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Abstract

Systems of linear algebraic equations must be solved at each integration step in all éom-
monly used methods for the numerical solution of systems of stiff IVPs for ODEs. Fre-
quently, a substantial portion of the total computational-work and storage required to solve
stiff IVPs is devoted to solving these linear algebraic systems, particularly if the systems are
large. Over the past decade, several efficient iterative methods have been developed to solve
large sparse (nonsymmetric) systems of linear algebraic equations. We study the use of a class
of these iterative methods in codes for stiff [VPs. Our theoretical estimates and preliminary
numerical results show that the use of iterative linear-equation solvers in stiff-CDE codes
improves the efficiency - in terms of both computational-work and storage - with which a

significant class of stiff [IVPs having large sparse Jacobians can be solved.




1. Intraductioa.

As Gear [35, 36] and many others have noted, a major open problems in scientific com-
puting is the efficient soluticn of large systems of stiff initial-vaiue problems (IVPs) for ordi-
nary differential equations (ODESs) of the form

Y@)=7@y() ¥ =ye (1)
These problems arise either directly in models of physical systems (such as chemical kinetics or
electrical networks) or indirectly as a step in the soluticn of another problem (such as the
application of the method-of-lines to a system of parabolic partial diffcrential equations [59]).
Consequently, the cfficient solution of large systems of stiff IVPs is of great practical impor-

tance.

Although several authors have investigated techniques for avciding implicitness in the
numerical solution of stiff [VPs, most workers in the field still agree with Stetter’s comment
[79] that “all reasonable methods for stiff systems of ODEs have to be implicit®, except, possi-
bly, for special classes of problems. That is, a system of lincar or nonlinear algebraic equa-
tions must be solved at. each step of the numerical integration. Moreover, it seems that §
Newton-like method must be used to solve the noalinear systems to aveid a severe restriction
on the stepsize. Consequently, large systems of linear equations must be solved in this case as

well.

As we explain in more detail in §4, frequently a substantial portion of the total
computational-work and storage required to solve large systems of stiff [VPs. is devoted to
solving systems of linear algebraic equations. Therefore, any improvement in the cfficiency
with which these lincar systems are solved will directly improve the performance of the
integrator. Fortunately, the linear algebraic systems that arise in large systems of stiff IVPs
are usually sparse and this property can be exploited to great advantage.

Over the past decade, several efficient iterative methods have been developed to solve
largé sparse systems of linear algebraic equations. The Krylov subspace methods, of which the

conjugate gradient method [43] is a well-know example, have proven to be particularly
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effective for solving the linear systems that arise in the numerical solution of elliptic and para-
bolic partial differential equations. (See, for example, [2, 10, 13, 14, 16, 17, 24, 42, 54, S5, 57,
60, 61, 68, 69, 70, 81, 83, 86] and the rcferences therein.) Therefore, it is natural to consider
the use of iterative linear-equation solvers in codes for large systems of stiff IVPs for ODEs.
Not only are iterative methods faster than direct solvers for many systems of linear algebraic
equations, but also they require significantly less storage than direct solvers in most cases. In
addition, the use of iterative methods will case some of the restrictions on the stepsize- and
order-sclection strategies used in stiff-ODE codes; we belicve that this may improve the

efficiency of these codes as well.

The outline of the remainder of this paper is as follows. In §2, we review the numerical
solution of the implicit formulas used in many of the most popular stiff-ODE ches, emphasiz-
ing the relationship between the user specified error tolerance for the IVP and the accuracy
“ with which the implicit formulas must be solved. We also show that a large class of stiff [VPs
have properties that make the associated systems of linear algebraic equations amgnable to
- solution by iterative methods. We then review the “inexact Newton methods” in which the
systems of linea; equations that arise in Newton’s method are solved approximately, rather
than exactly. Again, we emphasize the relationship between the accuracy with which the

implicit formulas and améi;ted linear algebraic systems must be solved.

In §3, we review iterative lincar-equation solvers with particular emphasis on two Krylov
subspace methods: the preconditioned conjugate residual method for symmetric positive-
definite systems and preconditioned Orthomin(k) for nonsymmetric positive-real systcms.l We
" also point out how these iterative linear-equation solvers can be used in a stiff-ODE code that
does not explicitly compute or store the Jacobian associated with the IVP, and, in particular,

how the lincar systems can be preconditioned in this case.

In §4, we develop theoretical estimates of the computational work and storage required

1 A real square matrix A is positive-real with respect to a real inner-product {*,') if and only if (x,Ax) > 0 for all
nonzero real vectors x. Typically, the usual Euclidean inner-product, (* y) = 3 x; ¥;, is used.
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to solve the spatially-discretized two- and three-dimensional Heat Equation using a stiff-ODE
solver that employs either direct of iterative linear-equation solvers. In §5, we present numer-
ical results for the solution of the spatially-discretized two- and three-dimensional Heat and
Convection-Diffusion Equations as well as the 30 Stiff Detest Problems [27, 29] using stiff-
ODE solvers based upon cither direct or iterative linear-equation solvers. Both the theoretical

and numerical results look quite promising.
Finally, in §6, we present our conclusions.

This paper complements the work of Miranker and Chern [64], Gear and Saad [37], and
Brown and Hindmarsh {3], who also studied the use of iterative linear-equation solvers in
stiff-ODE codes. We believe our development of the properties of the linear algebraic systems
that arise in stiff-ODE solvers that makes these lincar systems amenable to solution by itera-
tive linear-equation solvers is new, as is our analysis of the rclationship between the three
tolerances required in a stiff-ODE code employing an iterative linear-equation solver. In
addition, our theoretical estimates and numerical results extend the work of the authors refer-
enced above, and, in particular, show the importance of preconditioning in the solution of

some large systems of stiff IVPs.

Although their point-of-view is distinctly different, the predictor-corrector methods
developed and analyzed by van der Houwen and Sommeijer [51] are related to the stiff-ODE

methods discussed in this paper and those referenced in the preceding paragraph.

2. Implicit Formulas.

Many numerical methods have been developed during the past few decades for the solu-
tion of systems of stiff IVPs for ODEs, and this continues to be an active arca of research.
Most of these methods can be classified as being in one of three families: linear multistep
(multiderivative) methods, implicit Runge-Kutta methods, and extrapolation methods. Of
these, the linear multistep methods have so far proven to be the most successful [27, 29], with

the most widely used codes being DIFSUB (33, 34], GEAR [44], EPISODE {5], and LSODE
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[48], each of which is based upon the Backward Differentiation Formulas (BDFs) popularized
by Gear [34]. Therefore, in our discussion of implicit formulas below, we concentrate on the

BDFs, although much of what we say applies to stiff methods in general.

A k-step BDF for the solution of (1.1) can be written in the form
Yo SQact+ tt F QiYek + ByBaf (ta Ja)- (20.1)
Tables of coefficients for these formulas may be found in [34]. To advance the numerical
- solution from £,; t0 #, =41 + ks, (2.0.1) is solved for the approximation y, to y(z,) using
the previously computed approximations {y,—}. Because (20.1) is implicit in y,, an equation
of the form

F(a) =¥n = BaBuf (taya) +co =0 (202)
must be solved at each step of the integration, where ¢, contains the terms in (2.0.1) that do

not depend upon y,.

2.1. Accuracy Requirement for (2.0.2).

In general, (2.0.2) is nonlinear and cannot be solved exactly. Shampine [73, 74] discusses
accuracy requirements for this equation. He notes that most stiff-ODE codes attempt to com-
pute an approximate solution, j,, to (2.0.2) satisfying

. —5l s ey ToL, h @13)
where TOL is the user specified error tolerance for the IVP and ¢ is a positive constant (usu-
ally less than 1). Shampine [74] presents a convincing argument that, for a stiff-ODE solver, a
more appropriate criterion is to accept y, if

IFGII = cyTOL. (212)
Not only is this criterion more easily related to the accuracy requirement for the IVP, but also
it is simpler to implement. Furthermore, Shampine gives an intuitive argument that suggests
that, for most stiff problems,

b'u -y.u" s ll’()".)ﬂ ) (2'1'3)
However, Houbak, Norsett, and Thomsen [50] demonstrate that it often takes more computa-

tional work to satisfy (2.1.2) than (2.1.1) with little or no gain in the accuracy of the numerical
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solution of the associated IVP. Although we do not address the interesting question of which
of these stopping criterion is more appropriate in 2 stiff-ODE solver, we do develop a bound
on ly, -7,/ in terms of {F (5,)ll similar to one given by Williams [84], but using a somewhat
different (and possibly simpler) derivation. This bound and some of the relations used in its
derivation are important to our discussion of inexact Newton methods and iterative linear-

equation solvers below.

The validity of (2.13) is intimately related to the stability of the associated IVP. Assume
that the IVP satisfies
FCey)-f@2)y-2)s yO-zy-2) (2.14)
for all (t,y) and (t,2) in the domain of interest, where y and z are real vectors, v is a real (pos-
sibly negative) constant, and (-, is a real inner-product. This assumption is frequently made
in studying the nonlinear stability of formulas for stiff IVPs as it ensures the stability of the
IVP (1.1) in the following sense. Let y(t) be a solution of (1.1) and let z(t) satisfy the same
differential equation but have a different initial value, z2(zo). If (2.1.4) is satisfied in a domain
containing both y(t) and z(t), then
b)-20) s O ed-zeal, @15)
where |||| is the norm associated with the inner-product in (2.1.4). We say that the IVP is dis-
sipative if and only if y < 0. In this case, the IVP is asymptotically stable in the sense that
the distance between y(t) and any necighbouring solution of the differential equation, z(t),

decreases exponentially with t.
Inequality (2.1.4) can also be used to bound |ly, -5,/ in terms of [[F (7,)]. Assume that

(2.14) holds at ¢+ = ¢, in a domain containing both y, and 7,. By (2.02) and (2.1.4),

(-kyBay)O0—2y-2) S (FO)-F(2)y-2). (2.1.6)
Hence, if 1-A,B,y > 0, then, by (2.1.6) and the Cauchy-Schwartz inequality,

1
by-zl= Thby [F &)-F (2)ll.

Taking y =y, and z =j,, we get




badal = 7 h' By —IFG)I; (217
from which it follows that, if y < 0, then (2.1.3) holds for any A, > 0, since B, > O for the
BDFs. Note also that, if 1-h,B,y > 0, then (2.1.7) ensures that any soiution of F(y,) =0 is
unique in the domain for which (2.1.4) holds. Moreover, if (2.1.4) holds at ¢ =¢, for all real
vectors y and z and if 14,8,y > 0, then, by the Uniform Monotonicity Theorem [67], the

unique solution of F (y,) = 0 exists.

Now we consider in more detail for which class of stiff IVPs we can expect thecondition
1-hyByy > 0 to hold throughout the course of the numerical integration. First, note that, if
the Jacobian f,(¢.y) exists and is continucus, then the algebraically smallest y for which

(2.1.4) holds is

(fy(ty)v,v)
(vwv) ’

where the maximum is taken over all nonzero real vectors v and all (t,y) in the domain of

¥ = max (218)

interest. Hence, F,(y,) =1 =h4Bof ,(t,.y,) is positive-real if 1-4,B,y > 0.

It is casy to show that
max { Re(\) : A an cigenvalue of f,(ty)} s v,
where Re (x) is the real part of A. If f,(z,y) is symmetric, then equality holds in the last ine- v
quality, but, if f,(r.y) is nonsymmetric, then the inequality may be strict, as the example
below demonstrates. However, the proof of Theorem 1 of [39] can be adapted easily to show

that, for any fixed (t,y) and any € > 0, there exists a real inner-product and an associated +

satisfying (2.18) for which
¥ — € < max{ Re(\) : \ aneigenvalue of f,(t.y)} =< v. (2.1.9)

For IVPs having a symmetric Jacobian, it is quite reasonable to expect 1-4, 8,y > 0. In
" fact, for a large subclass of these problems, all the ecigenvalues of the Jacobian f y(8.y) are
nonpositive, from which it follows that ¥ < 0, whence 14,8,y = 1, since 4,8, > 0. Thus,
(2.13) holds. On the other hand, if ¥y > 0, then the Jacobian must have a positive eigenvalue

arbitrarily close to y in the domain on interest. Consequently, the differential equation has
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solutions whose components may grow like e?* in 2 ncighbourhood of the solution of the IVP.
Hence, it is rcasonable to expect a stiff-ODE solver to choose a stepsize i, for which
1-h,B,y > O to control the accuracy in the potentizily growing components of the sclution.
In fact, if y > 0, one would expect 1-4,B,v to be close to 1, at least if the error tolerance is
sufficiently stringent. Moreover, the numerical solution of (202) requires that F,(y,) be
*numerically” nonsingular. This effectively ensures that 1-#,8,v > O, provided that 4,8,
changes by small increments, since this inequality holds initially for &, sufficiently small and,
as 1-h, B,y is essentially the algebraically smallest cigenvalue of F,(y,) =1 —8,Bsf ,(taVa)s
1-h, B,y can never approach or pass through zero. Thus, for IVPs having a symmetric Jaco-
bian, it is reasonable to expect that F, (y,) will be positive-definite and (2.1.7) will hold in the

event that (2.1.3) does not.

If the Jacobian f,(¢,y) is nonsymmetric, then the assumption that 1-4,8,y > 0 is some-
what more problematic, since, for a given inner-product, the associated y given by (2.1.8) may
be much larger than the real part of any of the eigenvalues of f,(¢,y). For example, consider
the differential equation y’ = Ay, where

4=[o%)

The cigenvalues of A are both -1, but, for the usual Buclidean inner-product,

Y =max%‘;—x)l = -1+ |a]
can be arbitrarily large even though the cigenvalues of A are fixed. In particular, if la] > 1,
then A is not negative-real. Moreover, if a stiff-ODE solver is used to integrate y’ = Ay over
a long time interval with absolute error control, the numerical solution will decay exponen-
tially outside of an initial transient region and &, will become large. Hence, for large t, it is
reasonable to expect that 1-A,B,y << 0 and F,(y.) =7 — h,B.A will not be positive-real.

Furthermore, for the usual Euclidean norm, the smallest constant ¢ that ensures that

y-zl = c IFO)-F (@)l
is J(7 —h.B.A)!|l, which may be larger than VBa/27. Thus, for large a, the residual is not a

good estimate of the error for this problem in the usual Euclidean norm. This is not to say
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that, for the usual Euclidean inner-product and ail IVPs having nonsymmetric Jacobians, the
condition 1-4,B,y > 0 will be violated and F,(y,) will not be positive-real or that the resi-

dual will be a poor estimate of the error in (2.0.2), but this is the case for some problems.

On the other hand, even if thg Jacobian f, (2, ., ) is nonsymmetric, by an argument simi-
lar to the one used in the symmetric case, it follows that it is reasonable to expect that the
stepsize, h,, in a stiff-ODE solver will be restricted by accuracy considerations to the extent
that 1-4,8,Re(A) > O for all cigenvalues N of f,(z,.y,). In fact, for many stiff IVPs,
Re(A) = O for all the eigenvalues of f,(#,.y.), whence 1-k,B,Re(\) = 1 without any restric-
tion on the stepsize h,. In any event, if 1-k,B,Re(A) > O for all eigenvalues A of f,(2,.3s),
then, by (2.1.9), there exists a real inner-product with respect to which F,(y,) is positive-real,
although this inner-product may depend upon (¢,,y,). For example, for the matrix A above, if
we use the real inner-product (x.y)r = (x,Ty), where T = diag(3%1) and (-,) is usual

Euclidean inner-product, then

_ (x Ax)y
¥ = max ) 1+ |a8|
which, for 8 = ¢/a, is within € of -1. Hence, for 0 < 8§ < -L, A is negative-real, whence

lal
I1-h,B,A is positive-real with respect to the (,”)y inner-product for any 4, > 0. Although

these observations may not be of any practical~ importance in the selection of an error control
strategy for a stiff-ODE solver, we believe that they may be of significance for the implemen-
tation of iterative linecar-equation solvers, as will become evident in §3. Morecover, as we

~ explain in that section, the iterative solvers that we consider are guaranteed to converge if
i Fy(y,) is positive-real, but may break-down otherwise. Hence, their break-down gives a warn-

ing that inequality (2.1.7) is violated.

2.2. Numerical Solution of (2.0.2).

For nonstiff-ODE solvers, it is common to use functional iteration to solve (2.02) or to
employ an implicit formula, such as (2.0.1), as the corrector in a predictor-corrector method.

However, for stiff-ODE solvers, the use of cither of these techniques severely restricts the
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stepsize and it is exactly this type of restriction that must be avoided for stiff problems.
Therefore, in most stiff-ODE solvers, a chord-Newton method is ns;d to solve (2.02) at each
step in the integration. That is, given an initial approximation y? to the solution y, of (2.0.2),
the system of linecar equations

Wit -y +FON =0 (22.)
is solved repeatedly until an acceptable approximation y* is computed, where W is an approxi-
mation to the Newton iteration matrix

FyOx) =1-hyBafy(ta70)- 222)
Frequently, WZ is just the Newton iteration matrix retained from an earlier iteration on the
current or a previous step. Of course, if (1.1) is linear and the exact Newton iteration matrix

(2.2.2) is used at each step, then (22.1) gives the solution to (2.02) in one iteration.

With the exception of GEARBI [47], all the "production® codes for stiff IVPs known to
the authors employ direct methods to solve the system of linear algebraic equations (2.2.1).
For example, GEAR, EPISODE, and LSODE cach use Gaussian Elimination (GE) with par-
tial pivoting, while DIFSUB computes the inverse of W» explicitly. For large systems of stiff
IVPs, great savings in both time and storage can be achieved by taking advantage of the spar-
sity of the Jacobian. This observation lead to the development of codes that employ either
banded GE (such as GEARB [45], GEARIB [46], and LSODE) or sparse GE (such as GEARS
[77] and LSODES [49]).

Furthermore, much of the consideration in choosing the formulas, strategies, and heuris-
tics in a stiff-ODE solver is directed towards solving (2.0.2) as efficiently as possible. To this
end, most stiff methods evaluate the Jacobian and refactor W} as scldom as possible, since, as
explained in more detail in § 4, the cost of these two operations may dominate the computa-
tion. Hence, in most stiff-ODE solvers, W} remains unchanged for several comsecutive
integration steps.

The desire to avoid refactoring W also affects the choice of stepsize- and order-selection

strategies in a stiff-ODE solver. If the stepsize or order is changed from one step to the next,
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then at least one of the terms k, or B, occurring in the Newton iteration matrix (22.2) is
changed as well. Therefore, unless W} is updated and refactored, it may be a poor approxima-
tion to (222). As a result, the chord-Newton iteration (2.2.1) may fail to converge or con-
verge too slowly. (Note that this observation applies to linear as well as nonlinear IVPs.)
Consequently, the stepsize- and order-selection strategics in most current stiff-ODE solvers
are restt;ictcd by this consideration. For example, EPISODE changes stepsize and/or order
only after a failed step or when it estimates that it can increase its stepsize on the next step by
a factor of at least 1.3. In addition to forcing the method to take more steps and function
evaluations to integrate a problem than might otherwise be required, this constraint on the
order- and stepsize-selection strategies reduces the "smoothness” of the dependence of the
actual error committed by the code in solving a problem on the user specified error tolerance;
it is generally agreed [36] that such "smoothness® is a very desirable property for an ODE
. solver to possess.

The choice of variable-stepsize implementation of a multistep formula is also affected by
the consideration of how this choice will effect the efficiency of the Newton iteration. The
two commonly used implementations are the fixed-coefficient implementation (FCI) of Nord-
sieck [65], which is used in DIFSUB, GEAR, and LSODE, and the variable-coefficient imple-
mentation (VCI), which is used in EPISODE. For nonstiff problems, both theorctic;i con-
siderations and numerical testing have shown VCI to be superior to FCI for the Adams for-

mulas. (See, for example, [28, 38, 52, 75] and the references therein.)

However, this clear superiority of one implementation over the other for Adams codes
« does not extend to sﬁtf methods based upon the BDFs. The reason for this seems to be that,
when VCI is used with a k-step BDF, the coefficient B, in (2.2.2) continues to cﬁangc on each
of the k-1 steps following a stepsize change. Therefore, unless W is updated and refactored
on cach of these steps, it may be a poor approximation to the Newton iteration matrix (222).
On the other hand, FCI does not share this disadvantage, since, for this implementation, 8, is

a constant that depends only upon the formula being used. We believe that it is primarily for
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this reason that the numerical results in [27, 29] indicate that GEAR is more efficient than
EPISODE. On the other hand, the numerical results in [6, 7] suggest that EPISODE is more
robust than GEAR. This empirical observation is supported by the theoretical results in [38],
which show that VCI is more stable than FCI for the BDFs. (See [53] for a more detailed dis-
cussion of this topic.)

The cost of solving the implicit equation (2.02) also affects the choice of formulas used
in a stiff-ODE solver. For example, although A-stable for arbitrarily high orders, the classical
implicit Runge-Kutta formulas (IRKFs) [4] suffer the major disadvantage that the implicit sys-
tem of equations associated with an S-stage formula is S times as large as the corresponding

system (2.0.2) for the BDFs.

There has been a considerable effort during the past decade te alleviate some of the
difficulties discussed above associated with solving an implicit equation of the form (2.0.2) at
cach step of the integration of a stiff ODE. However, one approach that has has only recently

begun to be investigated actively is the use of iterative methods to solve (22.1) [3, 37, 64].

" For parabolic PDEs, iterative methods have been popular since the early days of eomﬁut-
ing: SOR and ADI have been used effectively for several decades [80]. More recently, the
conjugate gradient method [2, 16, 17, 55] has received a considerable amount of attention. We
believe that the use of iterative methods in stiff-ODE codes should be investigated as well. It
appears that these methods offer a great potential for reducing the cost - in terms of both
time and storage - of solving large systems of stiff IVPs having sparse Jacobians. Furthermore,
as discussed in more detail below, the use of iterative methéds may alleviate some of the con-

straints on the stepsize- and order-selection strategies discussed above.

2.3. Inexact Newton Methods.

To begin, note that the linear equation (2.2.1) is solved only to obtain an approximate
solution to the nonlinear equation (2.02): there is no reason why a direct linear-equation

solver must be used in a stiff-ODE code to solve (22.1). Morcover, Sherman [76] and Dembo,
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Eisenstat, and Steihaug [15] show that it is only necessary to approximate the solution of these
linear equations "sufficiently accurately” to obtain a quadratic rate of convergence for the

Newton iteration.

More specifically, consider the class of inexact Newton methods [15]. Given an initial

guess y2, any such method computes a sequence of values {y}} satistying the recursion

IF,0H 0 -yh + FOHI s n IF OB, (231)

where Mz = fmee < 1. In the next section, we discuss the use of iterative methods to compute
L+1_y by gatisfying (23.1), but, independently of kow yX *! is determined, Dembo, Eisenstat,

and Steihaug [15] prove that, if

1) FoOu) =0,

() F is continuously differentiable in a ncighbourhood of y,,

(3) F,(vs) is nonsingular, and

4) ly2-y.| is sufficiently small,

then y*- y, with a rate of convergence that is at least linear. In addition, they show that
(8) ya~ ya superlinearly if n; - 0,

(®) yk<y, with strong order at least 14p, 0 < p =< 1,if m;, = O(|F )|’) and F, is Holder

continuous with exponent p at y, ,2 and

(¢) y~y, with weak order at least 1+p, 0< p = 1, if F, is Holder continuous with

exponent p at y, and m; - 0 with weak order at least 1+p.

Taking p = 1 in (b), we get that an inexact Newton method may retain the quadratic rate of

convergence characteristic of Newton’s methed.

Even though it is not necessary to factor or invert F, (y5) in an inexact Newton method,
it is necessary to evaluate the Jacobian of the IVP, f, (2, 55), to compute F,(y5) on cach itera-
tion. For large problems, the ecvaluation of the Jacobian may be very expensive, and,

2 A function g is Holder continuous with expoaent p at y if there exists a constant L and a neighbourhood N of y
such that Jg(¥)=2(x)| = Ly —x| foratix€N. ,
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consequently, should be avoided whenever possible. Therefore, we consider the class of inex-
act chord-Newton methods for which (23.1) is replaced by

w2023 + FORL = m IF O, @32)
where, as in the previous subsection, W£ is an approximation to F, (y5). But in this case, if an
iterative method is used to solve (2.32), there is little additional cost associated with using the
current value of the scalar &,B, in W%, although the Jacobian may remain unchanged from
one inexact chord-Newton iteration to the next. In any case, the proof of Theorem 2.3 in [15]
can be adapted casily to show that yi- y, lincarly for an inexact chord-Newton method if, in
addition to (1)-(4) above, we assume that Wy is a good approximation to F,(y,) in the sense
that

Wi -F,0u)ll = ¥ and {W)'-F,0.)71= 7,

where vy is the constant appearing in the similar inequalities (23) and (2.4), respectively, of
[15}.

Like a chord-Newton method, the rate of convergence of an inexact chord-Newton
method is not superlinear in general. This together with the convergence results quoted above
suggest that an appropriate choice for ; is a constant n < 1, since (in theory at least) there is
no benefit in allowing m;, - 0, as there is for an inexact Newton method, while allowing n; - 0
niakes the acceptance criterion (232) more stringent and, consequently, more expensive to

satisfy for an iterative linear-equation solver.

In choosing a value for n, it is useful to note that, in many stiff ODE solvers such as
GEAR, EPISODE, and LSODE, y, is normally a very good initial approximation to y, in the
sense that both [y -y, || and IF ()] are close to TOL, the user specified error tolerauce for
the IVP, since y? is computed by an explicit formula of the same order as the implicit correc-
tor. As a result, usually only one or two iterations of (22.1) are required to compute y? satis-
fying either (2.1.1) or (2.12). To avoid an excessive number of evaluations of F (y) when
using an inexact chord-Newton method to solve (2.02), we also require that, on most steps,

only one or two iterations of (23.2) be used to compute an acceptable yi. Furthermore, note
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that
FOi*™) = F,00) 0830 + FON = W08 *1-y) + F (D).
Hence, if |[F (y)] = TOL and we want y,! to satisfy (2.12), then a reasonable value for 7 is
rc;, where r < 1is a positive constant and c is the constant appearing in (2.12). An alterna-
tive is to replace (232) by
IWEGt*-y5) + Fohl = re,TOL, (233)
since we require only that y? satisfy the acceptance criterion (2.12) and not that y ultimately

converges to y,.

Based upon the relationship between [lyf-y, ] and [F(y¥)] developed in § 2.1, it also
secems appropriate to use cither (2.32) with n = r ¢y or (233) as the acceptance criterion for
an inexact chord-Newton method when the acceptance criterion for the implicit equation
(202) is (2.1.1) rather than (2.1.2), although the justification is more tenuous in this case.
However, our numerical tests reported in §5, based upon a modified version of LSODE which
employs LSODE’s acceptance criterion of the form (2.1.1) for (2.02) and the acceptance cri-
terion (233) for the inexact chord-Newton method, show that this heuristic works quite well
in practice.

A stopping criterion of the form (2.33) for the inexact Newton method is also used by
Brown and Hindmarsh [3] in their modified version of LSODE. In addition, they prove a
result about the iterates yf, which, although apparently not tight, suggests that the stopping

criterion (2.33) is appropriate for stiff-ODE solvers.

Finally, we nﬁtc that the accuracy of the approximation y! to y, affects not only the
accuracy and stability of the underlying implicit ODE formula [58] but also other formulas,
strategies, and heuristics used in the ODE solver. For example, in our preliminary numerical
tests with a modified version of LSODE, we found that y,! = y? often satisfied (233), particu-
larly on the initial steps of the int/egration. However, accepting y! =y has a deleterious

effect upon the code, since the error estimate in LSODE is based upon the difference between

¥ and the accepted y* and, moreover, the stepsize- and order-selection strategies are based
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upon the magnitude of the error estimate. Hence, the error may be grossly underestimated
and too large a stepsize selected for the next step. We were able to avoid this difficulty in
part by taking —F (yy), rather than 0, as the initial guess for y2*1—y* in the iterative solution
of (233). Moreover, as this initial guess corresponds to the usual corrector in a predictor-
corrector method, it produces a good initial approximation to the nonstiff components of
(233). The choice of a good initial guess for yX*!—y* is discussed in more detail for linear
systems of IVPs in [64], where, in our notation, they consider initial guesses for y* *!~y? of the
form —(I+A+ - - - +A/)F (yf) where A =1-Wk and j = 0. However, the effect of the accu-
racy of the approximation y! to y, on the formulas, strategics, and heuristics of an ODE solver
clearly requires much more study, not only for methods employing inexact Newton methods,

but also for all methods based upon implicit formulas.

3. Iterative Linear-Equations Solvers.

In this section, we discuss the choice of iterative methods for solving the systems of
 linear equations that arise in inexact chord-Newton methods (2.32). Because thée iterative
“methods must function as a component of a general purpose stiff-ODE solver, it is esséntial
that they perform effectively for general sparse systems of linear equations and are not depen-
dent upon any special matrix propertics such as those, for example, associated with the five-
point operator for the two-dimensional Laplacian. This consideration immediately eliminates
PDE-related methods such as ADI or multi-grid. Moreover, even for the application of the
method-of-lines to parabolic problems, many of these PDE-related methods are unsuitable
because they require specific information about the PDE itself (e.g., grid structure or operator

splittings) which is not usually available to a general-purpose stiff-ODE solver.

Although the classical iterﬁtive methods, such as Jacobi, Gauss-Seidel, and SOR, are not
restricted to PDE-related problems, they may not converge if the linear system is not sym-
metric positive-definite. Morcover, these methods are often slow when used on their own and
are, therefore, frequently coupled with an acceleration technique to improve their conver-

gence rate. For example, the Symmetric SOR (SSOR) method [85] may be accelerated by
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either the Chebyshev semi-iteration method or Richardson’s second-order method [40]. One
undesirable feature of these acceleration techniques is the need to estimate parameters to
make them effective. Typically, these parameters depend upon the cigenvalues of the
coefficient matrix, which are generally not known to the user a priori. However, adaptive
Chebyshev methods, which automatically estimate these parameters, have been developed
- recently [60, 61] for both symmetric and nonsymmetric problems. These methods may be par-
tiéularly effective for time dependent problems, since the coefficient matrix W¥ of (232) (and,
hence, the associated optimal Chebyshev parameters also) change slowly from step to step
‘throughout the numerical integration of (1.1). Moreover, the Chebyshev iteration is
guaranteed to converge if the required parameters are chosen "correctly” and if the real part
of cach of the cigenvalues of W! is positive. As we argued in the last section, if this last con-
dition is not satisfied, then the stepsize h,, is almost surely too large and should be reduced
until this condition is satisfied to ensure a reliable numerical integration. However, to date
we have not investigated in depth the use of adaptive Chebyshev methods in stiff-ODE

solvers.

The Conjugate Gradient (CG) method is possibly the most well-known example of
another class of iterative methods that has received considerable attention recently. CG was
originally proposed by Hestenes and Stiefel [43] as a direct method, but it was re-introduced
by Reid [68] as an iterative method for &ge sparse systems of linear equations. It has proven
to be very effective in the latter role for 2 wide range of problems arising from, for example,
geophysical applications [71], elliptic PDEs (10, 11, 13, 14, 72}, and time-dependent PDEs [2, 16,
17, 55]. We believe that this class of iterative methods is also suitable for solving the linear
systems that arise in stiff-ODE solvers. In particular, we consider the Preconditioned Conju-
gate Residual method [10, 24] and one of its generalizations for nonsymmetric problems,
Preconditioned Orthomin [20, 24, 81]. In the remainder of this section, we give a brief

description of these methods.
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3.1. The Preconditioned Conjugate Residual Methed.

Throughout this subsection, let A be a symmetric positive-definite matrix. To solve the
system of linear equations
Ax = b, , (3.11)
the Conjugate Residual (CR) method, like CG, requires only that the user supply a routine to
compute the matrix-vector product Av for any given vector v. Thus, CR can take full advan-
tage of the sparsity of A. However, the cffectiveness of CR can often be improved dramati-
cally by applying CR to the equivalent preconditioned system
Af =b (312)
instead of (3.1.1), where A =S7'AS™ is a symmetric positive-definite matrix since A is,
x=5'x, b= 575, and Q =SS is "close” to A (in a sense to be made more precise below),
but substantially less "expensive” than A to invert. We refer to CR applied to (3.12) as the

Preconditioned Conjugate Residual (PCR) method and Q as the preconditioner.

One of the several equivalent forms of PCR is given in Figure 3.1.1. Although any
inner-product can be used with PCR, the usual Euclidean inner-product is most often used in

practice.

If 9 =1, then PCR reduces to CR. Both methods require the same amount of storage, but,
for @ # I, PCR requires one additional solve of the form Qu = v per iteration. Note, though, that
the matrix § associated with (3.1.2) is not required explicitly. Also, if Q # I, only the residual
7, = Q7Y(b-Ax;) = @7, is available in this implementation of PCR; if the residual r, for (3.1.1) is
required also, then either one additional matrix-vector product of the form Qu must be computed

per iteration or one additional vector must be stored.
It is well-known [1, 10] that PCR is an optimal polynomial-based method in the sense

that the i* iterate x, computed by PCR minimizes

Ired = o) = (re2 ') = irs la-x (B13)
over the translated preconditioned Krylov subspace

29+ <070, (Q7'A)0 g, . .., (QTAYTIQ P> (3.14)
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Choose xg.
Set rg = b —Ax,.
Solve QF g = ry.
Set pg = Fy.
FOR i=0 STEP 1 UNTIL convergence DO
Solve Qq;, = Ap;.
a; = (F; A7) [ (Apia:)
X4 =x tap
Fiv1 = F —aq
b = (Fra1AF ) [ (FiAR)
Pivt = Fratbip;

END FOR

Figure 3.1.1: The Preconditioned Conjugate Residual (PCR) Method.

where, r, =b—Ax; is the residual for (3.11) associated with x, for x =Sx,
7, = b-A% = S"r, is the corresponding residual for (3.12), x, is the initial guess for the solu-
tion of (3.1.1), and rgy = b —Ax, is the associated residual.

The Preconditioned Conjugate Gradient (PCG) method can be implemented in a similar
way, but we believe that, for our application, PCR is more appropriate than PCG. First, note
that the inexact chord-Newton method requires that the residual of (22.1) satisfy (2.32).

Therefore, for this problem, CR is the optimal unpreconditioned Krylov subspace method in
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the sense that it minimizes the norm of the residual over the Krylov subspace (3.14) with
Q =1. On the other hand, CG minimizes the A-norm of the error

e —xlla = = —x A=) = (r A7) = fIrll - (315)
rather than the residual itself, over the same space (3.1.4). However, this advantage is par-
tially lost for the preconditioned methods, since PCR minimizes ||r; ﬂa-, while PCG minimizes
llr¢1,-1 over (3.14). Second, PCR can be generalized more easily than PCG for nonsymmetric
problems, partly because (3.13) defines a norm for any nonsingular matrix A, provided Q is
positive-real, while (3.15) does not. Morcover, the preconditioned Krylov subspace methods
discussed in the next subsection which extend PCR to nonsymmetric systems are capable of
minimizing the residual associated with (3.1.1) provided the preconditioning is applied "on the
right”. Therefore, we consider PCR only throughout the remainder of this subsection,

although similar results hold for PCG.

Since x; is a member of the affine space (3.14), the residual r, associated with (3.12)
satisfies
Fi = (1 =A Pii(A))Po = Ri(A)Fo, (3.15)
where P;.; is a polynomial of degree i-1 and R; is a polynomial of degree i that satisfies
Ri(0)=1. If A has k distinct cigenvalues (which are all positive since 4 is symmetric positive-
definite), we can choose a polynomial R, of degree k such that R, (0) =1 and R, (i) =0 for each
eigenvalue A of A. Since PCR minimizes IIF; ] over (3.1.4) and this choice of R; makes ||r; |
zero, it follows that PCR, like PCG, converges to the exact solution of (3.1.1) in at most k
steps. This is a slightly sharper version of the well-known result that PCG solm (3.1.1) in at
most M steps (assuming exact arithmetic is used in the computation), where M is the diimen-‘
sion of the system (3.1.1). Note, though, that A and A may not have the same number of dis-
tinct eigenvalues. In particular, A may have only a few distinct cigenvalues, while j may have
M. Consequently, in preconditioning, one must take care not to destroy an advantageous

eigenvalue distribution.

More generally, one can derive from (3.13) and (3.1.6) the bound [10]
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AR min max RO | 17l (3.1.7)

where II; is the set of polynomials of degree i or less that satisfy R(0)=1 and {i,} are the
cigenvalues of A , which are also the cigenvalues of Q!4 since these two matrices are similar.
Using the i** Chebyshev polynomial as a particular choice for R, one can derive the following
bound [1, 10]

i = 2[ LK (19

where K (A‘) = x,..“(j)/ k,.,,.(A.) is the spectral condition-number of A. Again, since A and
Q~'A are similar, K (zi) =K(Q'A). Also, since Jr, ]| = |Ir; l¢-» inequalities (3.1.7) and (3.1.8)
hold with 7] and |7l replaced by lIr;} -+ and lrol, 1, respectively. Similarly, it is well-
known [1, 10] that both (3.1.7) and (3.18) hold for PCG with |Ir, | and |ro] replaced by fir; |,
and [roll, -1, respectively.

If Ais well-conditioned or the cigenvalues of A are clt;steted, then CR reduces the
error in the initial approximation very rapidly. Therefore, this method can be expected to
perform very effectively on the linear equations that arise in mildly stiff IVPs or in large IVPs
for which the cigenvalues of the associated Jacobian form a few clusters. In particular, CR is
well-suited for problems with a few stiff components only. (See [30, 82] and th; references
therein for a more detailed discussion of this latter class of problems.) On the other hand, if
A is ill-conditioned with its eigenvalues spread throughout a very large interval, then these
bounds suggest that CR may require a great many more iterations than PCR to generate an
acceptable approximation to the solution of (3.1.1). Since such linear algebraic systems arise
during the numerical solution of many large systems of stiff [VPs (in particularly, those that
arise from the spatial discretization of time-depcﬁdent PDEs), we believe that it is necessary
to consider effective preconditionings for use with iterative linear-equation solvers in codes

for stiff ODEs. The importance of preconditioning is demonstrated in the next two sections.

Among the more popular preconditionings for symmetric positive-definite systems are

SSOR [42, 85], the Incomplete Cholesky (IC) factorization [63], and the Modified Incomplete
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LU (MILU) factorization [41], a generalization of the Dupont-Kendall-Rachferd (DKR) fac-
torization [18]. Each of these preconditionings can be written in the form
Q@ =LL'=A+E,

where L is a lower triangular matrix having the same sparsity structure as A, and E is an error
matrix. These preconditionings do not require more storage than the original matrix A and, if
implemented carefully [19], may require substantially less. Furthermore, to solve a system
Qu =v or to compute Qu for any of these preconditionings does not require more computa-
tional work than multiplying a vector by A and, when embedded in PCR, may require sub-
stantially less [19].

As explained in §2.1, if the Jacobian f,(¢,y) is symmetric, then it is reasonable to expect
that the chord-Newton iteration matrix W¥ (2.2.1) will be symmetric positive-definite. If this is
not the case, then the stepsize &, is almost surely too large for the IVP and should be reduced
until W} is positive-definite to ensure a reliable numerical integration. For W} symmetric
positive;deﬁnite, the SSOR preconditioning is well-defined and both the IC and MILU incom-

plete factorizations can usually be formed [56, 62, 63].

PCR based upon these preconditionings has proven to be very effective for solving the
linear equations associated with self-adjoint clliptic PDEs [10]. In the next two sections, we
present some theoretical and empirical results for the spatially-discretized Heat Equation

which show that PCR is very effective for this model problem also.

3.2. Preconditioned Orthomin.

Although both PCG and PCR have proven to be a very effective methods for solving
symmetric positive-definite systems of linear algebraic equations, only recently have they been
extended to solve more general systems effectively. As explained in the previous subsection,
the solution of symmetric indefinite systems is not of great importance for stiff-ODE sclvers.

Therefore, we only consider the solution of nonsymmetric systems in this subsection.

An obvious way to extend either PCG or PCR to solve a nonsymmetric system Ax = b is
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to apply either of these methods to the symmetric positive-definite normal equations
A'Ax = A'b or to the rclated system AA’y = b,x = A'y. In cither case, though, for the badly
conditioned systems that arise in stiff-CDE solvers, this approach is not attractive because it

frequently leads to a slow rate of convergence.

Recently, several effective Krylov subspace methods have been developed which extend
PCG and/or PCR to nonsymmetric systems. For cxample, Concus and Golub [12] and
Widlund [83] developed a technique known as the Generalized Conjugate Gradient (GCG)
method which uses the symmetric part of A, S = (4 +A’), as a preconditioning. GCG is par-
ticularly effective if a "fast” solver exists for S. Although this may be the case for many para-
bolic problems, this method is not well-suited for use in a general-purpose stiff-ODE solver,

since there is no guarantee that systems of the form Sx = b can be solved cheaply.

We chose to base our investigation of the use of iterative linear-equation sclvers in codes
for stiff IVPs upon the Preconditioned Crthomin(k) (POR(k)) method [20, 24, 81], an exten-
sion of PCR to nonsymmetric systems, partly because Elman’s codes [21, 25] were available to
us and partly because, like PCR, POR(k) minimizes the residual associated with the precondi-
tioned system over a subspace described in more detail below. One of several other alterna-
tive Krylov subspace methods is discussed by Gear and Saad [37] and Brown and Hindmarsh
3]- |

In this subsection, we briefly outline POR(k) and the related Preconditioned Generalized
Conjugate Residual (PGCR) method from which it is derived; a more detailed discussion of

these methods can be found in [20, 24].

Like PCR, the effectiveness of POR(k) can often be improved dramatically by an
appropriate choice of preconditioning. However, since POR(k) is applicable to nonsymmetric
systems, there is more flexibility in the choice of preconditioning for POR(X) than there is for

PCR. More specifically, the preconditioned system associated with (3.1.1) may be of the form

a

Af =b (321)
where A = Q{'AQ5", x =Qax, b =Q{'b, 0; and Q, are substantially less "expensive” to
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invert than A, and the preconditioning matrix @ = Q,Q; is "close” to A (in a sense to be made
more precise below). In this formulation, the preconditioning (3.12) used with PCG or PCR is
cquivalent to a symmetric positive-definite split preconditioning having Q, = Qi. Two other
particular forms of preconditioning (32.1) are worth noting: preconditioning on the left only

with Q, = I and preconditioning on the right only with @, = 1.

The prototype of the PGCR family of methods from which POR(k) is derived is shown
in Figure 32.1. The expression for a; used there is mathematically equivalent to the expres-
sion given in Figure 3.1.1, but Elman [24] believes that the former is less sensitive to roundoff

error for nonsymmetric problems.

Choose xg.

Set ro = b —Ax,.

Compute rg = Q1 'rq.

Compute pg = Q5 'ro.

FOR i=0 STEP 1 UNTIL convergence DO
o = (F1.Q1'4p)/ (@1 'Api Q1 Ap1)
X =X tap
riv =y —a Q7 Ap;
Compute p; 4.

END FOR

Flgure 3.2.1: The Prototype of the Preconditioned Generalized Conjugate Residual
(PGCR) Family of Mecthods.

The two-term recurrence

Pis1 = Fraatbip (322)
used in PCR generates an A’A-orthogonal sequence of search directions {p,} provided A is sym-

metric positive-definite. However, to obtain such a sequence for A nonsymmetric, it appears to be

necessary to explicitly orthogonalize p;,; against all previous search directions p; in general. The

recurrence recommended by Elman [20, 24] for PGCR is
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(21’405 '7141.01"'4p;)
(Q1'4p; .01 '4p))
PGCR consists of the prototype method given in Figure 3.2.1 together with these last two equations

. {
P =Q3rn + E_Obfpjo b} = (323)
i

to compute p; 41.

The recurrence (323) requires the storage of all past search directions p; as well as far
more computation than (322). This may be prohibitively expensive for large problems. In
POR(k), the truncated recurrence

. {
Pia1 =03 + 2 bjp;, ji = max(0, —k+1), (32.4)
=i

is used instead, where b/ is computed as in (323). That is, p;,, is orthogonalized against the
past k search directions only. Hence, POR(k) requires the storage of at most k past search

directions and the recurrence (3.2.4) is significantly cheaper to compute than (3.2.3).

The work per iteration for these preconditioned Krylov subspace methods is the same as
for the unpreconditioned versions except that Qi 'AQ;'r;,; must be computed in place of
Ar;4;. In computing the former product, the intermediate result Q57,4 can be used to com-
pute p;+i,and Qp 'Ap; +1 can be computed without any additional matrix-vector multiplies pro-
vided that Oy ‘Ap, is saved instead of p;. Moreover, for SSOR and several of the incomplete
factorizations [41, 63], Q1 'AQ5 'r;+1 can be computed very efficiently using Eisenstat’s tech-
nique [19].

If Ax = b is preconditioning on the left only (Q, = I), then cach of the PGCR family of
methods requires the same amount of storage as its corresponding unpreconditioned version.
Otherwise, each preconditioned method requires one more vector of storage than its
* corresponding unpreconditioned version. However, the residual r; calculated in this imple-
mentation of the PGCR family of methods is the residual associated with the preconditioned
system (32.1). If the residual b —Ax; =r;, = Q;r; associated with (3.1.1) is required, then the
storage advantage of preconditioning on the left only is lost: in this case, each preconditioned

method requires one more vector of storage than its corresponding unpreconditioned version.
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If A is positive-real, then both PGCR and POR(k), k=0, are convergent descent
methods in the sense that [r;}-0 as i-= and [r;4q] < |Ir;] for r,#0 [20, 24]. More
specifically, PGCR, like PCR, minimizes |r;| over the translated Krylov subspace (3.1.4).

Hence, in this case also, the residual 7, at the i PGCR iteration satisfies

il = pia IR A Il (325)

where II; is the set of polynomials of degree i or less satisfying R(0) = 1. Using (32.5), one

can prove [20, 24] that
o r
. MalSP 12 .
rill s |1~ —————rm— rolls 3.2.
17l [ xmm,‘,‘)] IFol (329)
where § = Vz(i +A! ), the symmetric part of A, is positive-definite since Ais positive-real by

assmnption.3 This bound, though, is not nearly as strong as (3.1.8) even though PGCR and

PCR compute identical iterates x; if A is symmetric positive-definite. If A has a complete set
of eigenvectors, then

. Il = K(T)M,; Irol, (32.7)
where K(T) = |T | IT ']l is the condition numter of the matrix T that diagonalizes A,

M = min lg}g‘,lR(h,)I. (3258)

and {i ;1 are the eigenvalues of A. Note, if Ais normal, then X (1") =1.

For i>k, the i iterate x; computed by POR(k) minimizes |r, || over the affine space
k41t <Ppopats " Pi-1>
rather than the full translated Krylov subspace (3.1.4). However, in this case also, (3.2.6) holds
for any k.
In all of the bounds listed above, r, may be replaced by Q'r,, since these two vectors
are equal. Thus, one advantage of preconditioning on the right only (Q; = 7) is that, in this
case, the PGCR family of methods minimizes the residual r; associated with the unprecondi-

tioned problem Ax = b at each iteration, since r;, = r;. As explained in the previous subsec-

30< (x,ix) = (x,s:x)fotdheal non-zeroveaoux,zinee.i =.$: +IG ispotitive-xealmd(x,l\;x) =0 for
all real x because N = (4 —A") is skew-symmetric.
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tion, this seems to be the most appropriate measure of the error to be minimized by an itera-

tive method embedded in an inexact Newton iteration.

Provided that the associated chord-Newton iteration matrix WX is positive-real, these
bounds indicate that, like CR, the (unpreconditioned) GCR family of methods is very
effective for mildly stiff IVPs and for stiff IVPs for which the eigenvalues of the associated
Jacobian form a few clusters. On the other hand, if the ecigenvalues of WX are spread
throughout a large domain, then, as is demonstrated in the next two sections, the effectiveness
of POR(k) may be improved dramatically by an appropriate choice of preconditioning. How-
ever, care must be taken in choosing a preconditioning since, for the more general precondi-
tionings considered in this subsection, A‘ may fail to be positive-real even though A is. One
advantage of using the symmetric positive-definite split preconditioning (Q, = Q1) is that j is
positive-real if and only if A is. Furthermore, if A is “nearly” symmetric, then so is Q7 'AQ ",
and, for symmetric problems, the iterates x; computed by POR(k), k=1, are identical to the
iterates computed by PCR and PGCR. Intuitively, if 01 'AQ " is “nearly” symmetric, then we
expect the convergence rate of POR(k) to be close to that of PGCR. On the other hand, even
if A and Q = 0,0, are both "nearly” symmetric, 0{'AQ;" need not be, and the convergence

rate of POR(k) may be significantly slower than that of PGCR.

Some popular preconditionings for nonsymmetric systems are SSOR [42, 85], the Incom-
plete LU (ILU) factorization [63], and the Modified Incomplete LU (MILU) factorization [41].
Each of these preconditionings can be written in the form

Q@ =LU =A+E,
~ where L and U, respectively, are lower and upper triangular matrices having the same sparsity
pattern as A. With these factorizations, it is possible to precondition on the left or right or to
use a split preconditioning with @; =L and @, =U.

POR(k) with these preconditionings has proven to be very effective for solving the sys-
tems of linear algebraic equations associated with discretized non-self-adjoint elliptic PDEs.

Obviously, the smaller k is the more efficient these methods are in terms of storage required.
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Elman [24] also found that these methods are most efficient in terms of computational work

for k =< 5, with k =1 often requiring the least amount of work.

As mentioned in §2.1, W’ is positive-real with respect to a given inner-product for any
h, > 0 for a large class of stiff IVPs, including all probiems that are dissipative with respect to
that inner-product. But, for any given inner-product, there are stiff IVPs for which W¥ is not
positive-real with respect to that inner-product for a reasonable choice of stepsize, k,. In the
latter case, any member of the PGCR family of methods based upon that inner-product may
either compute an acceptable numerical solution or may "break-down” during the computa-
tion.

On the other hand, if all the eigenvalues of the Jacobian f,(s,y) lie cither in the left-
half complex plane or on the imaginary axis, then, without any restriction on the stepsize &,,
all the eigenvalues of W lic strictly in the right-half complex plane. Moreover, as discussed in
§2.1, even if some of the cigenvalues of f,(¢.y) lic in the right-half complex plane, it is rea-
sonable to expect the stepsize 4, to be constrained by the accuracy requirements to the extent
that all the eigenvalues of W will lie strictly in the right-half complex plane. In either case, it
follows from (2.1.9) that there exists a real inner-product with respect to which WZ is positive-
real. We hope to find a computationally effective way to utilize this result to dynamically
choose an appropriate inner-product whenever W} is not positive-real with respect to the usual

Euclidean inner-product.

3.3. Jacoblan-Free Stiff-ODE Solvers.

As several authors have noted, it is possible to avoid explicitly computing and storing the
Newton iteration matrix WX when solving nonlinear equations by an inexact Newton method
coupled with a Krylov subspace method. To implement such a Newton-Krylov method, it is
only necessary to be able to compute Jv for any given vector v, where J is an approximation to

the Jacobian f,(z, 5. In many stiff-ODE sclvers, divided differences are used to form J.

But, since J is not needed explicitly, the directional difference
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[f Gua+3v) =1 (ta0)1/3
can be used to calculate an approximation to f, (t, J5)v directly, where 8 is a scalar constant.

Garg and Tapia [32] and O’Leary [66] recently investigated a similar idea for the applica-
tion of CG to minimization problems. O’Leary shows that, in addition to saving storage, the
" Newton-CG method employing directional differences requires less computational work than

the traditional discrete-Newton method for large problems.

Furthermore, the test results of Brown and Hindmarsh [3] based on the code developed
by Gear and Saad [37] demonstrate that the use of directional derivatives to approximate
matrix-vector products in a Newton-Krylov iteration is very cffective for the spatially-

discretized nonlinear parabolic problems that they considered.

However, all of the preconditionings referenced above require an explicit representation
of the matrix J. Chan and Jackson [8] though, recently developed a class of nonlinear precon-
ditionings, including a variant of SSOR,‘ that does not require J explicitly and so can be used
with Newton-Krylov methods employing directional differences. Moreover, for their test
problems, the nonlinear SSOR preconditioning was as effective as the standard explicit SSOR
preconditioning.

Since computing and storing Jacobians is a major source of expense in solving large stiff
IVPs, the possibility of avoiding this computation seems very attractive, particularly for those
problems for which we can expect a Krylov subspace method to converge very rapidly, such as

those IVPs for which the eigenvalues of the associated Jacobian form a few clusters.

;4. Theoretical Results for the Heat Equation.

The theoretical results in the last section can be adapted easily to show that the use of
Krylov subspace methods in stiff-ODE solvers is very effective for a large class of IVPs. Asa
particular example, in this section, we compare the computational-work and storage required
to solve the spatially-discretized Heat Equation by five stiff-ODE solvers each based upon the
BDFs but using one of the following methods to solve the systems of linear algebraic equa-

tions that arise at each step in the numerical integration: (1) full Gaussian Elimination (GE),
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(2) band GE, (3) sparse GE, (4) the Conjugate Residual (CR) method, or (5) the Precondi-
tioned Conjugate Residual (PCR) method with cither the SSOR [42, 85] or MILU [41] precon-
ditioning. Although we do not advocate using these methods to solve the Heat Equation in
practice, the spatially-discretized Heat Equation is a good test problem from a theoretical
point-of-view because it is representative of a class of large stiff IVPs with sparse Jacobians

and it can be analyzed thoroughly.

Consider the Heat Equation in one dimension (1-D) with homogeneous Dirichlet boun-

dary conditions:

u(1,x) = ug(t,x) for (2,x)€(totr 1X(0,1), 4.1

w(®0)=u(,1)=0 fort€(tots],
u(29,x) = uo(x) for x€[0,1].
Applying the method of lines with the usual centered-difference approximation with stepsize

A=

ml-l- 1 to the spatial derivative of (4.1) gives the linear system of M =m ODEs y’ = Ay
~ for ¢ € (2944, ] with initial conditions y;(z¢) = (20, A) for i=1,..,m, where y;(z) is an approxi-
mation to u(¢,iA) and 4, = A2 diag(1,-2,1). It is well-known that the eigenvalues of A, are
{2Acos(iAm) 1] : i=1,....,n }. (42)
All the eigenvalues are negative and are distributed throughout an interval from approxi-
mately —=2 to approximately —4A~2. As the spatial discretization becomes finer, the resulting

system of ODEs becomes both larger and stiffer, but the eigenvalues of the associated matrix

A; do not cluster.

Also consider a similar spatial discretization of the Heat Equation in two dimensions
(2-D) and three dimensions (3-D), each with homogeneous Dirichlet boundary conditions. For
the 2-D problem, the matrix A, associated with the resulting linear system of M = m? ODEs
y =A;y is Ap=A2diag(I;,T{J)), where I; is the mXxm identity matrix and
T; = diag (1,-4,1). Hence, the eigenvalues of A, are

{ A‘ +A] : i=1,...,ﬁl,j =1,...,ﬂl },
where A; and \; are eigenvalues (42) of the 1-D problem. Similarly, for the 3-D problem, the
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matrix A, associated with the resulting linear system of M =m® ODEs y =Ay is
Aj = A %diag(I;,B,12), where I, is the m2?xm? identity matrix, B, = diag({,,T,,/,), and
T, = diag(1,-6,1). Hence, the cigenvalues of A, are

{A N+ ti=lem, j=lum, k=1,...m },
* where A;, A, and A, are eigenvalues (4.2) of the 1-D problem.

We compare the computational-work per step required by each of the five stiff-ODE
solvers considered above to integrate the spatially-discretized 1-D, 2-D, and 3-D Heat Prob-
lems. The numerical results presented in the next section show that, for any given problem in
this class, each solver requires essentially the same number of steps throughout the numerical
integration. Thus, for each solver, the computational-work per step is representative of the
total computational-work required. Moreover, implicit in our comparison is the assumption
that each stiff-ODE solver requires the same number of Newton iterations per step. The vali-

dity of this assumption is supported by the numerical results also.

h The computational-work per step can be divided into three components: (1) the work to
- factor W} for the GE variants or to compute a preconditioning for PCR (if W} is refactored or
" the preconditioning is recomputed on that step), (2) the work to solve (22.1) using cither the
LU factorization for the GE variants or the (P)CR method, and (3) all the remaining work
per step, which is termed the computational-work overhead. We measure the computational-
work for each operation in terms of the number of arithmetic operations required to perform
it.

Similarly, the storage required by each solver can be divided into two components: (1)
“ the storage required to solve the system of linear algebraic equations and (2) all the remaining
storage, which is termed the storage overhead.

For cach of the five stiff-ODE solvers considered, b;)th the computational-work and

storage overheads are proportional to M, the size of the system of ODEs solved. Moreover, in

both cases, the overhead is identical for each solver.



-31-

In determining the computational-work and storage required for full GE, we assume
that no advantage is made of the sparsity cf the matrices A;, A,, and A;. Thus, in each case,
to factor the Newton iteration matrix 7 —h,B,A,, i =1,2,3, requires computational-work asymp-
totically proportional to M?, which is m®, m%, and m’, for the 1-D, 2-D, and 3-D problems,
respectively. In each case, both the computational-work required to solve the associated sys-
tem of linear equations, given the LU factorization, and the storage needed for either the
Newton iteration matrix or its LU factorization are asymptotically proportional to M2, which

is m2, m*, and m$, for the 1-D, 2-D, and 3-D problems, respectively.

The half-band widths for A;, A5, and A3 are 1, m, and m?, respectively. Thus, in each
case, to factor the associated Newton iteration matrix using band GE takes computational-
work asymptotically proportional to m, m*, and m’, respectively. Also, in each case, both the
computational-work to solve the associated system of linear equations, given the factorization,
as well as the storage required for either the matrix or its factorization are proportional to m,
m?, and m3, respectively.

In determining the computational-work and storage rcquire& for sparse GE, we assume
that the asymptotically optimal factorization is used, although, frequently, this is not the case
in practice for the 2-D and 3-D problems (cf. [22, 23]). Thus, the computational-work to fac-
tor the Newton iteration matrix 7 —4, B, 4;, i =1,2,3, is asymptotically proportional to m, m>, or
mS, respectively. In each case, both the computational-work to solve the associated system of
linear equations, given the factorization, as well as the storage required for either the Newton

iteration matrix or its factorization are proportional to m, m?logm, and m*, respectively.
2 Y

As stated in §23, to compute a sufficiently accurate solution for the inexact chord-
Newton method, it is generally necessary to reduce the initial residual associated with (233)
by a constant factor m only, where 7 is typically about .1. From (4.2), the spectral condition-
number of the Newton iteration matrix I —4,B,4,, i = 12,3, increases with h, from 1 at

h, =0to 4n~2A 2 as h, - =. Hence, from (3.18), the number of CR iterations required to

reduce the initial residual by a factor of n is at most [log(Z/n)r 'IA"]. In addition, because
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of the sparsity of Ay, A,, and A3, the number of arithmetic operations required for each CR
iteration is proportional to M, the dimension of the matrix. Thus, for each of these matrices,
the computational-work required to compute a sufficiently accurate solution to (233) is at
most asymptotically proportional to m?, m>, and m*, respectively, and the storage required is

- asymptotically proportional to m, m2, and m3, respectively.

For cither the SSOR [42, 85] or MILU [41] preconditioning (with the appropriate choice
of scalar parameters), the spectral condition-number of the preconditioned Newton iteration
matrix increases with h, from 1 at k, =0 to cA™" (for some constant c) as 4, - = [10].
Hence, the number of PCR iterations required to reduce the initial residual by a factor of n is
at most asymptotically proportional to A™®. In addition, because of the sparsity of cach New-
ton iteration matrix and its associated preconditioning, the number of arithmetic operations
- required for cach PCR iteration is proportional to M, the dimension of the system. Thus, in
. each case, the computational-work required by PCR to compute a sufficiently accurate solu-
tion to (233) is at most proportional to m™, m?%, and m>®, respectively, and the storage
- required remains proportional to m, m?, ax;d >, respectively. Moreover, in each case, the
work required to compute the MILU factorization is proportional to the number of nonzeros
in the matrix, m, m?, and m?>, respectively, while no work at all is required to “compute” the

traditional form of the SSOR “factorization”.

The computational-work estimates given above are biased in favour of the GE variants.
During the initial transient for each problem, the stepsize &, is "small”, and, consequently, the
c(;ndition number of the Newton iteration matrix I -k, B, A,, i = 1,23, or the associated
. preconditioned matrix is "close” to 1. As a result, the computational work per step for CR
and PCR is much smaller during the initial transicnt than the estimates given above indicate:
these estimates are accurate for k, “large” only. On the other hand, the computational-work
required by the GE variants to factor and solve the Newton systems is independent of the

$ For the 1-D problem, PCR preconditioned by MILU (with the associated MILU parameter @ =0) converges in one
iteration with computational-work proportional to m, since, in this case, the MILU factorization is actually the ex-
act LU factorization of J —h, B, A. This result holds for several other incomplete factorizations as well.
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stepsize h,. In addition, e&en for h, "large”, the computational-work estimates for PCR do not
appear to be optimal, whercas the estimates for the three GE variants discussed above are
optimal. For example, Chan, Jackson, and Zhu [9] show that there is strong evidence that, if
the "AD-DKR" preconditioning is used for the 2-D problem, then the condition number of the
preconditioned Newton iteration matrix is asymptotically proportional to A~?7 and that the
number of PCR iterations required to reduce the initial residual by a constant factor of n is
asymptotically proportional to A™'A. Again, because of the sparsity of A, and the associated
AD-DKR preconditioning, the number of arithmetic operations required for each PCR itera-
tion is proportional to M, the dimension of the system. Thus, there is strong evidence that,

for the 2-D problem, the computational-work required by PCR to compute a sufficiently accu-

1

Y
rate solution to (233) is at most asymptotically proportional to m 3, rather than m?%. More-
over, both the storage required for PCR and the computational-work needed to compute the

AD-DKR incomplete factorization remain asymptotically proportional to m?.

The computational-work and storage required for each of the five stiff-ODE solvers is
summarized in Table 4.1. These estimates show that, for this class of problems, the user
should take advantage of sparsity: full GE is not competitive with cither band or sparse GE.
For the 1-D problem, band (sparse) GE is the most effective method. On the other hand, for
the 2-D problem, both CR and PCR require asymptotically less storage than any of the GE
variants and are asymptotically faster than either full or band GE. However, it is not clear
which of PCR or sparse GE is asymptotically faster. The answer to this question depends on
how frequently the linear systems must be refactored as the stepsize increases during the
course of the numerical integration when sparse GE is used as well as the proportion of steps
taken in the transient region where k, is "small’ and PCR requires less computational-work
per step than the estimates in Table 4.1 indicate. For the 3-D problem, though, PCR is asymp-
totically faster than any of the other methods and requires significantly less storage than any

of the GE variants.
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full GE PCR

factor m m m - m
solve m? m m m2 | mi*
storage _ m m m m m
overhead m m 1 m m
factor m® m* m° - m*
solve m* m’ m*logm m> | m®
2D storage mt m? m*logm m? | m
cverhead | m?* m? m? m? | m? |

factor m m n® - m
soive ot por: por: |
storage m® m? m* m* | m
overhead m> m> n m | om?

Table 4.1: The principal esymptotic term for the storage for and the
computational-work per step required to facter and solve the linear algebraic sys-
tems that arise during the numerical integration of the spatially-discretized Heat
Problem, as well as the overhead of all the remaining storage and computaticnal-
work per step required by the stiff-CDE salver.

5. Numerical Resuits.

We have replaced the direct linear-equation solvers in LSODE [48] by PCGPACK, a col-
lection of preconditioned Krylov subspace methods implemented by Elman [21, 25]. We refer
to the resulting experimental code as LSODCG. In this section, we report some preliminary
numerical experiments with LSODCG to test the effectiveness of iterative linear-equation
solvers in codes for large systems of stiff IVPs for ODEs. In particular, we compare the per-
formance of LSODCG and LsopEes* [49] on two pairs of spatially-discretized two- and

. three-dimensional linear parabolic problems as well as the performance of LSODCG and
| LSODE on the thirty Stiff Detest Problems [27, 29]. Although most of the Stiff Detest Prob-
lems are not large, they do test the robustness of the inexact chord-Newton method and the

associated iterative linear-equation solvers used in LSODCG. These preliminary test results

look quite promising.

4 LSODES is a variant of LSODE incorporating the Yale Sparse Matrix Package (22, 23] to solve the systems of
linear algebraic equations by a sparse dircct method.
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5.1. LSODE, LSODES, and LSODCG.

We developed two variants of LSODCG: LSODCG.V1 and LSODCG.V2. In the former,
we did not make any modifications to the formulas, strategies, or heuristics used in LSODE
other than those modifications that were necessary to interface LSODE and PCGPACK, such
as changing the data structure for storing matrices in LSODCG to the sparse "IA-JA-A"
representation used in PCGPACK and many other sparse linear-equation solvers. In
LSODCG.V2, we made one additional modification to LSODE in hope of reducing the
number of inexact chord-Newton iterations and associated function evaluations throughout

the course of the numerical integration: each time &, B, is changed in LSODCG.V2, this scalar

factor is updated in the Newton iteration matrix I —k,B,J without re-evaluating J, and, if a

preconditioner is being used in PCGPACK, it is recomputed. Since the Jacobian approxima-
tion J is not re-evaluated, these updates are relatively cheap compared to solving the associ-
ated linear algebraic cquations.s In LSODE, LSODES, and LSODCG.V1, on the other hand,
the Newton iteration matrix is updated only when the magnitude of the relative change in
h, PB. is greater than CCMAX, a constant set to 3 in each of these three codes. Whenever the
+ Newton iteration matrix is updated, either it is refactored in LSODES or, if a preconditioner
is being used in PCGPACK, the preconditioner is recomputed in LSODCG.V1. In LSODE
and LSODCG.V1, the Jacobian approximation J is re-evaluated whenever the Newton itera-
tion matrix is updated; in LSODES, the Jacobian is re-evaluated only when it is estimated to
be a poor approximation to the current Jacobian.

In all four codes, the acceptance criterion for the Newton iteration is of the form (2.1.1)

S
NQ +2

with ¢;=CONIT = , where NQ is the order of the BDF in use. In both variants of

LSODCG, we uu; a stopping criterion for the iterative linecar-equation solver in the inexact
chord-Newton method of the form (233). Our numerical experiments show that any r in the
$ Updating the Newton itcration matrix would be even cheaper if LSODCG.V2 stored -h:!ﬂ—'l —J rather than

I —h, ByJ . This change is casy to implement.
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range [.1,5] is quite satisfactory: smaller values of r in this range lead to more PCGPACK
iterations per inexact chord-Newton iteration, but frequently lead to fewer inexact chord-
Newton iterations resulting in fewer function evaluations. Some numerical results along this
line are reported in the third subsection. Also, as mentioned in §2.3, we take —F (y%), rather

- than 0, as an initial guess for y**!-y% in (233) for both variants of LSODCG.

$.2. Spatially-Discretized Linear Parabolic Problems.

Consider the Heat Equation in two dimensions (2-D)

Uy = ey + Uy, (¢2.1)
and three dimensions (3-D)

Uy = Uee + Uy +uy (522)
and the Convection-Diffusion Equation in 2-D

Uy = Uy +uy tuy,y +u (523)
and 3-D

Uy Sy Uy FUyy Fuy t Uy tu (52.4)
cach with homogeneous Dirichlet boundary-conditions cither on the unit square [0,1]x[0,1] for
the 2-D problems or on the unit cube [0,1]x[0,1]%[0,1] for the 3-D problems and initial condi-
tions for ¢ € [0,10.24]

u(0xy) = 16x(1-x)y(1~-y)
for the 2-D problems and

4(0,x.y,2) = 64x(1-x)y(1-y)2(1~2)
for the 3-D problems. As described in §4, applying the method of lines to the Heat Equation
~ with m+1 evenly spaced grid points in cach dimension ordered in the usual left-to-right

bottom-to-top manner and using the usual three-point second-order centered-difference

approximation to the second-order spatial derivatives with stepsize A = yield; a system

m+1

of stiff ODEs of the form

y @) =Ay(), (525)
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where A is a constant symmetric negative-definite matrix with A = A, of dimension M = m?
for the 2-D problem and A = A; of dimension M = m? for the 3-D problem. Applying the
method of lines to the Convectioxi—Diffusion Equation in a similar way, but with the addition
of the two-point second-order centered-difference approximation to the first-order spatial
derivatives, also yields a system of stiff ODESs of the form (5.2.5), where again A is a constant
matrix of dimension M = m? for the 2-D problem and of dimension M = m? for the 3-D prob-
lem. In this case, though, A is a nonsymmetric negative-real matrix for both the 2-D and 3-D

problems.

The ecigenvalues and eigenvectors of the matrix A associated with the spatially-
discretized Heat Equation (52.5) are well-known. Therefore, the exact solution of the associ-
ated IVP can be. calculated easily for any t. For the Convectica-Diffusion Problem, we used
EISPACK [31, 78] in double precision on an IBM 3033 to calculate the cigenvalues and eigen-
vectors of the matrix A associated with the spatially-discretized 1-D problem of the form
(52.5). Since the solution of the spatially-discretized 2-D and 3-D problems can be writted as
the tensor product of solutions of the associated 1-D problems, the exact solution of the
spatially-discretized 2-D and 3-D Convection-Diffusion Problems can be computed easily for

any t also.

We used LSODES, LSODCG.V1, and LSODCG.V2 on an IBM 3033 computer in double
precision to compute numerical solutions of the 2-D problems for m = 5, 10, 15, 20, 25, 30 and
the 3-D problems for m = 3, 5, 7, 9. In each case, we used the BDFs with exact Jacobians
(MF=21) and an absolute local error tolerance of ATOL = 1072 (ITOL=1 and RTOL=0). We
integrated from the initial point t=0 to the output peints T =2 /100, for i=0,1,2,...,10, using the
continuation option (ISTATE=2) to integrate from one intermediate output point to the next.
Because we did not require the output points to be hit exactly (ITASK=1), the solution vector
is computed by interpolation and, on occasion, more than one solution vector is computed per
integration step, as can be seen in some of the numerical results presented below. No optional

iﬁput (IOPT=0) was used.
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We used the PCGPACK implementation of the Preconditioned Conjugate Residual
(PCR) method [25] and the Preconditioned Orthomin(k) (POR(k)) method [21, 25] for k=135
to solve the linear algebraic equations in LSODCG. For each of these methods, we used one

of the three PCGPACK preconditionings:
1. NOPRE - no preconditioning,
2. TCSSOR - the two-cyclic implementation [19] of the SSOR preconditioning, or

3. TCDKR - the two-cyclic implementation [19] of the DKR [18] incomplete factorization,
more generally referred to as the Modified Incomplete LU (MILU) factorization [41].

For the TCSSOR preconditioning, we used w=2/[1+sin(wA/2)], where A=;‘-1_;-1- is the spatial

stepsize. This vﬂue of @ is "near optimal” [85] for the spatially-discretized 2-D and 3-D Heat
Equations. Although this value of @ may not be "near optimal® for the spatiaily-discretized
Convection-Diffusion Equation, it is appropriate in this case as well, since, in practice, an
optimal value of o for the problem to be solved is typically not known. For the TCDKR
preconditioning, we used a=0 for all problems, as recommended by Chandra [10]. In
Orthomin(k), the preconditioning was applied on the right as described in §32. In both vari-
ants of LSODCG, we used a stopping criterion of the form (233) with r=25 for each iterative
linear-equation solver. However, we also set the maximum PCGPACK iterations permitted to

solve any one linear system to max(100,10m).

£.2.1. Detailed Numerical Results for One Problem.

Detailed resuilts for the numerical solution of the spatially-discretized 2-D Convection-
f‘ Diffusion Problem with m=30 using LSODES, LSODCG.V1, and LSODCG.V2, respectively,
are given in Tables 52.1.1, 52.1.2, and 52.13. The linear-equation solver used in LSODCG is
POR(1) preconditioned by TCDKR. These numerical results are representative of the perfor-

mance of these three codes on the problems considered in this subsection.

In each table,



- T is the output point,

6

- ERROR is the root-mean-square norm of the difference between the numerical and exact

solutions to the problem at T,

- HU and NQU, respectively, are the stepsize and order used by the BDF in the last step

taken to reach T, and
- NST, NFE, and NIJE, respectively, are the total number of steps, function evaluations, and

Jacobian evaluations used from the initial point t=0 to the current output point T.

Note also that NFE ~1 is the number of Newton iterations used from the initial point t=0 to
the current output point T, since all but the first function evaluation is associated with a
Newton iteration. For LSODES, NLU, MLTFAC, and MLTSLV, respectively, are the total

number of

- LU factorizations used,

- multiplies used in the LU factorizations, and

- multiplies used in forward and backward substitutions

. by the Yale Sparse Matrix Package to solve the linear equations that arise in the numerical
integration from-the initial point t=0 to the output point T. For LSODCG, NPRE and

ITSTOT, respectively, are the total number of

- preconditionings computed, and

- iterations used by the linear-equation solvers

to integrate from the initial point t=0 to the output point T. ITSMAX is the maximum
number of iterations used to solve any one system of linear equations in integrating from the
initial point t=0 to the output point T. For each ODE solver, MLTTOT is the total number

of multiplies used to solve the linear equations from the initial point t=0 to the output point

T; for LSODES, MLTTOT = MLTFAC + MLTSLV.

LA
6 The root-mean-square norm on an n-vector X is ﬂx “ = \ / "I;Ex,z.
i=]
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Also shown in these tables is the storage required by each of the three ODE solvers. In
each case, STRMAT is the number of nonzeros in the matrix A associated with the ODE
(525). For LSODES, STRFAC is the number of nonzeros in the LU factorization computed
by YSMP. For LSODCG, STRPRE and STRMTH, respectively, are the number of nonzeros
required to store the preconditioning (M for TCSSOR or TCDKR and 1 for NOPRE) and the
additional storage used in the iterative method ([4+2k]M + 2k for POR(k) and 4M for PCR).
For both LSODES and LSODCG, STRTOT is the total number of storage locations required
for the linear equation solvers.7 For LSODES, STRTOT = 2STRMAT + 2:STRFAC + 1I‘'M
+ 2, while, for LSODCG, STRTOT = 2:STRMAT + STRMTH + STRPRE + M + 1.

The values of ERROR, HU, NQU, and NST are very similar for all three codes. From
this we deduce that, for this class of problems at least, the error-control, stepsize-selection,
and order-selection strategies in LSODE are not significantly affected by the use of an itera-
tive linear-equation solver. Although NFE also is similar for all three codes, it is 7-10%
smaller for LSODCQ.VZ than for either of the other two codes indicating that the use of the
current value of 4,B, in the Newton iteration matrix 7 —k,B,J reduces slightly the total

number of Newton iterations required throughout the integration.

The difference in NJE for LSODES and LSODCG.V1 demonstrates the superiority, for
this class of problems at least, of the strategy used in LSODES over the one used in
LSODCG.V1 (taken without modification from LSODE) for determining when a Jacobian re-
evaluation is required. LSODCG.V2 uses two, rather than one, Jacobian evaluations because
we did not alter LSODE’s strategy that forces a Jacobian re-cvaluation every MSBP (=20)
- steps. If this requirement were removed from LSODCG.V2, then it too would use only one
Jacobian evaluation throughout the course of the integration, as it should for this class of

problems.

7 We count each double precision and integer variable as one storage location although, on the IBM 3033, each dou-
ble precision variable requires two words of storage whereas cach integer variabie requires only one. However,
this makes little difference in the comparison of the storage required by iterative and direct linear-equation solvers
since, for a given problem, both techniques use approximately the same proportion of integer to double precision
variables.
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T ERROR HU NQU NST NFE NJE NLU MLTFAC MLTSLV MLTTOT
0.010 0.826D-0 0.278D-02 2 8 1 1 3 611382 203220 814602
0.020 0.570D-0§ 0.482D-02 3 1M 15 1 4 815176 284508 1099684
0.040 0.454D-03 0.738D-02 3 14 18 1 5 1018970 345474 1364448
0.080 0.413D-03 0.137D=01 3 19 24 1 6 1222764 467406 1690170
0.160 0.101D-03 0.186D=-01 4 24 29 1 ] 1222764 569016 1791780
0.320 0.166D-03 0.301D-01 3 30 36 1 7 1426558 711270 2137828
0.640 0.483D-05 0.131D+00 1 35 41 1 9 1834146 812880 2647026
1.280 0.127D-05 Q.123D+01 1 36 82 1 10 2037940 833202 2871142
2.560 0.455D-07 0.123D+01 1 37 43 1 10 2037940 853524 2891464
5.120 0.250D-08 0.123D+02 1 38 L3 1 11 2241734 873846 3115580
10.240 0.143D-08 0.123D+02 1 38 4y 1 1 2241734 373846 3115580

Storage required by YSMP: STRMAT 4380, STRFAC = 20322, STRTOT = 59306.

Table 5.2.1.1: LSODES solution of the spatially-discretized 2-D

Convection-Diffusion

Problem on an mxm grid with m = 30.
T ERROR HU NQU NST NFE NJE MPRE ITSTOT ITSMAX MLTTOT
0.010 0.830D-03 0.279D-02 2 8 1 3 3 16 3 257483
0.020 0.568D-03 0.482D-02 3 11 15 4 L 24 3 281455
0.040 0.463D-03 0.742D-02 3 14 19 5 5 33 3 519649
0.080 0.414D-03 0.137D-01 3 19 25 6 6 52 5 803421
0.160 0.106D-03 0.188D-01 4 24 30 6 6 71 5 1082034
0.320 0.115D-03 0.275D-01 3 30 37 7 7 115 10 1723035
0.640 0.462D-05 0.120D+00 1 35 82 9 9 157 10 2335714
1.280 0.139D-05 0.108D+01 1 36 43 i0 10 175 18 2596869
2.560 0.418D~-07 0.108D+01 1 37 4y 10 10 188 18 2783434
5.120 0.113D-07 0.108D+02 1 38 45 11 11 211 23 3115699
10.240 0.509D-08 0.108D+02 1 38 45 11 11 211 23 3115699
Storage required by PCGPACK: STRMAT = 4380, STRPRE = 900, STRTOT = 15963.
Table 5.2.1.2: LSODCG.V1 solution of the spatYally-discretized 2-D Convection-
Diffusion Problem on an mxm grid with m = 30.
T ERROR HU NQU NST NFE NJE NPRE ITSTOT ITSMAX MLTTOT
0.010 0.835D-03 0.277D-02 2 8 10 1 3 15 3 2545062
0.020 0.575D-03  0.48&D-02 3 11 13 1 5 20 3 324689
0.040 © 0.467D-03 ~ 0.738D-02 3 14 16 1 6 28 3 446982
0.080 0.414D-03  0.138D-01 3 19 21 1 7 4y 1 686409
0.160 0.872D-04 0.187D-01 4 24 27 2 9 67 5 1030549
0.320 0.177D-03  0.304D-01 3 30 33 2 10 97 6 1470763
0.640 0.402D-05 0.134D+00 1 35 28 2 12 135 1 2026554
1.280 0.110D-05  0.134D+01 1 36 39 2 13 155 20 2316153 ,
2.560 0.483D-07 Q.134D+01 1 37 40 2 13 169 . 20 2516940 |
5.120 0.342D-07 0.134D+02 1 38 41 2 14 194 25 2877649 |
10.240 0.188D-07 0.134D+02 1 38 41 2 14 194 25 2877649 i
Storage required by PCGPACK: STRMAT = 4380, STRPRE = 900, STRTOT = 15963. z
Table 5.2.1.3: LSODCG.V2 solution of the spatially-discretized 2-D Convection-
Diffusion Problem on an mxm grid with m = 30.
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The sequence of values of NLU for LSODES and both NJE and NPRE for LSODCG.V1
are identical indicating that both codes had the same number of "significant” changes in 4,8,
between each pair of output points, where by a “significant” change we mean that the magni-
tude of the relative change in &, B, is greater than CCMAX (=3). The valucs of NPRE for
LSODCG.V2 are slightly larger than those for LSODCG.V1. Thus, assuming that the stepsize
sequences in all three codes were similar, there were some changes of 4,8, in LSODES and
- LSODCG.V1 that were not "significant”. Consequently, on some steps in LSODES and
LSODCG.V1, the factor A, B, in the Newton iteration matrix / —4,8,J was not équal to the
value of A8, used in the BDF on that step. On the other hand, LSODCG.V2 updates the
factor h,B, in the Newton iteration matrix whenever k,B, changes. This may explain why
LSODCG.V2 used fewer Newtoq iterations (NFE-1) than either of the other two codes. As a
| result, MLTTOT is smaller for LSODCG.V2 than LSODCG.V1 at ecach output point even
though LSODCG.V2 re-computed the TCDKR preconditioner more frequently than
LSODCG.V1 did: the reduction in the number of Newton iterations and associated linear-

system solves more than offset the additional preconditioner computations.

The final value of MLTTOT is approximately the same for all three codes. However,
during the initial stages of the integration, MLTTOT for the two variants of LSODCG is
significantly less than for LSODES. For these steps, &, is small and the spectrum of I —4,B,J
is clustered around 1. Consequently, only a few POR iterations (ITSMAX) are required to
solve each linear system. However, as the integration proceeds and h, grows, the spectrum of
I-h,B,J expands and more iterations are required to solvé each linear system. However, for
A" h, > 1, ITSMAX does not grow significantly with k,, since, as a rule of thumb, it is the rela-
tive size of the eigenvalues to onc another, rather than the absolute size of the eigenvalues,
that determines the rate of convergence of most Krylov subspace methods, and the relative
size of the cigenvalues does not change significantly with &, for 4, > 1. For LSQDES,

MLTFAC is approximately two-thirds of MLTTOT, and this factor grows as the grids become

- finer.
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Although, for this problem, each code requires approximately the same amount of
computational-work, STRTOT for LSODES is about four times the value of STRTOT for
either variant of LSODCG. Moreover, this factor grows exponentially as the grids become
finer. In addition, note that, for LSODES, STRFAC is about five times as large as STRMAT.
On the other hand, for LSODCG with POR(1) preconditioned by TCDKR (or TCSSOR),
STRPRE is about one ecighteenth of STRTOT, since the TCDKR (or TCSSOR) precondi-

tioner requires only one M-vector of storage.

$.2.2. A Summary of the Numerical Results for All the Test Problems.

We present below a summary of the numerical results for LSODES and LSODCG.V2
using the PCGPACK linear-equation solvers PCR and POR(k), k=1,3,5, preconditioned by
NOPRE, TCSSOR, and TCDKR for the four spatially-discretized parabolic problems on n Xm
grids, m=5,10,15,...,30, for the 2-D problems, and m Xm Xm grids, m=3,5,7,9, for the 3-D prob-
lems Since the numerical results for LSODCG.V2 are similar to, but generally better than,
those for LSODCG.V1, we have not included a summary of the numerical results for the

latter code.

The total number of PCGPACK iterations, ITSTOT, and the maximum number of itera-
tions for any one solve, ITSMAX, used by LSODCG.V2 throughout the integration are listed
in Tables 522.1 and 5222 and Tables 5223 and 5224, respectively. Graphs of m against
ITSMAX on a log-log scale for POR(1) preconditioned by NOPRE, TCSSOR, and TCDKR
are given in Plots 522.1 and 5222 for the two 2-D problems.

The total number of multiplies, MLTTOT, used by LSODES and LSODCG.V2 to solve
the linear algebraic systems throughout the integration are listed in Tables 5225 and 5.2.2.6.
Graphs of m against MLTTOT on a log-log scale for LSODES and LSODCG.V2 with POR(1)
preconditioned by NOPRE and TCDKR are given in Plots 5223 to 5226 for all four prob-

lems.

The total storage, STRTOT, required by the linear-equation solvers in LSODES and



- 44 -

LSODCG.V2 for the 2-D and 3-D problems is given in Table 522.7. (Each linear equation
solver requires the same amount of storage for both of the 2-D problems as well as the same
amount of storage for both of the 3-D moblems.) Graphs of m against STRTOT on a log-log
scale for LSODES and LSODCG.V2 with POR(1) preconditioned by NOPRE and TCDKR (or

TCSSOR) are given in Plots 522.7 and 5228 for the 2-D and 3-D problems.

An entry of ** in place of a number in these tables indicates that, during the course of
the integration, the associated iterative linear-equation solver failed to converge in the max-
imum number of iterations allowed, max(100,10m). Only PCR with no preconditioning failed
to converge, and it failed on the spatially-discretized 2-D Convection-Diffusion Problem with
m=10 and 15 only. It is in fact'surprising that PCR did not fail on more of the Convection-
Diffusion Problems, since the linear systems associated with these problems are nonsymmetric

and PCR is not (in theory at least) applicable to such systems.

Consider the results for LSODCG.V2 first. For these test problems, POR(1) is the most
effective of the four basic PCGPACK methods considered. For a given problem and precon-
ditioning, MLTTOT for POR(k), k=1,3,5, generally incrcases with k even though' ITSTOT
often decreases with k: the reduction in the number of iterations is more than offset by the
additional work required per iteration as k increases. As mentioned above, PCR failed on
two problems and is not guaranteed to converge for any nonsymmetric linear system. Further-
more, for the symmetric Heat frob!ems, PCR is not significantly more efficient than POR(1).
On the contrary, when preconditioned, PCR frequently requires more multiplies than POR(1)
since, even though PCR may require fewer iterations, fewer mnltil\alies are required per itera-
" tion to precondition POR(1) on the right than to precondition PCR symmetrically, as is

required for the latter method. -

Of the three preconditionings, TCDKR is nearly always the most effective in terms of
both multiplies and iterations required. The effectiveness of preconditioning is much more
~ pronounced for the nonsymmetric Convection-Diffusion Problems than for the symmetric

Heat Problems. In fact, for the latter class of problems, MLTTOT for TCSSOR is frequently



¢-U Problem 3=U PFrobiem

Method m L]

5 10 15 20 25 30 3 5 7 9
PCr NOPRE 90 273 c0Y EAKE 535 65< 4 85 1352 197
PCR TCSSOR 64 138 198 247 300 358 47 66 103 125
PCR TCDKR 49 92 110 140 166 197 34 49 T1 82
POR K=1 NOPRE 96 275 269 417 535 652 42 85 132 197
POR K=1 TCSSOR 67 118 201 252 306 360 45 64 103 123
POR K=1 TCDCKR 50 98 114 146 177 209 34 52 73 85
POR K=3 NOPRE 96 275 269 411 535 652 42 85 132 197
POR K=3 TCSSOR 65 128 189 243 296 359 4y 65 102 122
POR K=3 TCDKR 49 95 111 143 169 203 34 51 71 84
POR K=5 NOPRE 96 275 269 411 535 652 42 85 132 197
POR K=5 TCSSOR 64 127 191 243 291 351 4y 65 102 122
POR K=5 TCDKR ug 94 109 139 165 163 34 51 71 83

Table 5.2.2.1: The total number of PCGPACK iterations, ITSTOT, used by LSODCG.V2
throughout the numerical integration of the spatially-discretized 2-D and 3-D
Heat Problem on a mxm and mxmxm grid, respectively.

2-D Problem 3-D Problem

Method ) o m
5 10 15 20 25 30 3 5 7 9
PCR NOPRE 137 L L 552 175 855 [Xi 121 188 ces
PCR TCSSOR 63 134 203 269 329 366 46 62 102 114
PCR TCDKR 47 90 147 150 178 192 36 49 66 83
POR K=1 NOPRE 121 293 390 556 609 983 69 121 167 240
2POR K=1 TCSSOR. 70 139 183 260 316 356 45 64 99 125
POR K=1 TCDKR 49 92 150 139 177 194 36 49 67 81
POR K=3 NOPRE 131 279 412 559 768 860 64 111 139 231
POR K=3 TCSSOR 69 124 190 251 322 397 44 63 100 111
POR K=3 TCDKR 49 88 147 136 174 207 35 48 67 80
POR Kz=5 NOPRE 124 282 394 563 773 846 59 107 138 230
Yy POR K=5 TCSSOR 69 123 187 275 306 364 4y 63 99 110
POR K=5 TCDKR 48 36 146 134 172 204 35 48 67 80

Table 5.2.2.2: The total number of PCGPACK iterations, ITSTOT, used by LSODCG.V2
throughout the numerical 1integration of ¢the spatially-discretized 2-D and 3-D
Convection-Diffusion Problem on a mxm and mxmxm grid, respectively.

¢-U rroolem 3=J rFroblenm

Method ) m

5 10 15 20 25 20 3 5 7 9
PCR NOFPRE T 14 25 33 42 50 5 T L3
PCR TCSSOR 8 1 14 18 21 24 6 8 11 13
PCR TCDKR 6 10 12 15 18 20 4 7 9 10
POR K=1 NOPRE 11 20 25 33 42 50 5 7 14 20
POR K=1 TCSSOR 10 13 16 17 23 26 6 8 10 12 |
POR K=1 TCDKR 7 11 14 17 23 23 4 7 10 12 5
POR K=3 NOPRE 11 20 25 33 42 50 5 7 14 20
POR K=3 TCSSOR 8 11 16 19 22 23 6 8 1 12
POR K=23 TCDKR 6 9 14 17 20 22 4 7 9 11
POR K=5 NOPRE T1 20 25 33 42 50 5 7 14 20
POR K=5 TCSSOR 8 11 14 18 21 25 6 8 11 12
POR K=5 TCDKR 6 9 12 15 18 21 4 7 9 12

Table 5.2.2.3: The maximum number of PCGPACK iterations, ITSMAX, used by LSODCG.V2
throughout the numerical integration of the spatially-discretized 2-D and 3-D Heat
Problem on a mxm and mxmxm grid, respectively.
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<=-U rroolem 5=U rroblem
Method r n
5 10 15 20 25 30 3 5 7 9
PCR NOPre L) ¥ * 70 19 105 14 30 49 34
PCR TCSSOR 8 1 14 17 19 24 7T 8 1 11
PCR TCDKR 6 11 14 16 18 22 4 7 9 11
POR K=1 NOPRE 17 43 52 87 80 236 12 23 30 42
POR K=1 TCSSOR 7 14 17 19 21 25 7 9 10 12
POR K=1 TCDKR 6 1M 15 18 18 25 4 7 9 12
POR K=3 NOPRE 18 42 63 86 116 128 12 21 26 35
POR K=3 TCSSOR 7 11 15 17 23 28 8 8 11 12
POR K=2 TCDKR 6 10 15 16 18 21 4 6 9 11
POR K=5 NOPRE 16 [y 52 75 113 116 9 18 26 33
POR K=5 TCSSOR 7 10 14 21 20 23 6 8 10 11
POR K=z5 TCDKR 5 9 14 15 16 19 4 6 9 11
Table 5.2.2.4: The maximum number of PCGPACK iterations, ITSMAX. used by LSODCG.V2
throughout the numerical integration of the spatially-discretized 2-D and 3-D
Convection-Diffusion Problem on a mxm and mxmxm grid, respectively.
<-U prroblem s=-U Problilem
Method m n
5 10 15 20 25 30 ! 3 5 7 9 i
LSODES 10350 104960 387916 665202 1680508 3115580 105548 21 1491 c=1ea70U IRV ELT PR
PCR NOPRE 27405 303220 675184 1849272 3700203 6486182 | 15883 144115 605332 1889686
PCR TCSSOR 40036 334918 1069556 2355255 4448810 7609396 37247 255252 1072048 2763856
PCR TCDKR 328238 237926 636751 1412001 2587342 4366975 | 29664 205745 795430 1951422
POR K=1 NOPRE 28880 328721 726934 1999272 4008328 7035182 16396 150990 639289 2009242 |
POR K=1 TCSSOR 26988 190201 725462 1619344 3071298 5199680 22582 154048 672012 1717008
POR K=1 TCDKR 21455 163218 428364 968413 1823364 3090979 18891 135052 508784 1256204
POR K=3 NOPRE 33668 429857 968942 2719163 5634820 10003581 17708 173550 781429 2545302
POR K=3 TCSSOR 28752 235738 g1u011 1921186 3725054 6585355 23542 169736 742154 1927060
POR K=3 TCDKR 22375 177254 472584 1102094 2061592 3624176 19283 141172 540518 1365608
POR K=5 NOPRE 35644 498485 1140646 3307653 6985540 12558727 17790 183326 868979 2901946
POR K=5 TCSSOR 29140 245935 893818 2118869 3135414 7418851 23788 174628 777174 2025520
POR K=5 TCDKR 22679 183237 401248 1147825 2179768 3885289 19283 143428 562548 1418128 1l
Table 5.2.2.5: The total number of multiplies, MLTTOT, used by LSODES and LSODCG.V2 to solve the linear
algebraic systems throughout the numerical integration of the spatially-discretized 2-D and 3-D Heat

Problem on a mxm and mxmxm grid, respectively.

LSODCG.V2 for the 2-D and 23-D problems on a2 mxm and mxmxm grid, respectively.

c=-U rroblem 3=U rroolenm
Method m L)
5 10 15 20 25 30 3 S 7 9
JLSODES 10350 104500 387910 cbocue 1060500 5115500 1/bce 254535 <5000 (ke 3CaUo Il
PCR NOPRE 37942 * » 2432742 5328457 8474507 23438 212782 838684 214749¢C
PCR TCSSOR 39519 325371 1094541 2559297 4865492 7772132 36517 241945 1062981 2538817
PCR TCDKR 31804 233563 833065 1508499 2767114 4265265 31636 205146 756072 1971107
POR K=1 MNOPRE 35901 348365 1049339 2656349 4556076 10572603 25386 209387 797139 2427288
POR K=1 TCSSOR 28191 223160 662082 1670319 3170240 5142792 22664 154424 648730 1785685 |
POR K=1 TCDKR 21083 154627 558646 924439 1827538 2877649 19918 128596 4TUU23 1205896 |
PCR K=3 NOPRE 48706 447681 1519823 3768229 8209009 13349053 27938 236983 831492 3026822 |
POR K=3 TCSSOR 30099 228667 820678 1982488 4058544 7308315 23624 165056 729598 1738695 |
POR K=23 TCDKR 22451 164412 632610 1043708 2120654 3679020 19894 133588 512533 1204360
POR K=5 NOPRE S1444 543574 1749427 4754404 10467203 16729712 27046 255015 935132 3522528
PCR K=5 TCSSOR 30783 237660 873010 2448637 4345524 7674620 23952 169192 753790 1795587
POR K=5 TCDKR 22079 167047 673038 1099601 2273542 3979381 10894 135844 5210732 1267812 %
Table 5.2.2.6: The total number of multiplies, MLTTOT, used by LSODES and LSODCG.V2 to soive the linear
algebraic systems throughout the numerical Iintegration of the spatially-discretized 2-D and 3-D
Convection-Diffusion Problem on a mxm and mxmxm grid, respectively.
Method c=d Froblem i-U Problen
m )
S 10 15 20 25 30 3 5 7
SSoDES 845 4GS0 TSN 22508 -1809 I EELE ! :
PCR NOPRE 337 T553 3357 5T L ?3;62 nOJ 1909 SNy orhes
PCR TCDKR 3 o7 2077 5931 12881
361 1521 3481 6241 9801 14161 433 2201 6273 13609
POR K=z1 NOPRE 389 1624 3709 664y 10429 15064 46 3
POR K=1 TCDKR | 41 32329 6619 1A3WT
3 1723 3933 7043 11053 15963 489 2453 6961 15069
POR K=3 NOPRE 493 2028 4613 8248 12933 78668
POR K=3 TCDKR 23 575 2833 7995 17261
517 2127 5837 8647 13557 19567 601 2057 8337 17989
PORK=S WOPRE | 597 2832 5517 9852 15437 22272 | 68T 3337 937 zoTal
=5 TCDKR 621 2531 5741 10251 16061 23171 713 3461 2712 20900
Table 5.2.2.7: Total storage, STRTOT, required by the 1linear-equation solvers in LSODES and
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Plot 5.2.2.1: Graphs of m against ITSMAX for LSODCG.V2
with POR(1) preconditioned by (1) NOPRE, (2) TCS50R, and
(3) TCDKR for the spatially-discretized 2-D Heat Problem.
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Plot 5.2.2.2: Graphs of m against ITSMAX for LSODCG.V2Z
with FOR(1) preconditioned by (1) NOPRE, (2) TCSSOR, and
(3) TCDKR for the spatially-discretized 2-D Convection-
Diffusion Protlem.
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Plot £.2.2.3: Graphs of m against MLTTOT for (1) LSODES
and LSODCG.V2 with POR(1) preconditioned by (2) HOYRE
and (3) TCDKR for the spatially-discretized 2-D Heat Prob-
lem.
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Plot 5.2.2.4: Graphs of m egainst MLTTOT for (1) LSODES
and LSODCG.V2 with POR(1) preconditioned Ly (2) NOPRE
and (3) TCEKR for the spatially-discrctized 3-D Heat Prcb-
fem.
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Plot 5.2.2.5: Graphs of m against MLTTOT for (1) LSODES
and LSODCG.V2 with POR(1) preconditioned by (2) NOPRE
end (3) TCDKR for the spatially-discretized 2-D Convection-
Diffusion Problem.
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Plot 5.2.2.6: Graphs of m sgainst MLTTOT fcr (1) LSODES
and LSODCG.V2 with POR(1) preconditioned by (2) NOPRE
and (3) TCDKR for the spatially-discretized 3-D Convection-
Diffusion Problem.
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Plot 5.2.2.7: Graphs of m against STRTOT for (1) LSODES
and LSODCG.V2 with POR(1) preconditioned by (2) NOPRE
and (3) TCDKR (or TCSSOR) for the two spatially-discretized
2-D probiems.
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Plot £.2.2.8: Graphs of m egninst STRTOT for (1) LSODES
and LSODCG.V2 with POR(1) preconditioned by (2) NOPRE
and (3) TCDKR (or TCSSOR) for the two spatially-discretized
3-D problems.
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larger than for NOPRE for the same basic PCGPACK method, since the additional work
required to precondition is not offset by a sufficient reduction in the number of PCGPACK
iterations used throughout the integration. This is not the case for TCDKR. Although
NOPRE required fewer multiplies than TCDKR on some coarse grid problems, the difference
is never significant. On the other hand, TCDKR is frequently substantially more effective
than NOPRE in terms of both multiplies and iterations required by PCGPACK. Although
ITSMAX for TCDKR and TCSSOR are frequently close, ITSTOT for TCDKR is usually
significantly less than for TCSSOR, indicating that TCDKR is substantially more effective
than TCSSOR on the large number of linear algebraic systems for which &, is small and the

spectrum of I —h,p,J is clustered around 1.

From the graphs of ITSMAX in Plots 522.1 and 5222, it can be seen that not only do
the preconditioned POR(1) methods require fewer PCGPACK iterations than POR(1) with no
preconditioning but also the difference grows exponentially with m. Although not shown
here, graphs for ITSTOT are similar, but, in this case, TCDKR can be scen to be substantially
more effective than TCSSOR. Graphs of MLTTOT for POR(1) preconditioned by NOPRE
and TCDKR are shown in Plots 5223 to 52.2.6. Note that not only is MLTTOT significantly
smaller for TCDKR than NOPRE, except on the coarsest grids, but also the difference

between MLTTOT for these two preconditionings grows exponentially with m.

Now compare LSODES to LSODCG.V2 with POR(1) preconditioned by TCDKR.
Tables 52.2.5 and 522.6 and Plots 5223 to 5.2.2.6 reveal that LSODES requires fewer multi-
plies than LSODCG.V2 for the 2-D problems, except on the finest grid (m=30). However, the
difference decrcases with m and an extrapolation of the graphs in Plots 5223 and 522.5 sug-
gests that LSODCG.V2 with POR(1) preconditioned by TCDKR would become increasingly
more efficient than LSODES for these two 2-D problems on finer grids. For the two 3-D
problems with m=9, LSODES requires more than ten times as many multiplies as
LSODCG.V2 to solve the linear algebraic equations throughout the integration. Moreover,

from Plots 522.4 and 5.2.2.6, it is clear that this factor grows exponentially with m.
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This supports and extends our earlier observation based on theoretical estimates of the
computational-work in §4 that iterative methods are significantly more efficient than direct

methods for solving the spatially-discretized 3-D Heat Problem.

Table 52.2.7 and Plots 522.7 and 522.8 show that, for both the 2-D and 3-D problems,
STRTOT s significantly larger for LSODES than LSODCG.V2: for the 2-D problems with
m=30, LSODES requires approximately 3.7 times as much storage as LSODCG.V?2 and, for the
3D problems with m=9, LSODES requires approximately 6.4 times as much storage as
LSODCG.V2. Moreover, for both the 2-D and 3-D problems, this factor grows exponentially

with m.

§.3. Stiff Detest Problems.

We used LSODE, LSODES, LSODCG.V1, and LSODCG.V2 on an IBM 3033 computer
in double precision to solve the 30 Stiff Detest Problems [27, 29]. Although these problems
. are not large, they do test the robustness of the inexact chord-Newton method and the associ-
ated iterative lincar-equation solvers in the two variants of LSODCG.

For each of the four codes, we solved the Stiff Detﬁt Problems using the BDFs with
exact Jacobians (MF=21) to an absolute local error tolerance of ATOL = 1072, 1074, 1075, and
107® (RTOL =0 and ITOL=1).

For LSODCG.V1 and LSODCG.V2, we used POR(5), the PCGPACK [21, 25] implcﬁlen-
tation of Orthomin(5) [20, 24], to solve the linear algebraic systems of equations that arise in

the inexact chord-Newton method. We did not precondition POR(5) because, for many of the

“ Stiff Detest Problems, an incomplete factorization would actually yield the exact factorization

of the associated Newton iteration matrix and, consequently, POR(5) would generate the
~ exact solution to the linear algebraic equations in one iteration.

We used a stopping criterion of the form (2.3.3) with r = .1, 25, and 5 for the solution
of the linear algebraic systems arising in the inexact chord-Newton method. Since the Stiff

Detest Problems are smail and the tolerance for the linear algebraic systems is lax, we allowed
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a maximum of 50 POR(S) iterations to solve each linear algebraic system.

We present our results for LSODE and LSODCG.V2 only. As in the previous section,
the results for LSODCG.V2 are generally better than those for LSODCG.V1, and the stra-

tegics used in LSODCG.V2 are closer to those in LSODE than those in LSODES.

In Tables 53.1 and 532, respectively, we present the "normalized” number of function
evaluations and Jacobian evaluations required by LSODE and LSODCG.V2 with r = .1, 25,
and .5 to solve cach of the 30 Stiff Detest Problems to an absolute global error tolerance of
Tol =1072,107*, and 107° at the end-point of the integration; in Table 533, we present the
"normalized” total number of POR(S) iterations required by LSODCG.V2 throughout the
integration. These normalized statistics were calculated by a new version of the Stiff Detest
Program which, as described in [26], first performs a least squares fit to

TZT[log(gtobal error;)-log(C )—E-log(ATOL,)P

for C and E, where, in this case, ATOL, = 1072, 10™, 107", and 10~ and NTOL = 4. The Stiff
Detest: Program then performs a piecewise linear interpolation on the actual recorded values
of the costs to solve the IVP at ATOL; versus the corresponding expected global accuracy
Tol = C-ATOL® to arrive at the normalized costs for an absolute global error tolerance of

Tol. (A consequence of this procedure is that the normalized function and Jacobian evalua-

tions are negative for one problem.)

A ", "™, or "x" may occur as an entry in place of a number in these tables. A *-" indi-
cates that Stiff Detest could not calculate the normalized statistics for this problem and toler-
ance based upon the actual global errors incurred. A "** indicates that the method being
tested (LSODE or LSODCG.V2) could not solve the problem at that tolerance, and a *x” indi-
cates that Stiff Detest could not solve the problem at that tolerance. In addition, the 12 prob-
lems marked with a "#" have a Jacobian that is not negative-real over some subinterval of the

range of integration.

From the tables, we see that the number of function and Jacobian evaluations typically
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Tol = 1.0D-2 Tol = 1.0D-4 Tol 1.0D-6
Problem LSODCG LSODCG LSODCG LS0DCG LS0DCG LSODCG LSODCG LSODCG LSODCG
LSODE rz.1 rz=.25 rz.5 LSoDE rz.1 r=.25% r=.5 L30DE r=.1 r=.25 r:.5
Al 53 [y 59 T1 115 112 129 141 233 218 231 289
A2 # 64 * * * 150 148 145 * 307 276 290 -
A3 86 98 94 108 194 207 206 243 399 372 401 364
A4 90 77 89 106 192 182 210 234 3748 356 392 453
B1 ¢ S44 651 18417 1691 1017 2151 2533 2747 - - - -
B2 49 49 53 59 106 104 121 133 191 201 219 250
B3 53 49 62 65 121 17 128 156 228 225 267 304
B4 84 go 82 99 190 173 201 218 582 608 541 495
B85 24 1933 327 314 2878 1802 584 666 3502 3439 1430 1489
c1 es 60 64 69 189 141 157 168 271 271 284 418
c2 50 52 61 83 126 139 144 178 265 247 267 310
c3. 48 47 50 7 132 124 S 143 155 254 242 298 378
cu ¢ 210 513 623 777 362 813 1061 1343 635 - 1524 -
cs ¢ 361 1270 1368 1541 639 1564 1769 2552 - - - -
D1 97 98 110 110 218 197 218 237 481 375 380 487
D2 85 93 89 94 222 177 186 204 Huy 341 347 356
D3 # 77 LB *x *x 180 160 176 194 348 317 350 378
D4 # 9 22 14 14 17 30 20 21 51 48 39 50
DS 7 60 67 61 120 125 123 138 241 247 250 283
D6 18 25 29 29 46 56 54 60 i1 106 98 102
E1 ¢ =12 138 49 133 41 120 181 184 112 156 217 229
E2 325 335 352 404 575 595 660 704 - - - -
E3 84 101 92 99 244 204 196 205 499 342 365 352
E4 # 248 #x ox *x 508 433 530 660 977 890 - -
ES 4 - X x *x 14 x x *x 29 30 33 35
F1 ¢ 305 364 393 449 611 702 730 1050 1156 1347 1289 2091
F2 ¢ 24 35 32 8y 66 83 8o 76 145 159 161 156
F3 x x x x x x x x 21 34 36 37
Fu - - - - - - - - X X X X
Fs ¢ x . . . 72 54 69 83 113 17 119 135
233;5_242;1: Normalized Function Evaluations for the Stiff Detest Problems.
Tol = 1.0D-2 Tol = 1.0D0-4 Tol = 1.0D=-6
Problem LSODCG LsSODCG LSODCG LSODCG LSODCG LSODCG LSODCG LSODCG LSODCG
LSODE 2.1 r=.25 re.5 | LSOPE re.1 rz.25 re.s | LSOPE rz.1 .25 r=.%
At 13 2 2 - 3 17 5 6 6 25 9 11 13
A2 ¢ 14 . * . 22 7 6 * 32 12 13 -
A3 16 4 4 ] 25 8 9 10 40 17 17 20
A4 20 3 y 5 28 8 9 10 37 16 18 20
B1 ¢ 46 65 159 187 72 108 178 208 - - - -
B2 10 2 2 -2 15 L] 5 6 18 9 9 11
B3 1 2 2 3 16 5 5 7 21 10 11 13
B4 12 3 4 4 19 7 8 . 9 36 27 20 22
BS 136 87 14 12 146 83 27 27 180 156 65 66
c1 13 3 3 3 19 7 7 7 26 12 13 18
c2 12 3 3 3 20 6 7 8 30 11 12 18
c3 1" 3 3 3 21 6 6 7 24 11 13 16
cu # 26 21 81 T4 35 35 80 84 43 - 87 -
c5 ¢ 36 124 153 178 56 133 152 155 - - - -
D1 12 4 4 3 29 7 8 9 56 15 15 18
D2 13 6 5 5 29 7 7 7 46 14 15 14
D2 ¢ 18 sx #x *x 28 6 8 8 40 12 15 17
D4 # 5 1 1 1 5 3 1 1 10 2 2 2
DS 14 2 3 4 19 5 5 6 30 10 10 10
D6 8 2 2 2 8 2 3 3 16 [} 3 y
E1 ¢ -1 15 10 20 12 8 25 26 15 9 19 28
E2 28 12 13 15 38 25 27 29 - - - -
E3 13 3 3 3 30 8 8 8 55 14 16 15
EYy # 33 *x #x x 52 19 23 27 72 30 - -
ES # - X X *x 5 X X *x 7 2 2 2
F1 ¢ 45 19 21 24 68 29 32 4y 115 Sy 52 b3
F2-# 7 2 2 2 10 3 3 3 17 ] 6 [
F3 x x X x x x x X 10 2 2 2
F4 - - - - - - - - x X x x
F5 # x * » * 18 4 4 [ 22 5 5 6

Table 5.3.2:

Normalized Jacabian Evaluations for the Stiff Detest Problems.
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Tol = 1.0D=2 Tol = 1.0D-4 Tol =z 1.0D=6

Problem LSODCG LSODCG LSODCG LSODCG LSODCG LSODCG LSODCG LSODCG LSODCG

rs.1 r=.25 r=.5 rz.1 r=.25 r=.5 rs.1 r=.25 r=.5
Al 70 60 56 i 103 103 175 160 178
A2 # » 1 s 322 307 * 511 491 -
A3 139 17 122 148 216 222 398 382 366
Al 307 318 322 607 609 632 1019 1043 1104
B1 ¢ 1196 1521 1588 2214 2340 2281 - - -
B2 60 57 50 101 79 73 133 107 101
B3 82 T4 . 67 134 107 98 184 161 137
B4 133 99 87 217 151 145 723 291 223
BS 2954 316 181 2309 318 271 3817 577 500
c1 100 85 70 172 145 139 257 231 240
c2 90 83 103 173 143 148 248 234 237
c3 8u 78 81 162 147 154 257 252 266
cu 569 602 737 747 892 868 - 1025 -
cs # 1199 1194 1197 1346 1266 1044 - - -
D1 142 147 139 263 250 239 386 355 368
D2 88 83 69 131 126 135 232 208 217
D3 ¢ *x x x 97 90 84 123 123 125
D4 # 29 11 1 37 17 17 41 33 40
DS 54 49 42 90 75 75 161 143 144
D6 34 37 29 66 56 62 113 101 101
E1 ¢ 179 77 139 108 194 173 110 143 181
E2 111 64 81 .90 35 22 - - -
E3 99 80 76 166 182 . 135 253 247 227
E4 # x *x x 589 544 595 1009 - -
ES # x X x x X *x 47 42 39
F1 # 875 905 9u9 1658 1633 2050 2990 2761 3852
F2 # - 23 18 18 39 29 27 66 48 LL]
F3 x x X x x x 83 85 83
Fy - - - - - - x x X
Fs # » * * 92 114 119 153 148 158

Table 5.3.3: Normalized PCGPACK iterations for the Stiff Detesi Problems.

increases with r. For the Jacobian evaluaticns, the increase is generally not significant, but,
for the function evaluations, the increase is frequerntly 10% or more from one value of r to
the next. On the other hand, the number of POR(5) iterations typically decrcases with r by a
factor of 10% or more from one value of r to the next. Hence, if a POR(S) iteration is less
expensive than a function evaluation, then, based upon these results, r=.1 would usually be
the most cost effective of the three values considered. On the other hand, if a POR(S) itera-
tion is substantially more expensive than a function evaluation (as is the case for the problems
in the previous subsection), then, based upon these results, r=5 would usually be the most
cost effective of the' three values considered. Thus, the choice of r is dependent upon the

class of IVPs solved.

Except for problem CS, which has a Jacobian that is not negative-real, LSODCG.V2,

with each of the values of r considered, used fewer Jacobian evaluations than LSODE on all
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problems that were solved successfully by both codes. Moreover, for those IVPs having a
negative-real Jacobian, the number of Jacobian evaluations required differs by a factor of 2 to
5. This superiority of LSODCG.V2 over LSODE is a result of the strategy used in
LSODCG.V2 described above that permits it to update the scalar factor #,B, in the Newton
iteration matrix 7 -k, B,J whenever &,B, changes without re-evaluating the Jacobian, J. If we
had also removed from LSODCG.V2 the requirement inherited from LSODE that the Jaco-
bian be re-evaluated at least once cvery MSBP (=20) steps, then LSODCG.V2 would have

used even fewer Jacobian evaluations.

Now consider the function evaluations required by LSODE and LSODCG.V2 with r=.1

to solve the Stiff Detest Problems.

LSODCG.V2 failed to solve 4 of the Stiff Detest Problems (A2, D3, E4, F5) at
Tol =1072. Each of these problems has a Jacobian that is not negative-real over some subin-
terval of the ‘range of integration. However, cxcept for problem F5 at Tol = 1075,
LSODCG.V2 required fewer function ecvaluations than LSODE for these problems at
Tol =107*and 107%.

Of the remaining problems, LSODCG.V2 with r=.1 used substantially fewer function
evaiuntions than LSODE for 7 of the Stiff Detest Problems (Al, Ai, C1, C3, D1, D2, E3).
Again, this may be due to LSODCG.V2’s updating the scalar factor &,f,in the Newton itcra;
tion matrix whenever h,,p,@hanges resulting in a more accurate Newton iteration matrix and a
more rapid convergence of the Newton iteration.

LSODE and LSODCG.V2 used approximately the same number of function evaluations
on 11 of the Stiff Detest Problems (A3, B2, B3, B4, BS, C2, D5, D6, F2, F3, F5). It is worth
noting that Vthe class B problems are of the form y‘= Ay, where A is a constant matrix with
complex eigenvalues and, consequently, A is far from being symmetric.

LSODE used substantially fewer function evaluations than LSODCG.V2 on 7 problems
A(Bl, C4, CS, D4, E1, F1, F2) each of which has a Jacobian that is not negative-real over some

subinterval of the range of integration.
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Therefore, except for those problems having a Jacobian that is not negative-real, the use
of an iterative linecar-cquation solver did not cause the performance of LSCDCG.V2 to
deteriorate relative to the unmodified code LSODE which incorporates a direct linear-
equation solver. In fact, LSODCG.V2 performs as well as or better than LSODE on all the

Stiff Detest Problems for which LSODCG.V2 is applicable.

One final point is worth noting. From Tables 53.1 and 533, we see that, for many of
the Stiff Detest Problems, particularly at the more stringent tolerances, an average of less than
one PCGPACK iteration is required per inexact chord-Newton iteration. That is, for many of
the inexact chord-Newton iterations, the initial guess —F (y¥) for y**!—y?* satisfies (2.33) and
no further PCGPACK iterations are required. Hence, when using an iterative linear-equation
solver in a stiff-ODE code in this way, we automatically obtain the benefit of the use of an
inexpensive predictor-corrector iteration when a more expensive Newton iteration is not

required. Moreover, this appears to have no deleterious effect upon the overall performance

of the stiff-ODE solver.

6. Conclusions.

Both the theoretical and numerical results presented in the preceding two sections show
that the use of iterative linear-equation solvers in stiff-ODE codes has the potential to
improve the efficiency - in terms of both computational-work and storage - with which a
significant class of stiff IVPs having large sparse Jacobians can be solved. Moreover, these
results demonstrate the importance of preconditioning for Krylov subspace methods used in

stiff-ODE solvers.

The numerical results for both the linear and nonlinear IVPs show that the stopping cri-

terion (2.3.3) for the inexact chord-Newton iteration works well in practice for r €[.1,5]. This

supports the claim that the lincar equations that arise in stiff-ODE solvers need not be solved
very accurately. Moreover, the initial guess —F (y)) for the solution yX *!~y} of the linear sys-
tem proved to be quite effective in practice, particularly during the initial transient where the

IVP is at most mildly stiff.
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Updating the scalar factor &, B, in the Newton iteration matrix / -k, B,J whenever 4,8,
changes without re-evaluating J, the approximation to the Jacobian, reduces the number of
Newton iterations and associated function evaluations required throughout the course of the
numerical integration with little added cost in a stiff-ODE code incorporating an iterative
linear-equation solver. Furthermore, this strategy of updating &, B, whenever it changes facil-
itates the decision when to re-evaluate the Jacobian and, thus, helps to avoid wasted
computational-work. More generally, as mentioned in §2.2, the removal of the constraint
imposed by the necessity to avoid refactoring I —h,B,J in a stiff-ODE code employing a direct
linear-equation solver may lead to other benefits in the choice of formulas, strategies, and

heuristics for a stiff-ODE code incorporating an iterative linear-equation solver.

Most importantly, the numerical results demonstrate that stiff-ODE godcs incorporating
iterative linear-equation solvers do not suffer a loss of robustness on those IVPs for which the
Newton iteration matrix WX is positive-real throughout the course of the numerical integra-
tion. Note, though, that this restriction on W} is imposed by the iterative technique we chose
to solve the linear systems: the restriction is not characteristic of all stiff-ODE codes incor-
porating iterative linear-equation solvers. In particular, as mentioned earlier, there exist itera-
tive linear-equation solvers that are guaranteed to converge to the solution of the Newton sys-
tem (2.2.1) if all the &genvalucs of W lic in the right-half complex plane. As we argued in
§2.1, if W does not satisfy this last restriction, then the stepsize is almost surely too large and
should be reduced until this last restriction is satisfied to ensure a reliable numerical integra-
tion.

Hence, it appears possible to develop a stiff-ODE code incorporating an iterative linear-
equation solver that, for a broad class of IVPs, is as robust as a similar stiff-ODE code incor-
- porating a direct linear-equation solver, but more efficient than the latter code for a
significant subclass of problems having large sparse Jacobians. We plan to continue to pursue

this investigate in the future.

o
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