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Abstract

Let n be composite > 9. Rabin’s probabilistic primality test is based on the inequality
Pr(R,) < 1/4, where R is the sct of all numbers 1 € b < n such that "~ = 1 modn and
forallt, if 2t divides n—1 then gcd('bd(')—l,n ) 18 cither equal to 1 or equal to n. In the present
paper new smproved upper and lower bounds for the quantity Pr(Rn) are given, whicﬁ depend on
the number r of prime factors of n. In pdﬂicular it follows from the main theorem of the
paper that Pr(R ) < 1/2 ™1 This also gives a simpler proof of Rabin’s theorem. The
performance of the Solovay-Strassen primality test can be also analyzed using similar
techniques. In fact it is shown that if (n—1)/2 is odd, J(.,.) denotes the Jabobdi symbol, and S,

={b <n: ged®n)=10and 5""V2 = J,n)modn}, then Pr(S, ) < 1/2™.

1. Introduction

In the present paper a strengthening of a theorem due to Rabin is presented (see [7]), based on
which one can derive a fast probabilistic primality test. Let c(X) denote the cardinality of the set
X. For each composite odd number n, let d(t)= (n—1)/2’, provided that 2¢ divides n—1. Let R,
be the set of all 1 € b<n which are relatively prime to n such that b*~! = 1 modn and for all
t, gcd(bd(‘)—l,n) is either equal to 1 or equal to n. Let r be the number of prime factors of

n. Rabin’s main theorem states that
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Theorem: If n is composite >9, and r > 2 then ¢(R) < ¢(n)/2
The strengthening of the above theorem which will be proved in section 4, is the following
Theorem: If n is composite >9, andr > 2 then ¢(R ) < é(n)/2"1

This in turn will be an immediate consequence of an even stronger theorem, which is stated as
theorem 6. As an immediate corollary of the main theorem, theorem 6, one obtains not only a
shorter proof of Rabin’s theorem, but also that “the more composite” the number tested under
Rabin’s primality test is, the higher is the probability that Rabin’s primality test converges to the
right answer, regardless of the number of times Rabin’s algorithm is applied. Hence theorem 6,
and the result of section 5 will provide more evidence that Rabin's Primality Test is an efficient
test for testing the compositeness of a given number. The lower bound given in theorem 6
supplies some indication on the lower bound of the speed of convergence of the test. The proof
of the main theorem can be found in section 4. Section 2 includes all the prerequisites necessary
to understand the main proof. In section 3 the main result is stated and is used to derive a
simpler proof of Rabin's original theorem, stated as theorem 3, (notice that this part of the proof
uses only the upper bound in theorem 6), as well as theorem 5. Section 5 includegs Rabin’s
probabilistic algorithm, as well as its computational complexity. In section 6, a similar result is
proved for the Solovay-Strassen primality test, under the assumption (n—1)/2 is odd. Monier has
carried out similar work in [5] by determining the size of the set M, = {b<n: b"~! 5£ 1 modn}
U {b<n: 3t (2* divides n—1 and b%*) = —1 modn}. Both [3] and [6] are excellent survey

articles on primality tests.



2. Notation and Prerequisites

All the number theory prerequisites neeeded in the sequel can be found in any good number
theory book, e.g. [2] or [9]; for questions on complexity of number theory problems [1] is very
useful. Let gcd(a,b) = the greatest common divisor of a and b, rem(a,b) = the remainder when
a is divided by b, and for an rtuple <s,..s> let rem(b,<s,..s>) =
<rem(b,s,),....,rem(b,s )>. From now on and for the rest of this paper n will be an odd positive
integer, and b will range over positive integers less than n. Let r be the number of distinct prime
factors p,,...,p, of n. For i = 1,..,r let q; be the largest power of P; which divides n. Let Z; be
the set of all integers b<n such that ged(bpn) = 1, ¢(n) == c(Z;), and let
Rem (<q,,...,.q,>,<8,,....8,.>) be the set of all b in Z; such that rem(b,<q,,...q,>) =

<s,,...,8,>; for simplicity, the notation Rem(ql,...,q') will be used.

Let G, H be two abelian groups, and let f be an epimorphism from G onto H. The kernel K =
Ker(f) of {, is the set of all elements a in G such that f(a) = the identity element of H. For a in
G consider the coset K+a = {k+a: k is in K}, where + is the group operation on G. G/K is the
quotient group of G modulo K. It consists of all cosets K+a, where a ranges over G. The group
operation @ on G is defined by (K+a)@P(K+b) = K+(a+b). It is not hard to show that G/K
with this operation is also an abelian group which is isomorphic to H; in fact the required
isomorphism is the mapping F(K+a) = f(a). For h in H let f~1{h} be the set of all a in G such
that f(a) = h. Since K is the Kernel of f, it is easy to see that f~1{h} = K+a, where f(a) =
- h. Moreover notice that all the cosets K+a have the same cardinality, namely the cardinality of

K. Hence the proof of the following homomorphism theorem has been outlined:

Lemma 1: If f is an epimorphism of the abelian group G onto the abelian group H and K is
the kernel of f then the group G/K is isomorphic to the group H. Moreover ¢(G) = ¢(H)c(K), and

c(f"{h}) = ¢(K), for all h in H.



The above Lemma will be applied to the groups G = Z, and H = z;‘x...xz;. Indeed by
the Chinese Remainder Theorem, the mapping f(a) = rem(a,<ql,...,qr>) is an epimorphism
from G onto H. Hence the kernel K of f has size ¢(n)/(¢(q,)--¢(q,)). As an immediate

application of lemma 1 one obtains the following:
Lemma 2: For any <s,,...s > in Z;l)(...XZ;', c(Rem(s,,....s)) = ¢(n)/(¢(q,)---6(q,).

Recall that for each q which is a power of an odd prime the multiplicative group Z; is cyclic.

In particular each Z;_ is cyclic. Let a; be a generator of Z;', fori==1,..r.

3. The Main Result

The purpose of the present section is to state theorem 6, and show that it easily implies
Rabin’s theorem (theorem 3). Based on theorem 6, one can derive a probabilistic polynomial
time primality test (see section 5). This probabilistic primality test is also due to Rabin, and is
inspired by Miller’s test for testing primality (see [4]). As an immediate corollary of theorem 6
one also obtains not only a shorter proof of Rabin's theorem, but also that “the more composite”
the number tested under Rabin’s primality test is, the higher is the probability that Rabin’s
primality test converges to the right answer, regardless of the number of times Rabin’s test is

applied (see section 5).

To state the main theorem a few definitions will be needed. Let V| = {b<n: bl £ 1

modn}. Also define the set W, , which was first considered in [4].
W, ={b<n: 3t (2* divides n—1 and 1<ged(b®) —1,n)} UV .
Rabin’s result is the following
Theorem 3:(Rabin) For all composite n > 9, c(Z; -W,) < ¢(n)/4.

Let t; = gcd(é(q;),n—1), m; = ¢(q,)/t;. For each integer m, let e(m) = the largest i such that



2* divides m; put e; = e(t,). Theorem 3 is derived in [7] as a consequence of the following
. . ]
Theorem 4: If n is composite >9, and r > 2 then ¢(Z —-W,) < ¢(n)/(2m,...m )
Theorem 4 will in fact follow as an easy corollary of the much stronger
. . . 1
Theorem 6: If n is composite >9, and r > 2 then ¢(Z ~W, ) < ¢(n)/(2™ m,..m )

This last theorem will be an immediate consequence of an even stronger theorem, which will be

stated in the sequel, after some definitions.

Leta,.=max{e,.-ej:j=l,...,r},l=-—{i Sr:e;>0,l={i<r:a;=0}. Leta=
a)+..+a, f=c(J), and y = ¢, + ... + .. Notice that the above definitions easily imply that

y2a+f >r,and 8> 0.
The main result of the paper can now be stated
Theorem 6: If n is composite >9, and r > 2 then
¢(n)/(2'm,..;m) < (Z,-W,) < ¢()/(2"*'m,..m )

Theorem 6 implies theorem 5, because a+8 > r.It is quite obvious that theorem 5 implies
theorem 4. It is an immediate consequence of the lemmas below that theorem 5 implies theorem
3 (this also gives a simpler proof of theorem 3 than the one given by Rabin). This is obvious if r

is bigger than or equal to 3. Casesr = 1 and r = 2 are taken care in lemmas 7 through 9 below.
Lemma 7:(Rabin) c(Z;-V") < ¢(n)/(m,...m )

Proof: Let b be an arbitrary element of the set Z;—V". It is clear that ged(b,n) = 1, and
hence ged(b,q;) = 1 for i = 1,...,r. Slnce a; is a generator of Z;._, there exists an 5, < ¢(q,) such
that b = a,.‘i mod q;. On the other hand b is not in V,., and hence b*~! = 1 modn. It follows

that b""! = a‘.'n(" =)= modq; and consequently ¢(q,) divides s{n—1). An immediate



consequence of the definitions of t; and m; above is that ged(m,;,n—1) == 1. Thus m; divides s,

and hence s, = h.m., for some k; < ¢(q,)/m,.

It has now been shown that Z;-V" is a subset of the union of all sets of the form
Rem(alhl'"l,...,a"'v'"r), where each h; < ¢(q;)/m;. Clearly there are ¢(q,)/m,...4(q,)/m, such sets
each of which has size exactly ¢(n)/(¢(q,)--¢(q,)), by lemma 2. This completes the proof of the

lemma
Returning to the proof of theorem 3 it can now be shown

Lemma 8: (Case r = 1) If n = p' is composite > 9, for some prime p, then c(Z;-V”) <

é(n)/(p*™1)

proof: Notice that ¢(n) = (p—1)p* ~ !, and gcd(¢(n),n—=1) = p—1. Now apply the previous

lemma.
Lemma 8: (Case r = 2) Either m; orm, 2 2.

Proof: Assume on the contrary m; = m, = 1. It follows that q; = p,, fori = 1,2, and n =
P Py- Assume without loss of generality that p; < p,. The contradiction obtained is that ¢(p,)

= p,—1, and hence pzfl divides n—1 = p,(p,—1) + (p,—1).

The proof of the main theorem will be exhibited in the next section.
4. Proof of the Main Result

4.1. Determining the Upper Bound
This part of the proof can be considered as a careful analysis of Rabin's original ideas (see [7]).
The proof itself is an extension of the proof of Lemma 7, and the reader is advised to review the

notation and proof of Lemma 7.
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Let b be an element of Z;—W”. It follows from the definition of W, that b"~! = 1 modn. As
in the proof of Lemma 7 one has that b = a,."'ﬁl‘o‘ modq,. The first part of the proof is based on

the following
Claim : For all i, 2% divides h,.

Proof of the claim: Fix an i = 1,..r. If @; = 0 the claim is trivial. Thus, without loss of
generality it can be assumed that a; > 0. Consequently, there exists an index j such that e, >
e J.-i-l. By assumption all the t,,...,t must divide n—1, and hence there exists a nonnegative
integer f; such that e(n—1) = e+, Put 7, = a+f;, = e,~¢; + f. It is an immediate
consequence of the definitions that e(d(7,)) = e 5 Moreover one can show easily thﬁt t; divides

d( 7,')'

As in the proof of Lemma 7 one can obtain that
b4 =1 modq, =
¢(q,) divides h;m d(+,) =
t;m, divides h;m d(7,) =
t; divides hd(,) =
2%~ % divides h; =

2% divides b,

In addition one also has that
t; divides d(v;) =
tjm ; divides d(v,)m ;=
¢(q}-) divides m Jd('y'.) =,

Using the fact that the order of the multiplicative group Z;' is ¢(qj), it follows that
J
b4 = a ;" D=1 modq’

However by assumption b does not belong to the set W , and hence gcd(bdhi)-l,n) is either



equal to 1 or equal to n. Consequently 2% divides bh,. This completes the proof of the claim.

The claim is now enough to show that c(Z;-W") < ¢(n)/(2°m,...m ), by a counting argument
similar to that in the proof of Lemma 7. Hence the proof for the upper bound is complete if 8 is
equal to 1. It can therefore be assumed without loss of generality that 8 is greater than 1. It is
clear from the definition of J that for all i,j in J, e; = ¢ 3 Let’s call e this common value of the
ej’s, for jin J. Let v = fj + 1, and notice that the value of fj does not depend on j, if j is in
J. Let v denote this common value of g for j in J. It is then clear that for all j in J, t; does not

divide d(4) but t i /2 divides d(~).

As in claim 1 it can be proved that for all j in J,
b4 = 1 modq; &
é(q ) divides h ’de( q) &
tm ; divides th ,d('f) <
t; divides h Jd(q)
It follows from the assumption on b that for j in J, either all the h ; are even or else all the hj

are odd.

To sum up, it has been shown that the set Z;—Wn is a subset of the union of all sets of the
form Rem(a"'l'"l,...,a"'r’"r), where each b; < ¢(q;)/m;, and for i in I 2% divides h;, while at the
same time either all the {hf j is in J} are even or else they are all odd. As in the proof of
Lemma 7 it is clear that the above union can have at most (¢(ql)...¢(q'))/(2°"’"e"lml...mr)

elements. This completes the proof for the upper bound in theorem 6.



4.2. Determining the Lower Bound

Consider the multiplicative abelian groups

H(c,q) = {b in Z;_:bd(‘) = 1 modq;}, and H(c,n) = {b in Z;:bd(‘) = 1 modn}, where 2¢

divides n—1.

It is not difficult to see that the group H(e,n) is a subset of the set Z;-Wn, where ¢ = e(n—1).
Consequently, the problem of determining a lower bound for the set Z;-Wn reduces to the
problem of determining a lower bound on the size of the group H(e,n). This is done by
determining a lower bound on the size of the groups H(c,n). It is an immediate consequence of
the Chinese remainder theorem that there is an isomorphism from Vthe group
H(c,q;)X...XH(c,q,) onto the group H(c,n). Indeed, given <xp5--%,> in H(e,q;)X...XH(c,q,)

let f(x,;....x,) == the unique x (modn) such that x == x; modq, for all j==1,...,r.

It follows that ¢(H(c,n)) = c(H(c,q,))--.¢(H(c,q,)). Hence, the lower bound will follow from the

following

Lemma 10: c(H(c,q;)) = ged(d(c),¢(q,)).

Proof of Lemma 10: It is easy to see that for all am the congruence ax = 0 modm has
exactly d = ged(a,m) solutions. In fact, 0 is one of its solutions, and x; = i(m/d), where i =

0,..,r~1, forms a complete set of distinct modm solutions of the above congruence.

Now, to solve the congruence

x4 =1 modq,,

one considers the linear congruence

yd(c) = 0 mod¢(q;),

which by the previous observation must have exactly ged(d(c),6(q;)) solutions. This completes
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the proof of the Lemma.

It is now straightforward to see that
$(q)/m; =t, =
ged(n—1,6(q;)) =
gmin{en=1p,~1)} ged(d(e),¢(q;)) =
2% ged(d(e),¢(q;))-

It follows that
Corollary 11: ¢(H(e,n)) = ¢(n)/(2"m,...m ).

This gives the desired lower bound and completes the proof of the main theorem.

5. The Rabin Primality Test

To check for membership in W, of a given b, one argues as follows. Let e(n—1) = ¢, and

write n—1 = 2°m.
Compute c, = b™ modn: by repeated squaring and multiplication in 4log,(n) steps.
For i = 1 to e repeat:
1Y 1<ged(c;_,—1,n)<n then output “bis in W, ", and stop.

2.Else compute ¢, = ¢2_. modn and goto to step 1.

-1

Hence, testing for membership in W requires at most (4+e)logy(n) steps, each of which is

either a multiplication or a squaring modn.

If n is composite and b<n is such that ged(b,n)>1, then b"~! 2 1 modn. Consequently all

b<n which are not relatively prime to n must belong to the set V,; hence, Z;—V" = {b<n:

b"~! = 1 modn}. Based on this observation one can prove
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Theorem 12: If n is composite >9, and r 2> 2 then
é(n)/(2"m,..m,) € ({b<mbisnotin W }) < é(n)/(22+P~ 'm,..m)
Rabin’s primality test, call it R, is the following

Input: an odd integer n>1.
1. Choose random b<n.
2.Check if bisin W .

Output:
e “composite” if bisin W _
e “prime” if b is not in W

Therefore it has been proved that

Theorem 13: Let n be an odd integer, and let n—1 = 2°m, where m is odd. The above
algorithm requires at most (4 + e)log,(n) steps. If n is prime then R(n) = “prime”. If n is
composite then Pr(R(n) = “prime” | n is composite) < 1/4. In addition, ¢(n)/((n—1)2"m,...m ))

< Pr(R(n) = “prime” | n is composite) < ¢(n)/((n—l)2°+ﬁ'lml...mr))

If the random choices of b are independent, then repeating the test R a sufficient number of

times improves the certainty of the output on input n.

6. The Solovay-Strassen Primality Test

Just like the Rabin primality test one can analyze the performance of the Solovay-Strassen
primality test. Let J(b,n) denote the Jacobi sumbol of b with respect to n (see [1], [2], [9].) The
Solovay-Strassen primality test is based on the following result which determines the size of the

multiplicative abelian group S, = {bin Z_ : b{*~1/2 = J(b,njmodn} (see [8]).
Theorem 14: (Solovay-Strassen) c(S,) < ¢(n)/2.

If (n—1)/2 is odd then one can improve the above theorem. For simplicity let H, = H(1,n).
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Theorem 15: If r>2, and (n—1)/2 is odd then either ¢(S,) = ¢(H ) or ¢(S,) = 2¢(H ). In

particular, ¢(n)/(2"m,..m ) < ¢(S,) < ¢(n)/(27°‘m,...mr).

Proof: J(—1,n) = (—1)%1) = —1 (see [2] or [9].) Hence, J(—x,n) = —J(x,n), for all x. Let H!
(resp. H;) be the set of x in H, such that J(x,n) = 1 (resp. J(x,n) = —1.) Define S}, S~
similarly. Clearly H: = S:, and for all x in Z;, x is in S if and only if —x is in S:. It follows
that ¢(S)) = 2c(H:‘). If H is the empty set then H: = H_, and the proof of the theorem is
complete. Otherwise, the mapping F(x) == J(x,n) is an epimorphism from the group H_ onto the
maultiplicative group {1,—1}, with kernel H. It follows from Lemma 1 that c(H,) = 2¢(H}) =

¢(S,), and the proof of the theorem is complete.

Remark: The above theorem is a special case of a more general result due to Monier (see [5]):
If r>2, then¢(S,) = 6§, gcd(d(l),aﬁ(ql))... ged(d(1),4(q,)), where &, can take only the values 2, 1

or1/2.

Example 1: The upper bound in theorem 17 can be attained e.g. if n=3.5=15, then H(1,15)
= {1}, and S(1,15) = {1,14}.

Example 2: There are infinitely many odd n such that (n—1)/2 is odd. Indeed, let n be the
product of odd integers s,,...,s_such that e(s,—1) = 1 but e(s,~1) > 1, for all i=2,...,r.

The Solovay-Strassen primality test, call it SS, is the following (see [1])

Input: an odd integer n>1.
1. Choose random b<n.
2. Check if bis in S”.

Output:
e “composite” if b is not in S_
e “prime” if bisin S
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As before, if n is composite and b<n is such that ged(bn)>1, then b"~! 3¢ 1 modn.
Consequently all b<n which are not relatively prime to n must belong to the set V . Therefore

it has been proved that

Theorem 16: Let n be an odd integer. Then in the above algorithm: if n is prime, SS(n) =
“prime”; if n is composite then Pr(SS(n) = “prime” | n is composite) < 1/2. If in addition r>2,

and (n—1)/2 is odd then in the above algorithm: if n is composite then
#(n)/((n=1)2"m,...m )) < Pr(SS(n) = “prime” | n is composite) < ¢(n)/((n—l)27'lml...m J)
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