Abstract

In numerical continuation methods, one often encounters linear systems of the form:

I A b |
M= |
le! a1,
where A may be nearly singular but the vectors b and ¢ are such that M is nonsingular. If A is large
and sparse, use of iterative methods seems attractive. In this paper, a number of algorithms based
on the nonsymmetric conjugate gradient method are considered. - Estimates of eigenvalues of M
based on those of A are derived. A primary issue is the exploitation of special properties of A, e.g.
symmetry, in these algorithms. Often, a good preconditioning for A is available, and we show
various ways of exploiting it in the algorithms. Results of numerical experiments on a nonlinear
elliptic problem will be presented and some general conclusions concerning the relative performance

of these algorithms will be made.
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1. Introduction

In this paper, we shall be concerned with solving linear systems of the form :

>
>
o

I
I (1)
I

(2]
—
Q.

or
Mz=p

where the n by n matrix A is bordered by the vectors b and ¢ to form a larger system of dimension

(n+1) by (n+1).2 In particular, we are primarily interested in the use of conjugate gradient type

iterative methods for solving (1) which may be appropriate when the matrix A (and consequently M)

is large and sparse. We shall present algorithms for solving systems of this form and perform

numerical experiments to compare their relative efficiency.

Systems of this form arise in many applications. The matrix A often represents the regular
part of the problem, whereas the vectors b and ¢ represent either a constraint on the solution x or a
coupling among the variables x and y. An important class of application that we are primarily
interested in here is the class of path-following continuation methods for solving nonlinear
problems. These include continuation procedures for solving nonlinear eigenvalue problems of the
form G(u,\) = 0 where u represents the usual "solution” and X is a real parameter intrinsic to the
problem [7, 14, 20]. Usually, one is interested in tracing the solution curves [u(\),\]. However, due
to the fact that these solution curves may possess multiple solutions for a fixed value of A\ and the
existence of singular points (where the Jacobian G becomes singular) such as turning points and
b furcation points, it may not be best, or even possible, to parametrize the solution curves by the
naturally occuring parameter X\. Often it is better to paramterize these solution curves either by
another independent variable in u or by an arclength parameter. In these cases, the matrix A
represents the Jacobian G , the vector b represents G,, and the last equation in (1) represents the

" arclength constraint” on [u,\].

%In general, b and ¢ could be rectangular matrices although in this paper we shall only be concerned with the vector
case. All the algorithms presented can be easily generalized to the higher dimensional cases.



Another related application area is the class of homotopy continuation methods designed to
improve the global convergence of iterative algorithms (e.g. Newton’s method) for solving general
nonlinear systems and fixed-point problems [11]. In these homotopy techniques, one transforms a
nonlinear system F(x) = 0 by a homotopy into a larger system, for example, H(x,t) = (1-t)(x-x,) +
tF(x) = 0. Note that H(x,,0) = 0 and H(x,1) = F(x). Thus, one yan start from the known solution
X, at t = 0 and trace the solution curve of H(x,t) until the solution of H(x,t) = 0 at t = 1 is

- reached, which by construction is a solution of F(x) = 0.

The matrix M is partitioned in the way exhibited in (1) because in many applications, such as
the ones mentioned above, the matrix A possesses special structures which one would like to exploit.
Two structures that we would like to consider here are the sparseness and the symmetry of A, both
of which become critical in the use of sterative methods for solving (1). With many iterative
methods for solving large sparse linear systems, the symmetry of the coefficient matrix often plays a
critical role in both the efficiency and the convergence of the method [12]. For example, for
conjugate gradient type methods ( [6], [10]), efficient methods and rather complete theories exist for
symmetric problems, whereas the situation for nonsymmetric problems are not as well-understood.
In many applications, although A is symmetric, the vectors b and ¢ in (1) are unequal in general,
resulting in a matrix M that is nonsymmetric. An obvious approach for solving (1) is to apply a
nonsymmetric iterative method directly, without explicitly taking advantage of the symmetry of
A.In this paper, we shall also consider other algorithms for solving (1) which do exploit the
symmetry of A. However, all of these algorithms require solving two symmetric systems for each
system of the form (1). One of the main issues that we would like to address in this paper is the
obvious trade-offs among these approaches. Another related issue is the construction of effective
preconditioning techniques to be used with these algorithms, assuming that a preconditioning matrix

is available for the matrix A.

Another property of the matrix A that plays an important role in our discussion is its
tndefiniteness. In fact, in the path following applications mentioned above, A can actually become
singular near the singular points. However, the vectors b and ¢ are constructed so that the matrix
M remains nonsingular. Since the convergence of conjugate gradient type methods depends
critically on the distribution of the eigenvalues of the coefficient matrix, for example, positive

definiteness and the spread of the eigenvalues, it is important to understand the relationship of the



eigenvalues of M to those of A. In Section (2), we shall present some general results in this direction.

In Section (3), we shall present three algorithms for solving systems of the form (1), two of which

exploit the symmetry of A. Preconditioning techniques will be discussed in Section (4). Extensive

numerical experiments have been carried out on applying these algorithms to a pseudo-arclength

continuation procedure( [7, 14]) for tracing the solution curve of a two dimensional nonlinear elliptic

eigenvalue problem that possesses a turning point. The numerical results will be presented in Section

(5) and we attempt to draw some general conclusions from these results in Section (6).

2. Estimates of Eigenvalues for Bordered Matrices

In order to be able to interpret the behaviours of various iterative methods, we study in this

section the eigenvalues of matrices of the form :

=
1]

We assume that A is symmetric.

2.1. General Case

Let us start by block factoring the matrix (2) as follows

| A b | | I of | A b |
Moo= | = | [ [
| ¢' d | lq" 11 1o y |
with
q=A'1b

y=d-ch=d-bTA'1c

Let the eigenvalues of A be )‘i’ i=1,..n, where we assume a labelling in increasing order, i.e.

(2)

(3)

(4)

A SN S We will denote by p; the eigenvalues of M, and label them according to increasing

real parts.



Since A is symmetric we can write A = QTAQ, where Q is orthonormal and
A=diag(A,\,,..X ). We will denote by ~, (resp. §,) the i-th component of the vector QTh (resp. QTc).
From the above factorization applied to M-ul, we get for all p not in the spectrum of A:

B ’76.
Det(M-pl) = Det(A-pl).[d- p - )‘—” (5)
i1 =
1

From (5) we can easily show the following properties:

Proposition 1:
1) If 4,6, = 0, then X, is an eigenvalue of M.

2) If 46, and v, +16i +1 have the same sign, then there is an eigenvalue of M between A, and

A Y If '7n6n (resp. 79, ) is positive, then M has an eigenvalue larger than A (resp. less

than X )).

3) In particular if all 7;8;'s are positive, then all the eigenvalues of M are real and interlace

with those of A.

The assumption for the last property is in particular satisfied when c=b, i.e. when M is
symmetric, which gives the well known Cauchy interlace theorem for symmetric bordered matrices,

see e.g. [19],p.186.

2.2. Case when b or ¢ is an Eigenvector of A.

Next we consider the particular case, when either b or ¢ is an eigenvector of A. This situation
arises around singular points in continuation methods. If ¢ happens to be an eigenvector of A
associated with A, then all the Jj’s are zero, except for 6i. Likewise if b is an eigenvector of A
associated with X;, all of the '7j’s are zero except for 7~ Hence in either case, the first point of

Proposition 1 yields:
Proposition 2: Assume that b (resp. c) is an eigenvector of A associated with the

eigenvalue A and let v = ¢Tb. Then all eigenvalues of A, other than X, are eigenvalues of



M. Moreover M has two extra eigenvalues which are roots of the following equation in u:

(6)
p-A+d)p+dr-y=0.

2.3. Application to Pseudo Arclength Continuation for Nonlinear Elliptic

Eigenvalue Problems

The above corollary determines completely the spectrum of M in the situation when either b or
c is an eigenvector of A.In the context of pseudo arc-length continuation methods, the matrix A
becomes singular near the turning point and the vector ¢ approaches an eigenvector of A associated
with the eigenvalue zero (7, 14]. Moreover, the scalar d also goes to zero. Hence the result of
Proposition 2 applies. The spectrum of M consists of all the nonzero eigenvalues of A, plus the two
eigenvalues that are solutions of (6). Of particular interest in the use of iterative methods is the size
of these eigenvalues as compared to the nonzero eigenvalues of A, as the rate of convergence of most
iterative methods depends on the spread of the eigenvalues. For two dimensional elliptic problems
with a mesh spacing h, the last row of M is usually scaled in such a way that v = O(h"%), A, = O(1),
A, = O(h'z). Moreover, except for a small region next to a singular point, d = O(h'2). Thus, we
have d> >> 4 and d®> >> A;- Based on these estimates and equation (6), we can deduce the
behaviour of the two new eigenvalues as A; goes to zero, as illustrated in Figure (2-1). There are two
things worth noting in Figure 2-1. First, the extra eigenvalues are always in the range [O(1), O(h2)].
Thus they do not in general increase the spread of the spectrum of A. Second, the minimum absolute
value taken on by these two eigenvalues occur when )‘1 is near, but not at, zero. Although this
minimum value is O(1) with this particular scaling, its actual value can be quite smaller than Ay or
its value at the singular point, resulting in slower convergence for the iterative method. We note
that the actual values of the extra eigenvalues depend on the particular scaling used for the last row
of M, but the minimum value is independent of the row scaling used. For some iterative methods, it

pays to scale the last row by a sign change so that the extra eigenvalues are real.

3. Iterative Method:

We will be interested in several ways of applying Krylov subspace methods for solving system
(1).

A classical approach widely used in conjunction with direct methods is to work with A. Such a
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Figure 2-1: Behaviour of the Two Extra Eigenvalues as \—0

process, sometimes called block elimination, requires the solution of two systems with A and is

described in Section 3.1.

An interesting alternative to this approach is to work directly with M, which unlike A, is not

- singular near the singular point. Here only one system with M, has to be solved but the problem

becomes unsymmetric. This will be described in Section 3.2.

Somewhere in between these two approaches lies a whole class of methods in which one

attempts to split M into the sum of a symmetric matrix and a low rank matrix. These will be

descibed in Section 3.3.




3.1. Block-Elimination
One algorithm for solving linear systems of the form (1) that has been proven to be very useful

with direct methods is the following block-elimination algorithm :

Algorithm BE: [7, 14]

(1) Solve Av=b, (7

Aw="f. (8)
(2) Compute y=(g-clw)/(d-cTv). (9)
(3) Compute x=w-yv. (10)

With direct methods, the work consists mainly of one factorization of A and two backsolves
with the LU factors of A. Moreover, for problems with many right hand sides, the factorization need
only be computed once. Since the factorization usually costs much more than a backsolve, the cost of
Algorithm BE is approximately the same as that of factoring the matrix M directly, at least in the
general dense case. With iterative methods, however, the situation is rather different because two
linear systems of dimension n have to be solved for each system of the form (1). On the other hand,
Algorithm BE does exploit fully any special properties that may be possessed by A, for example,
symmetry or positive definiteness, which are important for the convergence of the iterative methods

but are usually not inherited by the matrix M.

In situations where A is nearly singular, the iterative methods may encounter some convergence
difficulties in solving (7), (8). In the path following applications mentioned in Section 1, this usually
does not present great difficulties for the purpose of tracing the solution curves, unless one is
actually interested in computing the singular points themselves accurately [1, 8, 17, 16]. For direct
methods, Algorithm BE can be modified through deflation techniques [5, 23] to deal with the near
singularity of A, while retaining most of its desirable properties with minimal overhead [4]. We are

currently investigating similar deflation techniques to be used with iterative methods.



3.2. Methods that work on M directly
Consider the linear system

Mz=p (11)
where M is unsymmetric. If z, is an initial approximation of z, and r, the corresponding residual
vector ry=b-Az), then one defines the j-th Krylov subspace Kj as the linear span of the finite
sequence 1o, Mr, ....Mj'lro. The Krylov subspace methods consist in finding an approximate solution
to (11) belonging to the affine subspace z; + Kj, such that the residual vector r; of z satisfies certain
Galerkin conditions. Among such methods let us mention the Orthomin(k) methods studied by
Vinsome [24], and by Eisenstat, Elman and Schlutz [9], the method of Axelsson [3], the ORTHODIR
and ORTHORES methods due to Jea and Young [13] and the Incomplete Orthogonalization Method
(IOM) described by Saad in [22]. Most of the above methods require that the symmetric part of A be
positive definite, in order that they do not break down.

In this paper we will use the IOM method a full description of which may be found in [22].

The main properties characterizing the method are the following:
Z; € 7y + {rg Mry, ... , M}, (12)

(ri,rj) =0, ;k<i<j, (13)
where z, and r, denote the iterate and the corresponding residual at the i-th iteration and k is an
integer parameter larger than 1. In other words the residual vector T is orthogonal to the previous k

residuals. Note that k vectors from the previous iterations have to be stored.

In the Krylov subspace methods, the only operations performed with M are operations of the
form y = Mz, i.e. matrix-vector multiplications. Such operations are easy to perform for bordered
matrices and cost at most 2n more multiplications than the corresponding operation with A. This

feature makes it possible to take full advantage of sparsity.

3.3. Symmetric splittings
Consider the matrix M in (1) If A is symmetric, then clearly M is a small rank perturbation of

a symmetric matrix, and one would like to take advantage of this fact. Let us split M as follows:



I Ib-cl
L+ 1 lel, (14)
I | 0|

We will denote by S, the first matrix on the right hand side of (14). Then writing the second

matrix of (14) as u vT, the solution of (1) can easily be obtained via the Sherman and Morrison

formula:
(S, +u vh)lp = Sl~l pt+o Sl'1 u (15)
with
VTSI’lp
0= —— .
1 +VTS'1111

To apply the above formula, one needs to solve two systems with S,, namely Sl’lp and Sl'lu.

Note however that unlike in the methods where M is used directly (Section 3.2), the systems are

symmetric.

Since the matrix S, is symmetric but not positive definite in general, we must resort to some
generalization of the conjugate gradient similar to the SYMMLQ algorithm for solving the systems
involving S, [18]. We have used a method based on the IOM algorithm which is equivalent to the
SYMMLQ algorithm, but slightly less expensive [22]

Note that there are other ways of splitting M. Here are two other possibilities:

M=S§,-v uT, with u and v defined earlier and

A b |

S, = | l (16)
| b' d |

and M = S, + (M - S;) where S, is
| A el

S, = | I an
| o' d |

with e = %(b+c).
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Only the splitting S, defined by (14) will be considered in this paper.

Although symmetry is an important factor in iterative methods, it is not clear a priori whether
solving two symmetric linear systems instead of one unsymmetric linear system of the same
dimension will be more costly. The main objective of the numerical experiments to be described in

Section(5) is to provide some empirical clarifications in this direction.

An interesting observation concerning the computational work of block eliminination and
symmetric splitting is that in both cases we have to solve two linear systems with matrices of
dimensions differing by one. Note also that S, is a low rank perturbation of A and therefore we may
expect the methods to converge in approximately the same number of steps. There is however a big
difference in the context of pseudo arc-length continuation methods, which is that A becomes nearly
singular near the singular point while S, is nonsingular by construction. Thus the symmetric

splitting algorithm seems to be more robust.

3.4. Conjugate Gradient Method on the Normal Equations
Another classical way of preserving symmetry, is via the normal equations
MIMz=MTp . (18)
The regular conjugate gradient algorithm can then be applied to (18) which is positive definite.
However, not only is the amount of work per step doubled but, as is well known, the condition

number of MTM is the square of that of M, thus rendering the method slowly convergent.

4. Preconditionings

The use of a good preconditioning is often essential for the successful application of Krylov
subspace based iterative methods. In this section, we shall discuss the use of preconditioning
techniques in the algorithms presented in Section 3. For this purpose, we shall assume that a good
preconditioning is available for the matrix A in the form of a matrix B such that B! ~ A’! and such
that the matrix-vector product B'lx is easy to compute. Since we wish to exploit the symmetry of A,
we shall also assume that B is symmetric, so that a symmetric method can be used with the

preconditioned systems in some of the methods.

The use of preconditioning in the block-elimination algorithm is straightforward, because the
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preconditioning B! can be applied directly to the systems with A as coefficient matrix. A possible
difficulty with this approach occurs when A is ¢ndefinite. The reason is that all of the symmetric
preconditioned conjugate gradient methods require a preconditioner that is symmetric and positive
definite [6], and therefore when A is indefinite, it may not be easy to find a positive definite
preconditioner B! that is "close” to Al in some sense. If A is not too indefinite, however, the
situation may not be too serious because one can use a shifted incomplete factorization of A to

obtain a reasonably good preconditioner [15].

For the other two algorithms presented in Section 3, the construction of a preconditioner is not
as straightforward. We shall only consider the more general unsymmetric case here (Section 3.2), as
the same techniques can be applied to the symmetric splittings as well. One way to obtain a
preconditioning for M based on one for A is to first express the exact inverse of M in terms of Al

and then replacing Al by Bl Thus, we have:

| A7N(I-bu") v |
M= | (19)
I UT _'y"l |
where
y=cTAlb-d,
u=Ale/y, (20)
v=Alb/y.

Replacing A”! by Bl in (19), one obtains the following preconditioner for M:

| B7N(I-bu) v |
Pp=1 2 (21)
| ! -4,
where the ” ” quantities are defined analogous to (20), but with A! replaced by B'l. We

assume here that y is nonzero.

The above preconditioning requires some preprocessing to compute the quantities y, u and v
and the matrix-vector product P,z requires a few more inner-products to compute than Blz. For

this reason, we shall also consider the following simpler preconditioning:
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N
Py =1 I (22)
| 0 1|
It is of interest to compare the two preconditionings P, and P,, assuming that we have the
same preconditioning B for A. Let E=I-AB! and consider first the "error” I-MP,, in the
preconditioning P,. We clearly have:
E -bl

|
I-MPy=| | (23)
|-¢TB! 1-d|

ForP, a similar, but somewhat more complicated computation, leads to the equality:

|ECT-bu") Iy~'Eb |
I-MP = |--mmmm-- |-==--- l (24

A comparision of (23) and (24) indicates that if E is small then the preconditioning P, will be
more accurate than P, in general. This is not surprising because of the way this preconditioning is
constructed. In general however the norm of E will not be small. The effect of a preconditioning P
of M is not to provide a small error E in the inverse but rather to transform the eigenvalues of P ‘IM
in such a way that most of them will be close to one. With this point of view the two
preconditionings P, and P, should not behave too differently as they only differ by a low rank

perturbation. This fact is confirmed by the numerical experiments.

5. Numerical experiments

When the preconditioning techniques presented in Section 4 are combined with the basic
algorithms of Section 3, a large number of methods result. In order to focus our discussions on a few
representative methods and to facilitate the presentation of numerical results, we shall limit our

attention to the combinations in Table 5-1.

The algorithms in Table 5-1 have been implemented in a path-following continuation program
package written by the authors for tracing solution curves of nonlinear eigenvalue problems. All our

numerical experiments have been performed in the context of applying this program package to solve
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Table 5-1: List of Algorithms

BE : Block-Elimination, symmetric Conjugate Gradient for A
M : Nonsymmetric Conjugate Gradient for M
SS : Symmetric splitting, symmetric Conjugate Gradient for A

NE : Normal equation on M, Symmetric Positive Definite Conjugate Gradient

PBE : Preconditioned BE, symmetric Conjugate Gradient for Bla
P1M : Nonsymmetric Conjugate Gradient for P M
P2M : Nonsymmetric Conjugate Gradient for P,M

P2SS : Preconditioned Symmetric Splitting, symmetric Conjugate Gradient for P,S;

the following model nonlinear elliptic eigenvalue problem :

G(u,A\) = Au+ X" =0, (25)
on [0,1] x [0,1] with zero Dirichlet boundary conditions. This problem is discretized by a standard
five-point finite difference formula on an uniform m by m grid, resulting in a system of nonlinear
equations of size n = (m—1)2. The solution curve for this problem has one simple turning point at
[\~8.808, u(0.5,0.5)~1.3] (for m = 20), where the Jacobian G is singular [7]. The matrix A = G
is symmetric, and sparse (banded and no more than 5 nonzeros per row). On the lower branch of the
solution curve A is megative definite, whereas on the upper branch, it is tndefinite, with one
eigenvalue being positive. For the preconditioner, we choose B = A, which is symmetric positive
definite. For the basic continuation procedure, we use the pseudo arclength parametrization of
Keller [7, 14], corresponding to using the unit tangent vector [:1,.)\] for the vector [c, d]. At each step
of the continuation procedure, a Newton iteration is used to bring a predicted solution to converge to
the solution curve. At each step of the Newton iteration, a linear system of the form (1) has to be

solved.

The iterative methods that we have used is the usual conjugate gradient method for symmetric

positive definite matrices, a method similar to SYMMLQ [22, 18] for symmetric indefinite problems,
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and the Incomplete Orthogonalization Method (IOM) for general nonsymmetric systems [22].

A form of truncated Newton method is used for the corrector: the conjugate gradient like inner
iteration is stopped when the norm of the residual has been reduced by a factor less than 1073, and
the Newton iteration is stopped when the norm of the residual for the nonlinear equations is less than
104, All computations were performed on a VAX-780 with mantissa of 24 bits, corresponding to a

relative machine precision of about 107

The experiments were carried out by starting at the trivial solution [0, 0] and tracing the
solution curve slightly past the turning point. For each of the methods listed in Table 5-1, we record
the total number of inner iterations used by the iterative method. We note that exactly the same
continuation steps are taken in the outer iteration independent of which iterative methods is used in
the inner Newton iteration. The continuation steps are illustrated in Fig. 5-1. They are
automatically chosen by an adaptive strategy analogous to those used in ODE solvers. The results
are tabulated in Table 5-2 for m = 10 and 20. Since the matrix M is qualitatively different around
the turning point (due to the fact that A is nearly singular), the number of iterations taken near the
turning point (denoted by (6,7) in the table) is presented separately from the part away from it
(denoted by (0,6) in the table).

All the methods encountered some convergence difficulties near the turning point. As
anticipated by the results in Section 2, this is directly due to the near-singularity of A. We have
tabulated in Table 5-3 some of the eigenvalues of the matrix M as the turning point is approached,
together with the estimated values for the two extra eigenvalues i, and p, as given by the solution
of (6). The eigenvalues of M are computed by a version of Arnoldi’s method [2, 21]. We note that
the estimates are rather accurate, especially around the singular point. For this particular problem,
the minimum absolute value for the extra eigenvalues is an order of magnitude smaller than A, and
their values at the singular point. We can also observe a correlation between the larger number of
iterations in Table 5-2 and the small value of the extra eigenvalue in Table 5-3. For direct methods
this is not as important since this effect manifests itself through the loss of a few digits, which

usually is not so drastic as to make the Newton process diverge.

Although we have presented the total number of inner iterations for each method in Table 5-2,

the work per iteration is different for each method. In Table 5-4, we tabulated the work per step

.
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X
u(0.5,0.5) | X
| X
1.0 + X
| X
| X
| X
| x
e Dt T A SR S
0 1 2 3 4 5 6 7

A

Value of A\ at each continuation step on the solution curve:

(0,8): (0.0, 1.0, 3.0, 5.0, 6.0, 6.47)

(6,7): (6.59, 6.80, 6.70, 6.47)

Figure 5-1: Continuation Steps

Table 5-2: Total number of Iterations

Fo—m e ———— o ———— Fom e —— +
| Method | m=10 | m= 20 ]
| 1(0,6) (6,7) | (0,6) (6,7) |
o o e ———— +
| BE | 305 465 | 633 1554 |
| M (k=9) | 206 328 | 623 2217 |
| SS | 350 533 | 737 1193 |
| NE | 433 1426 | large large |
| I I |
| PBE | 72 13 | 72 143 |
| PIM (k=9) | 48 88 | 48 134 |
| PIM (k=4) | 49 87 | 49 150 |
| P2M (k=9) | 48 87 | 48 90 |
| P2SS | 100 186 | 106 201 |
o —————— to—mm o +

and the storage requirement of each of the competing methods.
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Table 5-3: Eigenvalues of M

m=20
p, < . Sp < iy
tm—————— tomm——————— tm——————— tm——————— tm—————— o ———— +
D L Y T B P
tm—————— tmm——————— t—————— t——————— to————— o —— +
| 8.0 | -8179.0 | -16.0 | 399.0 | -45.5 | 400.0 |
| 6.0 | -3169.0 | -9.2 | 398.0 | -8.8 | 398.0 |
| 6.47 | -3166.0 | -6.5 | 395.0 | -6.1 | 395.0 |
| 6.73 | -8163.0 | -3.6 | 864.0 | -3.7 | 364.0 |
| 6.8 | -3162.0 | -2.2 | 811.0 | -2.2 | 311.0 |
| 6.77 | -3162.0 | -381.4 | 11.8 | -90.2 | 11.8 |
tm—————— tm———————— tm—————— o ——————— tm—————— t——————— +
- &=
“mXTTX L XmmXmme X—===> »
-3200 -20 0 400

* P, is not the second largest eigenvalue of M.
B, computed corresponds to X,.

Table 5-4: Work and Storage Per Iteration

tm—————— e tmmm————— +
| Method | Work | *Storagel|
| fm————— Fmm—————— o ———— e ————— +
| | Ax,Mx| Mult. | B! | Vector |
tmm—————— +—————= t——————— e tmm—————— +
| BE | 1 | 7n | 0 | 6n |
| M | 1 |@Bk+*2)n | 0 1(2k+2)n |
| SS | 1 | 7n | 0 | 6n |
| NE | 2 | 5n | 0 | 4n |
tm———————— tm———— tmm—————— tm————— tm——————— +
| PBE | 1 | 7n | 1 | 6n I
I PIM | 1 1@Bk+2n | 1 1(2k+2)n |
| P2M | 1 [(8k+2)n | 1 | (2k+2)n |
| P2sS | 1 | 7n | 1 | 6n |
e ———— e ———— pmm—————— tm————— fm——————— +

* Storage does not include A or B.
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6. Conclusion

In this section, we wish to to draw some conclusions based on the numerical results presented in

Section 5.

By comparing the performance of methods (BE) or (SS) versus method (M) tabulated in Table
5-2, we can observe the importance of symmetry in case no preconditioning is used. By comparing
the corresponding preconditioned methods (PBE) and (P1M, k=4), and their corresponding operation
counts in Table 5-4, we find that, when a preconditioning is available , it seems best to work directly
with an iterative nethod on the unsymmetric matrix M. Note that from Table 5-4, each step of
method (P1M) with k=4 is less expensive than with k=9, and is not much more expensive than each

step of method (PBE).

Also of importance is the observation that despite the fact that the matrices do not have
positive definite symmetric parts, a simple preconditioning based on the direct solver associated with
a shift of the matrix can be quite effective. Surprisingly the preconditioning continues to work
around the singular point for which the matrix is badly conditioned. The two preconditionings P,
and P, yield almost identical results, and this is not unexpected from the discussion of Section 4.

This may change if a better approximation of the inverse of A is available.

Finally we can assess the various methods tested as follows:
e Symmetry is not as important for well conditioned problems as for ill-conditioned ones. In
particular as shown in Table (5-2), the iterative methods that do not use preconditioning

are slow and sensitive to symmetry, especially near the singular point.
e Normal equations approach is to be avoided if unpreconditioned.
e Method (M) takes slightly fewer iterations than (BE) and (SS) except near singular points.
e Method (SS) is slighter superior to method (BE).

e Preconditioned Block Elimination (PBE) is slightly superior to Preconditioned Symmetric
Splitting (PSS).

o If a good preconditioning is available then the preconditioned unsymmetric conjugate
gradient method (P1M) gives the best results both in number of iterations and in

execution time.
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