M}^{\text {odd }}$ (the matrix defined in 3.60);

$$
\begin{align*}
& v_{2 j}(0)=\sum_{k=0}^{\infty} \eta_{k}^{\text {even }, j}, \tag{4.4}\\
& v_{2 j+1}(0)=\sum_{k=0}^{\infty} \eta_{k}^{\text {odd }, j} . \tag{4.5}
\end{align*}
$$

Remark 4.5. It has been shown in [14] that in some band matrices, such as the matrix M in (3.35), the first element of the vector h^{n} can be computed to relative precision, and not just to absolute precision. The analysis is somewhat involved, and it will be reported at a later date.

Chapter 5

Implementation and numerical

results

Algorithms for the evaluation of the right singular functions u_{n}, left singular functions v_{n} and singular values α_{n} of \mathcal{L}_{γ} were implemented in FORTRAN 77. In this section, we present examples of numerical experiments. The gfortran compiler, and double precision arithmetic were used in all the experiments, except for the last experiment, where the Fujitsu compiler and quadruple precision were used.

In figure 5.1 we present examples of right singular functions u_{n} and left singular functions v_{n} of \mathcal{L}_{γ} (the operator defined in (3.5)), with the parameter $\gamma=1.1$. The right singular functions are plotted on the interval $\left(\frac{1}{2 \sqrt{\gamma}}, \frac{\sqrt{\gamma}}{2}\right)$. The left singular functions are plotted on a subset of the interval $(0, \infty)$.

Figure 5.2 is the same as figure 5.1, but with the parameter $\gamma=10$. Figure 5.3 is the same as figure 5.1, with $\gamma=10^{5}$, and a different selection of n.

The singular values α_{n} of \mathcal{L}_{γ}, over a range of n and a range of γ, are presented in table 5.1 and figure 5.4 .

The eigenvalues χ^{*} of the differential operator \hat{D}_{ω} (as defined in 2.82) are presented in
table 5.2 and figure 5.5 .
In figure 5.6 we plot of $u_{n}(a)$; the right singular function of \mathcal{L}_{γ}, evaluated at the point $a=\frac{1}{2 \sqrt{\gamma}}$. In figure 5.7 we plot $v_{n}(0)$; the left singular function, evaluated at the point $\omega=0$. An analysis of the properties of u_{n} and v_{n} at these endpoints will be presented at a later date.

In table 5.3 we present several singular values smaller than 10^{-1000}.

Figure 5.1: Singular functions of \mathcal{L}_{γ}, where $\gamma=1.1$.

Figure 5.2: Singular functions of \mathcal{L}_{γ}, where $\gamma=10$.

Figure 5.3: Singular functions of \mathcal{L}_{γ}, where $\gamma=10^{5}$.

Figure 5.4: Singular values α_{n} of \mathcal{L}_{γ}.

Figure 5.5: The magnitude of the eigenvalues χ_{n}^{*} of the differential operator \hat{D}_{ω} (defined in (2.82).

Figure 5.6: $u_{n}(1 /(2 \sqrt{\gamma}))$. The right singular functions, evaluated at $t=a=1 /(2 \sqrt{\gamma})$.

Figure 5.7: $v_{n}(0)$. The left singular functions, evaluated at $\omega=0$.

 N.
 A.
 氙
 $\underset{\sim}{\circ}$ No

Table 5.2: Eigenvalues χ_{n}^{*} of the differential operator \hat{D}_{ω} (defined in 2.82

0	$-4.65907 E-02$	$-1.37081 E+00$	$-9.86948 E+00$	$-7.68147 E+02$	$-7.02559 E+04$	$-6.73781 E+06$	$-6.58542 E+08$
1	$-2.04886 E+00$	$-4.99310 E+00$	$-2.38874 E+01$	$-1.24392 E+03$	$-9.47054 E+04$	$-8.24168 E+06$	$-7.60836 E+08$
2	$-6.05341 E+00$	$-1.22170 E+01$	$-5.13245 E+01$	$-2.12394 E+03$	$-1.38128 E+05$	$-1.08500 E+07$	$-9.35829 E+08$
3	$-1.20602 E+01$	$-2.30561 E+01$	$-9.25437 E+01$	$-3.43924 E+03$	$-2.02129 E+05$	$-1.46429 E+07$	$-1.18769 E+09$
4	$-2.00693 E+01$	$-3.75087 E+01$	$-1.47522 E+02$	$-5.19520 E+03$	$-2.87361 E+05$	$-1.96677 E+07$	$-1.51947 E+09$
10	$-1.10172 E+02$	$-2.00102 E+02$	$-7.66098 E+02$	$-2.49694 E+04$	$-1.24793 E+06$	$-7.62302 E+07$	$-5.24213 E+09$
20	$-4.20524 E+02$	$-7.60147 E+02$	$-2.89677 E+03$	$-9.30877 E+04$	$-4.55775 E+06$	$-2.71192 E+08$	$-1.80759 E+10$
30	$-9.31103 E+02$	$-1.68151 E+03$	$-6.40208 E+03$	$-2.05154 E+05$	$-1.00030 E+07$	$-5.91946 E+08$	$-3.91911 E+10$
40	$-1.64191 E+03$	$-2.96419 E+03$	$-1.12820 E+04$	$-3.61167 E+05$	$-1.75837 E+07$	$-1.03849 E+09$	$-6.85869 E+10$
50	$-2.55294 E+03$	$-4.60820 E+03$	$-1.75366 E+04$	$-5.61128 E+05$	$-2.72998 E+07$	$-1.61081 E+09$	$-1.06263 E+11$
60	$-3.66420 E+03$	$-6.61352 E+03$	$-2.51658 E+04$	$-8.05036 E+05$	$-3.91512 E+07$	$-2.30893 E+09$	$-1.52220 E+11$
70	$-4.97569 E+03$	$-8.98016 E+03$	$-3.41696 E+04$	$-1.09289 E+06$	$-5.31381 E+07$	$-3.13283 E+09$	$-2.06458 E+11$
80		$-1.17081 E+04$	$-4.45480 E+04$	$-1.42470 E+06$	$-6.92604 E+07$	$-4.08252 E+09$	$-2.68976 E+11$
90		$-1.47974 E+04$	$-5.63011 E+04$	$-1.80045 E+06$	$-8.75181 E+07$	$-5.15799 E+09$	$-3.39774 E+11$
100		$-1.82480 E+04$	$-6.94288 E+04$	$-2.22014 E+06$	$-1.07911 E+08$	$-6.35925 E+09$	$-4.18853 E+11$
150		$-4.09208 E+04$	$-1.55687 E+05$	$-4.97785 E+06$	$-2.41908 E+08$	$-1.42523 E+10$	$-9.38456 E+11$
200		$-7.26265 E+04$	$-2.76311 E+05$	$-8.83424 E+06$	$-4.29289 E+08$	$-2.52901 E+10$	$-1.66507 E+12$
250		$-1.13365 E+05$	$-4.31300 E+05$	$-1.37893 E+07$	$-6.70055 E+08$	$-3.94725 E+10$	$-2.59870 E+12$
300			$-6.20655 E+05$	$-1.98431 E+07$	$-9.64207 E+08$	$-5.67996 E+10$	$-3.73934 E+12$
350			$-8.44376 E+05$	$-2.69955 E+07$	$-1.31174 E+09$	$-7.72713 E+10$	$-5.08700 E+12$
400			$-1.10246 E+06$	$-3.52467 E+07$	$-1.71266 E+09$	$-1.00888 E+11$	$-6.64167 E+12$
450				$-4.45965 E+07$	$-2.16697 E+09$	$-1.27649 E+11$	$-8.40335 E+12$
500				$-5.50450 E+07$	$-2.67466 E+09$	$-1.57554 E+11$	$-1.03720 E+13$
550				$-6.65922 E+07$	$-3.23574 E+09$	$-1.90605 E+11$	$-1.25478 E+13$
600				$-7.92381 E+07$	$-3.85020 E+09$	$-2.26800 E+11$	$-1.49305 E+13$
650				$-9.29826 E+07$	$-4.51805 E+09$	$-2.66139 E+11$	$-1.75202 E+13$
700				$-1.07826 E+08$	$-5.23928 E+09$	$-3.08624 E+11$	$-2.03170 E+13$
750					$-6.01390 E+09$	$-3.54253 E+11$	$-2.33207 E+13$
800					$-6.84190 E+09$	$-4.03026 E+11$	$-2.65315 E+13$
850					$-7.72328 E+09$	$-4.54945 E+11$	$-2.99493 E+13$
900					$-8.65806 E+09$	$-5.10008 E+11$	$-3.35741 E+13$
950					$-9.64621 E+09$	$-5.68215 E+11$	$-3.74059 E+13$
1000					$-1.06878 E+10$	$-6.29568 E+11$	$-4.14447 E+13$

Table 5.3: Examples of singular values α_{n} smaller than 10^{-1000}

γ	n	α_{n}
$1.1 E+0$	520	$8.70727 E-1002$
$1.0 E+1$	1721	$3.66934 E-1001$
$1.0 E+2$	2797	$5.29961 E-1001$
$1.0 E+3$	3872	$5.71146 E-1001$
$1.0 E+4$	4946	$9.44191 E-1001$
$1.0 E+5$	6021	$8.89748 E-1001$

Chapter 6

Conclusions and generalizations

In this dissertation we have introduced efficient algorithms for the evaluation of the singular functions and singular values of the truncated Laplace transform.

Among the obvious generalizations of this work, is the Laplace transform in higher dimensions. Another closely related object is the two-sided band-limited Laplace transform, $\tilde{\mathcal{L}}_{c}$; for a given $c \in \mathbb{C}$ and a function $f \in L^{2}(-1,1)$, the later is defined by the formula

$$
\begin{equation*}
\left(\tilde{\tilde{\mathcal{L}}}_{c}(f)\right)(\omega)=\int_{-1}^{1} e^{-c t \omega} f(t) \mathrm{d} t \tag{6.1}
\end{equation*}
$$

As we will report in more detail at a later date, much of the analysis of $\tilde{\mathcal{F}}_{c}$ (the operator defined in (1.3) has a natural extension to $\tilde{\tilde{\mathcal{L}}}_{c}$.

One of the results of this work will be the construction of interpolation formulas in the span of right or left singular functions, as well as associated quadrature formulas.

In a future paper we will discuss asymptotic properties of the truncated Laplace transform and of the associated differential operators, and the relations between all these operators.

Bibliography

[1] M. Bertero, P. Boccacci, and E. R. Pike, "On the recovery and resolution of exponential relaxation rates from experimental data: A singular-value analysis of the laplace transform inversion in the presence of noise," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 383, pp. 15-29, Sept. 1982.
[2] D. Slepian and H. Pollak, "Prolate spheroidal wave functions, fourier analysis, and uncertainty i," Bell Syst. Tech. J, Jan. 1961.
[3] H. Xiao, V. Rokhlin, and N. Yarvin, "Prolate spheroidal wavefunctions, quadrature and interpolation," Inverse Problems, vol. 17, pp. 805-838, Aug. 2001.
[4] A. Osipov, V. Rokhlin, and H. Xiao, Prolate spheroidal wave functions of order zero: mathematical tools for bandlimited approximation. New York: Springer, 2013.
[5] M. Bertero and F. A. Grunbaum, "Commuting differential operators for the finite laplace transform," Inverse Problems, vol. 1, pp. 181-192, Aug. 1985.
[6] M. Bertero, F. A. Grunbaum, and L. Rebolia, "Spectral properties of a differential operator related to the inversion of the finite laplace transform," Inverse Problems, vol. 2, pp. 131139, May 1986.
[7] A. Ben and T. Moumni, "On the spectrum of the finite laplace transform with some applications," Applicable Analysis and Discrete Mathematics, vol. 6, no. 2, pp. 304-316, 2012.
[8] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions: with formulas, graphs and mathematical tables. New York: National Bureau of Standards, 1966.
[9] I. S. Gradshtein, Table of integrals, series, and products. San Diego: Academic Press, 6th ed ed., 2000.
[10] N. Yarvin and V. Rokhlin, "Generalized gaussian quadratures and singular value decompositions of integral operators," SIAM Journal on Scientific Computing, vol. 20, pp. 699-718, Jan. 1998.
[11] J. H. Wilkinson, "Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection," Numerische Mathematik, vol. 4, pp. 362-367, Dec. 1962.
[12] J. R. Kuttler, "Upper and lower bounds for eigenvalues of torsion and bending problems by finite difference methods," Zeitschrift fr angewandte Mathematik und Physik ZAMP, vol. 21, pp. 326-342, May 1970.
[13] W. Barth, R. S. Martin, and J. H. Wilkinson, "Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection," Numerische Mathematik, vol. 9, pp. 386-393, Apr. 1967.
[14] A. Osipov, "Evaluation of small elements of the eigenvectors of certain symmetric tridiagonal matrices with high relative accuracy," arXiv, vol. 1208.4906, Aug. 2012.

[^0]: \dagger This author's research was supported in part by the ONR grants \#N00014-11-1-0718 and \#N00014-10-1-0570 and the NSF grant \#1309858.

