Abstract. The purpose of this note is to provide a sketch of the proof of the "strongest" form of the Chomsky-Schützenberger Theorem.

On the Chomsky-Schützenberger Theorem

Ronald V. Book

Research Report #33

Revised January 1976

The preparation of this paper was supported in part by the National Science Foundation under Grants GJ-30409 and DCR-75-15945.
An important result in the theory of context-free languages is that known as the "Chomsky-Schützenberger Theorem." The best known version of this result can be stated as follows.

Theorem A. For every context-free language L, there exist an integer k, a regular set R, and a homomorphism h such that $L = h(D_k \cap R)$, where D_k is the Dyck set on k letters.

Equivalently, one can state that every context-free language is the image of a Dyck set under a finite-state transduction. Theorem A appeared first in Chomsky [1] and Chomsky and Schützenberger [2]. Proofs appear in secondary sources such as Ginsburg [3] and Salomaa [8].

A stronger (in fact, the "strongest" possible) version of Theorem A is known, although no proof appears in the literature. First, one can replace D_k with $h_2^{-1}(D_2)$ for a suitable homomorphism h_2. Second, the homomorphism h can be made length-preserving if h_2 and R are suitable chosen. This leads to a result which is the "strongest" form of the Chomsky-Schützenberger Theorem.

Theorem B. For every context-free language L, there exist a regular set R and homomorphisms h_1 and h_2, with h_1 length-preserving, such that $L = h_1(h_2^{-1}(D_2) \cap R)$, where D_2 is the Dyck set on two letters.

The purpose of this note is to provide a sketch of a proof of Theorem B using only the basic machinery of the theory of context-free languages. Before doing this we review some concepts and notation used in the proof.
For any $n \geq 1$, let Δ_n be a set of $2n$ distinct symbols, $\Delta_n = \{a_1, \ldots, a_n, \bar{a}_1, \ldots, \bar{a}_n\}$. The Dyck set D_n on n letters is the language $L(G)$ where $G = (\Delta_n \cup \{S\}, \Delta_n, P, S)$ is the context-free grammar with the set of rewriting rules $P = \{S \to SS, S \to e\} \cup \{S \to a_i \bar{a}_i \mid 1 \leq i \leq n\}$. Alternatively, let be the congruence on Δ_n^* determined by defining $a_i \bar{a}_i \sim e$ for each $i = 1, \ldots, n$. Then $D_n = \{w \in \Delta_n^* \mid w \sim e\}$. For any $n \geq 1$, any two Dyck sets on n letters are isomorphic (as semigroups of free semigroups), so that one refers to the Dyck set on n letters. Intuitively, D_n is the set of all "balanced nested" strings of matching "parentheses" in Δ_n^*. For any n, the congruence \sim on Δ^* which determines D_n has the property that for every $w \in \Delta^*$, there is a unique minimum length string $\mu(w) \in \Delta^*$ such that $w \sim \mu(w)$, i.e., $w \sim \mu(w)$ and if $w \sim y$ and $y \neq \mu(w)$, then $|y| > |\mu(w)|$. The function μ has the following properties:

i) $\mu(w) = e$ if and only if and only $w \in D_n$;

ii) for any $x, y \in \Delta^*$, $\mu(xy) = \mu(\mu(x)y)$;

iii) for any $x \in \Delta^*$ and any $y \in \{a_1, \ldots, a_n\}^*$, $\mu(xy) = \mu(x)y$.

For any $n \geq 1$, consider the homomorphism $h: \Delta_n^* \to \Delta_2^*$ determined by defining $h(a_i) = a_1^i a_2$ and $h(\bar{a}_i) = \bar{a}_2 \bar{a}_1^i$ for each $i = 1, \ldots, n$. Now h is one-to-one but is not onto. It is easy to see that $h^{-1}(D_n) = \{w \in \Delta_n^* \mid h(w) \in D_2\} = D_n$. Thus, every Dyck set can be obtained from the Dyck set on two letters by applying an inverse homomorphism.

1. If Σ is a finite set of symbols, then Σ^* is the free monoid with identity e generated by Σ.

2. For any string x, the length of x is denoted by $|x|$.
Let $h: \Sigma^* \rightarrow \Delta^*$ be a homomorphism and let $L \subseteq \Sigma^*$. Suppose that there is an integer k such that for all $x, y, z \in \Sigma^*$, if $xyz \in L$ and $h(y) = e$, then $|y| \leq k$. Then we say that h is k-limited on L. If there exists k such that h is k-limited on L, then h is e-limited on L. If for all $a \in \Sigma$, $|h(a)| = 1$, then h is a length-preserving homomorphism.

A context-free grammar $G = (V, \Sigma, P, S)$ is in Greibach Normal Form (standard 2-form) if each production in P is of the form $Z \rightarrow a$ or $Z \rightarrow aY_1$ or $Z \rightarrow aY_1Y_2$ where $a \in \Sigma$ and $Z, Y_1, Y_2 \in V - \Sigma$. It is well-known [7] that for every context-free language L there is a Greibach Normal Form grammar G such that $L(G) = L - \{e\}$.

Before proving Theorem B we prove a slightly weaker result.

Theorem C. For every context-free language L, there exist a regular set R and homomorphisms h_1 and h_2 such that $L = h_1(h_2^{-1}(D_2) \cap R)$ and h_1 is e-limited on $h_2^{-1}(D_2) \cap R$, where D_2 is the Dyck set on two letters.

Proof. For a context-free language L such that $e \notin L$, we show that there is an integer t, a homomorphism h_1, and a regular set R such that $L = h_1(D_t \cap R)$, $e \notin R$, and h_1 is e-limited on $D_t \cap R$. If h_2 is any homomorphism with the property that $h_2^{-1}(D_2) = D_t$, then we have $L = h_1(h_2^{-1}(D_2) \cap R)$ and h_1 is

3. In a context-free grammar $G = (V, \Sigma, P, S)$, V is the finite set of symbols, $\Sigma \subseteq V$ is the set of terminal symbols, $S \in V - \Sigma$ is the initial symbol, and $P \subseteq (V - \Sigma) \times V^*$ is the finite set of productions. A production is written as $Z \rightarrow u$ instead of (Z, u). Define a binary relation \Rightarrow on V^* by $\alpha Z \beta \Rightarrow \alpha \gamma \beta$ if $\alpha, \beta, \gamma \in V^*$, $Z \in V - \Sigma$, and $Z \rightarrow \gamma \in P$. Let \Rightarrow^* be the transitive reflexive closure of \Rightarrow. The language generated by G is $L(G) = \{w \in \Sigma^* \mid S \Rightarrow^* w\}$.

e-limited on $h_2^{-1}(D_2 \cap R)$. Since $e \in D_2$, $e \in h_2^{-1}(D_2)$. Since R is regular, $R \cup \{e\}$ is regular. Since h_1 is a homomorphism, $h_1(e) = e$. Thus, if

$L = h_1^{-1}(h_2^{-1}(D_2 \cap R))$ and h_1 is e-limited on $h_2^{-1}(D_2 \cap R)$, then

$L \cup \{e\} = h_1^{-1}(h_2^{-1}(D_2) \cap (R \cup \{e\}))$ and h_1 is e-limited on $h_2^{-1}(D_2) \cap (R \cup \{e\})$. This yields Theorem C.

Let L be a context-free language such that $e \notin L$, and let $G = (V, \Sigma, P, S)$ be a Greibach Normal Form grammar such that $L(G) = L$. For each symbol $Z \in V$, let \overline{Z} be a new symbol. Let $\Delta = V \cup \{\overline{Z} \mid Z \in V\}$. Let p and q be two new symbols, $p, q \notin \Delta$. Let $G_0 = ((p, q) \cup \Delta, \Delta, P_0, p)$ be the left linear grammar obtained by defining P_0 as follows:

i) $p \to Sq$ is in P_0;

ii) for each $Z \in V - \Sigma$, $a \in \Sigma$ such that $Z \to a$ is in P, $q \to a\overline{a}Zq$ is in P_0;

iii) for each $Z, Y \in V - \Sigma$, $a \in \Sigma$ such that $Z \to aY$ is in P, $q \to a\overline{a}ZYq$ is in P_0;

iv) for each $Z, Y_1, Y_2 \in V - \Sigma$, $a \in \Sigma$ such that $Z \to aY_1Y_2$ is in P, $q \to a\overline{a}ZY_2Y_1q$ is in P_0;

v) $q \to e$ is in P_0.

Let R be the regular set $L(G_0)$. Let $\mu: \Delta^* \to \Delta^*$ be the function which assigns to each $w \in \Delta^*$, the unique minimum length string $\mu(w)$ obtained by applying the congruence on Δ^* determined by defining $a\overline{a} \sim ZZ \sim e$ for each $a \in \Sigma$, $Z \in V - \Sigma$, i.e., $w \sim \mu(w)$ and if $w \sim y$ and $y \neq \mu(w)$, then $|y| > |\mu(w)|$.

Let t be one-half the number of symbols in Δ. We claim that $D_1 \cap R$ is a set of "histories" of left-to-right derivations of strings in $L(G) = L$.

Further, if $h_1: \Delta^* \to \Sigma^*$ is the homomorphism determined by defining $h_1(a) = a$ and $h_1(\overline{a}) = h_1(Z) = h_1(\overline{Z}) = e$ for $a \in \Sigma$, $Z \in V - \Sigma$, then we claim that
h₁(Dₜ∩R) = L and h₁ is k-limited on Dₜ∩R for k = 4.

By construction of G₀, it is immediate that h₁ is 4-limited on L(G₀) = R and therefore on Dₜ∩R.

Since G is a Greibach Normal Form grammar, for every n ≥ 1, a₁,...,aₙ ∈ Σ, and v ∈ (V₋Σ)*, S *⇒ a₁...aₙv in G if and only if there is a left-to-right derivation S *⇒ a₁...aₙv with n steps in G.⁴ Thus, to show that h₁(Dₜ∩R) = L, it is sufficient to establish the following technical result.

Claim. For each n ≥ 1, a₁,...,aₙ ∈ Σ, v ∈ (V₋Σ)*, there is a left-to-right derivation S *⇒ aₙ...a₁v in G if and only if there exists w ∈ Δ* such that μ(w) = v R, h₁(w) = a₁...aₙ, and there is a derivation p *⇒ wq with n+1 steps in G₀.

The proof of the claim is by induction on n and depends on the construction of G₀. We shall sketch the proof of the induction step and leave the details to the reader. Assume the result for some n ≥ 1.

Suppose that for some a₁,...,aₙ₊₁ ∈ Σ, v ∈ (V₋Σ)*, there is a left-to-right derivation S *⇒ a₁...aₙ₊₁v in G. Thus, for some Z ∈ V₋Σ, u ∈ (V₋Σ)*, there is a left-to-right derivation S *⇒ a₁...aₙZu in G and there is a production Z → aₙ₊₁X in P where X ∈ (V₋Σ)* and Xu = v. By the induction hypothesis, there exists w₁ ∈ Δ* such that μ(w₁) = (Zu) R = u RZ, h₁(w₁) = a₁...aₙ, and there is a derivation p *⇒ w₁q with n+1 steps in G₀.

⁴. A derivation is left-to-right if in each step the leftmost nonterminal symbol is rewritten.
Since \(\mu(w_1) = u^R z \), \(\mu(u^R z) = u^R z \). Since \(z \in V - \Sigma \), \(\mu(u^R z) = \mu(u^R)z \). Thus, \(\mu(u^R) = u^R \).

There are three possibilities for the form of the production \(z \Rightarrow a_{n+1} x \):

- \(x = e \) so that \(z \Rightarrow a_{n+1} \) is in \(P \), \(q \Rightarrow a_{n+1} a_{n+1} \) is in \(P_0 \), and
 \(\nu = \epsilon u \);
- \(x = Y \) for some \(y \in V - \Sigma \) so that \(z \Rightarrow a_{n+1} y \) is in \(P \), and
 \(q \Rightarrow a_{n+1} a_{n+1} \) \(\Rightarrow y_{n+1} q \) is in \(P_0 \), and \(\nu = yu \);
- \(x = X \) for some \(y, z \in V - \Sigma \) so that \(z \Rightarrow a_{n+1} y_1 y_2 \) is in \(P \), and
 \(q \Rightarrow a_{n+1} a_{n+1} \) \(\Rightarrow y_{n+1} y_{n+1} q \) is in \(P_0 \), and \(\nu = y_1 y_2 u \).

In each case, the string \(w = w_1 a_{n+1} a_{n+1} \) is the required string in \(\Delta^* \). To see this, note that \(x^R \in (V - \Sigma)^* \) so that \(\mu(w) = \mu(w_1 a_{n+1} a_{n+1} z) x^R \), and that
\[
\mu(w_1 a_{n+1} a_{n+1} z) = \mu(w_1 z) = \mu(u^R z) = u^R, \quad \text{so that} \\
\mu(w) = u^R x^R = (xu)^R = \nu^R. \]

Also,
\[
h_1(w) = h_1(w_1) h_1(a_{n+1}) h_1(a_{n+1}) h_1(z) h_1(x^R) = a_n \ldots a_{n+1}. \]

Finally, since there is a derivation \(p \Rightarrow w_1 q \) with \(n+1 \) steps in \(G_0 \) and \(q \Rightarrow a_{n+1} a_{n+1} \) \(\Rightarrow x^R \) \(q \) is in \(P_0 \), there is a derivation \(p \Rightarrow w_1 a_{n+1} a_{n+1} \) \(\Rightarrow x^R \) \(q \) with \(n+2 \) steps in \(G_0 \).

Conversely, suppose that there exists \(w \in \Delta^* \) such that there is a derivation \(p \Rightarrow wq \) with \(n+2 \) steps in \(G_0 \). From the construction of \(G_0 \), we see that \(h_1(w) = a_n \ldots a_{n+1} \) for some \(a_n \ldots, a_{n+1} \in \Sigma \), and that \(\mu(w) \in (V - \Sigma)^* \).

Let \(\nu = (\mu(w))^R \). Since \(G_0 \) is a left linear grammar, every derivation from \(p \) is a left-to-right derivation. Thus, there exists a unique pair \(y, z \in \Delta^* \) such that \(yz = w \), there is a derivation \(p \Rightarrow yq \) of length \(n+1 \) in \(G_0 \), and \(q \Rightarrow zq \) is in \(P_0 \). Applying the induction hypothesis to \(y \) and considering the three possible forms for \(z \) yields the conclusion that there is a left-to-right
derivation \(S \Rightarrow a_1 \ldots a_n a_{n+1} v \) in \(G \).

This completes our proof of the claim.

To see that \(L = h_1(D_t \cap R) \), note that for any \(n \geq 1 \) and \(a_1, \ldots, a_n \in \Sigma \),
\(a_1 \ldots a_n \in L = L(G) \) if and only if there is a left-to-right derivation
\(S \Rightarrow a_1 \ldots a_n \) in \(G \). By the Lemma, \(S \Rightarrow a_1 \ldots a_n \) in \(G \) if and only if there
exists \(w \in \Delta^* \) such that \(\mu(w) = e \), \(h_1(w) = a_1 \ldots a_n \), and there is a derivation
\(p \Rightarrow wq \) with \(n+1 \) steps in \(G_0 \). Now \(p \Rightarrow wq \) in \(G_0 \) implies that \(p \Rightarrow wq \Rightarrow w \)
since \(q \rightarrow e \) is in \(P_0 \), so that \(w \in L(G_0) = R \). Since \(\mu(w) = e \), \(w \in D_t \). Thus,
\(a_1 \ldots a_n \in L \) if and only if \(a_1 \ldots a_n \in h_1(D_t \cap R) \). From the remarks above,
this yields Theorem C. \(\square \)

We now prove Theorem B from Theorem C. Suppose \(L \) is a context-free
language and \(L - \{ e \} \) is generated by a grammar \(G = (V, \Sigma, P, S) \) in Greibach Normal
Form. Let \(\Delta = V \cup \{ \overline{Z} : Z \in V \} \) and suppose the homomorphisms \(h_1 : \Delta^* \rightarrow \Sigma^* \)
and \(h_2 : \Delta^* \rightarrow \Delta_2^* \) and the regular set \(R \subseteq \Delta^* \) are as defined in the proof of Theorem
C, so that \(L - \{ e \} = h_1(h_2^{-1}(D_2) \cap R) \). We use a technique of Ginsburg, Greibach,
and Hopcroft's \[5\] to construct a length-preserving homomorphism \(h_3 \), a
homomorphism \(h_4 \), and a regular set \(R' \) such that \(L - \{ e \} = h_3(h_4^{-1}(D_2) \cap R) \).

Let \(\Gamma \) be an alphabet consisting of symbols \([yay']\) with \(a \in \Sigma \),
y, y' \in \Delta^*, h_1(y) = h_1(y') = e, and \(0 \leq |y|, |y'| \leq 4 \). (Recall that \(h_1 \) is
4-limited on \(h_2^{-1}(D_2) \cap R \).) Let \(R' \subseteq \Gamma^* \) be the regular set
\(R' = \{ [w_1] \ldots [w_n] : n \geq 1, w_1, \ldots, w_n \in R \} \). Let \(h_3 : \Gamma^* \rightarrow \Sigma^* \) and \(h_4 : \Gamma^* \rightarrow \Delta_2^* \)
be the homomorphisms determined by defining \(h_3([yay']) = a \) for \(a \in \Sigma \) and
\(h_4([yay']) = h_2(yay') \). Note that \(h_3 \) is a length-preserving homomorphism and
\[h_3([w]) = h_1(w) \text{ for } [w] \in \Gamma. \] It is easily verified that
\[h_3(h_4^{-1}(D_2) \cap R') = h_1(h_2^{-1}(D_2) \cap R) = L \setminus \{e\}. \] Also,
\[L \cup \{e\} = h_3(h_4^{-1}(D_2) \cap (R' \cup \{e\})). \] This yields Theorem B.

One should note that Theorem B is the basis for the result stated in Ginsburg and Greibach [4] that the class of context-free languages is a principal abstract family of languages with generator \(D_2\). The use of a Greibach Normal Form grammar in the proof of Theorem C is similar to the use of such grammars in the proof of the main result of Greibach [6].

In the proofs of Theorems B and C, the construction of the homomorphisms depended on the size (number of symbols) of a Greibach Normal Form grammar for \(L \setminus \{e\}\). The proof of Theorem C can be altered so that the homomorphisms depend only on the alphabet \(\Sigma\) (where \(L \subseteq \Sigma^*\)), by using an idea in the proof of the Chomsky-Schützenberger Theorem in Ginsburg [3]. However, the limit on the erasing done by \(h_1\) will then depend on the grammar \(G\), rather than being fixed at 4, and the homomorphisms constructed for Theorem B depend on the amount of erasing.
References

1] N. Chomsky.
 Context-free grammars and pushdown storage.

 The algebraic theory of context-free languages.
 In P. Braffort and P. Hirschberg, editors, Computer Programming and Formal

 Principal AFL.

 The hardest context-free language.

 A new normal form theorem for context-free phrase structure grammars.

8] A. Salomaa.
 Formal Languages, 68-71.