This report describes a set of Fortran subroutines for solving linear systems with matrices of the
form

cT p

where the n X n matrix A may be singular but the n by m matrices B and C are such that M
is nonsingular and well-conditioned. When A is large but has special structures (e.g., sparseness,
band or profile structures), a block Gaussian elimination algorithm is commonly used because it
allows solution of systems with M by solving only with A. Unfortunately this algorithm is unstable
numerically when A is nearly singular and can produce inaccurate solutions. This report describes
an implementation of a stable variant of the block elimination algorithm, written in Fortran-77 and
built upon two popular linear-algebra packages (Linpack and YSMP).
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1 Introduction
This report describes a set of Fortran subroutines for solving linear systems of the form

mfs] =& Bl[E]=1] (L)

where the n X n matrix A may be singular but the n X m matrices B and C are such that M
is nonsingular and well-conditioned. We assume that A has a nullity not greater than 1 and
m <L n.

Systems of the form (1.1) arise, for example, in continuation methods, homotopy methods, and
constrained optimization [1], and the solution of such systems often constitutes the most time-
consuming part of the overall computation. Since M is assumed to be well-conditioned, the use
of Gaussian Elimination on M with some form of pivoting is guaranteed to be stable. However,
this approach is only suitable when n is small or when A is dense since the whole matrix M
has to be stored to allow for fill-ins. When A is large but sparse, this approach is impractical:
pivoting in (a) below could produce a matrix of the form (b), resulting in complete fill-in.
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In this case, or when A has already been factored, it becomes desirable to employ other algorithms
- for solving systems with M which involve solving systems with A only. The following block
elimination algorithm has this desirable property:

Algorithm BE:
solving a bordered system by block elimination
Solve AV = B,
Aw = f.
Solve (D - CTV)y = (g — CTw).
Compute z = w - Vy.

Unfortunately Algorithm BE is unstable numerically when A is nearly singular and can produce
completely inaccurate solutions (z,y). Consider, for example, the following matrix:

1 10 1 2
0 ¢ 1 1| =|1+4+¢{,
010 1 1

where |e| is small enough that 1+ ¢ = 1 in floating-point arithmetic for the machine at hand.
The correct values for v and w of Algorithm BE (with n =2, m = 1) are v = (=1/¢,1/¢)T, and
w = (1~-1/¢,14+1/€)T, but when executed with the floating-point arithmetic of our machine, w
will instead equal (—1/¢,1/€)T, producing the erroneous solution vector z = (0,0)7.

In 3, 4] a stable variant of BE, the Deflated Block Elimination Algorithm (or “Algorithm DBE”),
is derived using deflation techniques developed in [2]. This algorithm retains the property that
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only systems involving A need be solved, allowing continued exploitation of A’s possibly special
structure. For a survey of algorithms for solving (1.1), the reader is referred to [1].

In the remainder of this report, we will present in detail the algorithms used by the various sub-
routines. We will then discuss general implementation details, after which the calling sequences
will be shown. These will be followed by a test driver which illustrates at once how our routines
might be used and the advantages of our package when A is nearly singular. A complete listing
of the Fortran code is included at the end.
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2 Algorithms

2.1 Deflated Decomposition of Solutions of Nearly Singular Systems"
Consider the system |
Az=p (2.1)

where A may be singular with nullity of at most one. Let the singular values of A be
denoted by {o;}/.; and the corresponding left and right singular vectors by {u;}%, and
{vi},. Then the solution z can be expressed as ' :

n-1 qu ,qu
Z iPyy. 4+ (Yn
z ( o; )i + ( On )n,

=1

‘where we have isolated the term corresponding to the smallest singular value o,. Therefore,
z can be uniquely represented as

=z+ 552¢, (2.2)
where
n-1 qu
a=) (=),
i=1 4

6 =0n, ¢ = Un, Y = Un, and ¢p = ¥Tp. We shall call z; the deflated solution of (2.1) and
(2.2) the deflated decomposition of z [2]. The basic idea behind the deflated decomposition
is to break z into two parts: a part in the approximate null space ¢ and a deflated part z4
purged of ¢.

Computing the deflated decomposition according to its definition requires computing the
singular value decomposition of A, which is expensive for large problems. It is therefore
desirable to have alternative algorithms that require lower costs. For example, the algorithm
implemented in this report requires only computing the LU factorization of A.

It can be shown that z4 is the unique solution to the following system:

PyAzqg = Pyp
Pyzq = 24,
where P, with ||u|| = 1 denotes the orthogonal projector I — uuT. Thus, z4 is the solution

to a singular but consistent system “close” to (2.1). This characterization can be used to
derive the following simple algorithm for computing the deflated solution z4.



Algorithm DF:
Given ¢,9, and 6§, computes the deflated solution z4 of Az = p:

Compute p = Pyp = p — (¢Tp)y
Solve Azgq=p for zg.
2d +— P¢Zd.

The singular vectors ¢ and ¢ and the singular value § can be computed, for example, by
the following inverse iteration algorithm:

Algorithm II

Make an initial guess for 9
Repeat until convergence

Solve A¢' = 1 for ¢
¢=4¢'/||¢'Il
Solve ATy = ¢ for ¢/
V=4[]
End
Solve A¢' = o for ¢’ once more
6 =1/||¢'l|
o=4'/||¢ll

In practice, this algorithm usually converges within two or three iterations if A is nearly
singular.

2.2 Deflated Block Elimination
Using Algorithm DF, we can compute the deflated decompositions of V and w of Algorithm

BE: 1
V= Va + _6-¢(1/}TB)’

1
w = wq + 3¢(1/)Tf)-
Then it can be shown [4] that the solution to (1.1) is given by

z=wqg— Vi + ad
y=4p

where a, B is the solution of the following m + 1 by m + 1 linear system:

2(5)= (o)

—( ¢ ¥TB
E=<C’T¢ D—CTV4>‘

where




Algorithm DBE:

Use Algorithm II to compute ¢, and §.
Compute deflated solution V of AV = B.
Compute deflated solution w of Aw = f.
Solve the m + 1 by m + 1 linear system:

2(5) = (s2cku).

p=( 8 vTB
=\cT¢ D-CTVy)"

Assemble the solution by substituting into the following formula:

where

z=wqg—Vif+ a¢
y=25

It can be proven that Algorithm DBE is numerically stable and that E is nonsingular if
M is nonsingular [4]. It also retains the desirable property of Algorithm BE of requiring
only a solver for A and hence can exploit special structures in A. It is almost as efficient as
Algorithm BE, the only overhead being two extra backsolves for the deflated solutions and
a few more for the null vectors. Our implementation is economical with respect to space
as well, requiring only five vectors of size n for working space. In light of these facts, it
is entirely practical to use Algorithm DBE for any bordered system, regardless of whether
A is nearly singular or not, ensuring accurate results without the need for specific tests of
singularity. '

3 Implementation Notes

Our implementation of Algorithm DBE is based on two popular packages for linear systems:
Linpack [5] and the Yale Sparse Matrix Package (7, 6]. We have included routines for use with
Linpack’s general, band and tridiagonal matrix routines, and routines for use with YSMP’s
general routines with and without compressed storage, as well as with its routines for symmetric
matrices. The calling sequences have been designed to mirror closely those of the packages that
they use, with the aim of making as painless as possible their incorporation into programs that
may already use the base packages. The routines are written in standard Fortran-77 and are thus
portable to any machine supporting that language. We have tested them on VAX 11 /780, DEC-
20 and Apollo DN-300. They assume the availability of the Basic Linear Algebra Subroutines
(BLAS), which is included in LINPACK.

As described above, there are routines for use with Linpack’s general, band, and tridiagonal
matrix routines (SGE..., SBD..., and SGT..., respectively). The routines SYC..., SYN..., and
SYS... are for use with YSMP’s general routines with and without compressed storage, and for
symmetric matrices, respectively. Within each set of routines, the driver S..DBE implements
Algorithm DBE. This is the only required user interface. S..DBE calls the auxiliary routines
S..DF for deflated decomposition and S..II for inverse iteration. These routines may also be
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called independently for specialized applications. For example, the S..DF routines can be used to
compute the deflated decomposition of linear systems with AT. We include the S..BE routines,
which do not use deflation, for comparison.

The routines S..DBE require two work arrays which upon return contain most of the intermediate
computations. WORK]1, whose leading dimension must be at least n, contains Vy in its first m
columns, and wq in the (m+ 1)"' . The next two columns of WORK1 hold the left and right null
vectors from the matrix A, ¥ and ¢. The small intermediate matrix E is stored in the first m+1
columns of WORK2, whose leading dimension must be at least m + 1. The vector T B is placed
in the (m + 1)** column of the same array. Similarly, S..BE returns v in the first m columns of
WORKI1 and w in the m + 1-th column of WORK1. The Schur complement D — CTV is stored
in WORK2.

The argument JOB (a character string of six characters or less) is used to indicate which inputs
were the same as in the last call to S..DBE. When JOB contains ’A’, ’B’, °’C’ ’D’, ’F’, and 'G’
it indicates that the arrays A, B, CT, D, F, and G stay the same, respectively. If JOB contains
’S’, it signifies that A is new but already factored by the corresponding Linpack routines S..CO
or S..FA.

The auxiliary routines also take a JOB parameter which allows precomputed results to be supplied
to them. Since they are internal, and less complex, the parameter is an integer. S..DBE makes
two calls to S..DF; the first call usually requires computation of singular vectors by S..II, but
the second always makes use of the values obtained by the first call. SGEII (or SGBII) can
profit from the singular vector computed by SGECO (or SGBCO) by accepting it as input and
using it as its initial guess. S..II also allows specification of an upper limit on the number of
iterations to perform. When the initial guess is the singular vector provided by SGECO or
SGBCO, convergence generally occurs immediately; for other cases we permit a maximum of
three iterations. S..BE can accept a matrix in factored form, and can also reuse the values which
were returned to the user in the work arrays in a previous call to it.



4 Sample Driver p

We now demonstrate use of our package with a test driver which calls each of our main routines.
We have chosen three nearly singular matrices of suitably different forms:

1) matrix T, an upper-triangular matrix with +1 along the diagonal and -1 in all entries
above it, used to test SGEDBE;

2) matrix W, a tridiagonal matrix used to test SGBDBE and SGTDBE: W = W — /\max(W)I ,

where _ ; -
10 1
1 9 1
1 8 - 0
W= 0 1 ,
1-1 1
0 1 -2
el . 1
i 1 -10)

"and Amax(W) = 10.7461942 ;

and 3) matrix P, of the form P = Aj — Ayin(Ap)I, where Ay, is the 5-point discrete LaPlacian
operator, used to test SYNDBE and SYSDBE.

A target solution is built using a random-number generator. This vector is multiplied by each
matrix M to produce a right-hand side from which to solve. We solve each system first with the
regular (non-deflated) block elimination algorithm and then with our deflated block elimination
algorithm, comparing each newly determined solution with the exact solution to calculate the
error. The results of our tests are summarized in the following table.

DBE Error Error
Matrix routine without deflation with deflation
T SGE 5.70781400 0.00013622
w SGB 1.94438300 0.00001813
w SGT 1.49100000 0.00001882
P SYN *k* 0.00000368
P SYS 5.36235400 0.00000174

*kkk

produced division by 0

The Fortran code which produced this output follows. Included are several subroutines that
demonstrate how to set up a matrix for the various representation schemes.
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program tester

driver for testing the routines in DBEPACK
parameter (lda = 50)

real alpha, lambda,epsilo

integer n,ipvt(lda,2)
real a(lda,lda),workl(lda,10),work2(lda,10)

real 1(ida),di(lda),u(lda)

real ay(1000),ia(lda), ja(1000),rsp(1000)

integer r(lda),c(lda),ic(lda),isp(1000),nsp,
* case,path,flag

equivalence (isp,rsp)

real t

integer seed

real b(lda,lda),cT(lda,|da),d(ida,Ida),f(ida), g(lda)
real x(lda),y(ida), «xp(ida)

character*6 jobl, job2

data seed / 111999 /

data nsp /900/, lratio /1/
do5i =1,lda
r(i)
c(i) =i
ic(i) =i
5 continue

m=5
jobl
job2

'a

set up border and target solution

do 15 j = 1, Ida

do 10 k = 1,m
b(j,k) = ranf(seed)
cT(k,j) = ranf(seed)
10 continue



o

x(j) = ranf(seed)
15 continue

do 25 j = 1,m
do 20 k = 1,m
d(j,k) = ranf(seed)
20 continue

25 continue

2000 format (' without defliation’)
2010 format (' with deflation’)

write (6,1000)

1000 format (' building upper-triangular matrix of 1'’'s and -1''s’/)
n =25
call ebl (a,lda,n)

build rhs for system
call brhs (n,m, a,lda, b,lda,cT,Ida,d,lda, x, f.g)

solve system without deflation
call sgebe (n,m, a,ida, ipvt, b,lda,cT,Ida,d,Ida, f,g, xp.,y,
* workl, Ida,work2, Ida, jobl)

determine error
write (6,2000)
call compare (n,m,x,xp,y)

solve system with deflation
call sgedbe (n,m, a,lda, ipvt, b,lda,cT,Ida,d,lda, f,g, xp.y,
* workl, |da,work2, Ida, job2)

determine error
write (6,2010)
call compare (n,m,x,xp.,y)

write (6,1005)
1005 format (//’ building matrix W’/)
call ebW (a,lda,n)
call brhs (n,m, a,lda, b,lda,cT,lda,d,|da, x, f,g)

first test Linpack routines for band matrices

call bbW (a,lda,n, ml,mu)

call sgbbe (n,m, a,lda, mi,mu,ipvt, b,lda,cT,lda,d,Ida,
* f,.g., xp.,y, workl,lda,work2, |da, jobl)
write (6,2000)



call compare (n,m,x,xp,y)

c
call sgbdbe (n,m, a,lda, ml,mu,ipvt, b,lda,cT,lIda,d,lda,
* f.g, xp,y, workl,lda,work2,lda, job2)
write (6,2010)
call compare (n,m,x,xp,y)
c
repeat procedure with Linpack routines for tridiagonal matrices
call tbW (n, I,di,u)
call sgtbe (N,M, L,DI,U, B,LDA, CT,LDA, D,LDA,
* F.G, Xp,Y, WORK1,LDA,WORK2,LDA, jobl)
write (6,2000)
call compare (n,m,x,xp,y)
c
call sgtdbe (N,M, L,DI,U, B,LDA, CT,LDA, D,LDA,
* F.G, Xp,Y, WORK1,LDA,WORK2,LDA, job2)
write (6,2010)
call compare (n,m,x,xp,y)
c

write (6,1010)
1010 format (//’ building matrix P’/)
n =16
call ebP (a,lda,n)
call brhs (n,m, a,lda, b,lda,cT,lda,d,lda, x, f,g)

test first with YSMP routines for nonsymmetric matrices

call nbP (n, ia,ja,a)

call synbe (N,M, R,C,IC, IA,JA,A, NSP,ISP,RSP,ESP,
* B,LDA, CT,LDA, D,LDA, F,G, Xp,Y, WORK1,LDA,WORK2,LDA, jobl)
write (6,2000)

call compare (n,m,x,xp,y)

c
call syndbe (N,M, R,C,IC, IA,JA,A, NSP, ISP, RSP,ESP,
* - B,LDA, CT,LDA, D,LDA, F,G, Xp,Y, WORK1,LDA,WORK2,LDA, jobl)
write (6,2010)
call compare (n,m,x,xp,y)
c
c repeat procedure with YSMP routines for symmetric matrices
call sbP (n, ia,ja,a)
call sysbe (N,M, C,IC, IA,JA,A, NSP,ISP,RSP,ESP,
* B,LDA, CT,LDA, D,LDA, F,G, Xp,Y, WORK1,LDA,WORK2,LDA, jobl)
write (6,2000) '
call compare (n,m,x,xp,y)
c




o

OO 00

call sysdbe (N,M, C,IC, IA,JA,A, NSP,ISP,RSP,ESP,

* B,LDA, CT,LDA, D,LDA, F,G, Xp,Y, WORK1,LDA,WORK2,LDA, job2)
write (6,2010)
call compare (n,m,x,xp,y)

end

1040

1083

2000

subroutine compare (n,m,x,xp,y)

computes and prints the norm of the difference
between x and (xp,y)

integer n

real x(n),xp(n),y(m)

real snrm

write (6,1040) (x(j),j=1,n+m)

format (//t5,'original x,y:'/(t5,610.5))
write (6,1053) (xp(j).j=1,n), (y(}).j=1.m)
format (/t5,'new x,y:’/(t5,8f10.5))

call scopy (m, y,1, xp(n+1),1)

call saxpy (n+m,-1.,x,1,xp,1)

snrm = sarm2(n+m,xp,1)

write (6,2000) snrm

format (£10,’norm of error =',f15.8)

end

subroutine brhs (n,m, a,lda, b,ldb,cT,ldc,d,dd, x, f.g)

builds a right hand side: copies b, c¢T and d into a, then
multiplies the larger matrix (M) by x to produce f and g

integer n,m, lda,|db,ldc,!dd
real a(lda,n)
real b(ldb,m),cT(ldc,n),d(idd,m),x(ida),f(n),g(m)

do j =1,m
call scopy (n, ¢T(j.1),Ida, a(n+j,1),!da)
call scopy (n, b(1,j),1, a(l,n+j),1)
call scopy (m, d(1,j),1, a(n+l,n+j),1)
enddo

call eaib (a,lda,n+m,x,f)
call scopy (m, f(n+1),1, g,1)
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end

10
20

subroutine ebl (a,lda,n)

buiids upper-triangular matrix of 1's and -1's in SGE-format

integer n,ipvt(n)
real a(lda,n)

do 20 i = 1,n-1
a(i,i) =1.
do 10 j = i+l,n
a(i,j) = -1.
a(j,i) = 0.
continue
continue
a(n,n) = 1.

end

50
40

60

subroutine ebW (a,lda,n)

builds matrix W in SGE-format

integer lda,n
real a(lda,lda)

n=21
do 40 ii =1,n
do 50 jj = 1,n

a(ii,jj) =0.
continue
continue
a(1,1) = -0.7461942
do 60 ii = 2,n
a(ii,ii) =11. - ii - 10.7461942
a(ii,ii-1) = 1.
a(ii-1,ii) =1.
continue '

end

subroutine ebP (a,lda,n)
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builds matrix P in SGE-format

integer i,j,k
integer lda,n,nsqrt
real a(lda,!da),lambda,alpha,x,y,h,diaval,epsilo

nsqrt = sqrt(float(n))
h = float(nsqrt) + 1.
lambda = 8 * (sin (3.1415926 / (2%h))) ** 2

do 50 i =1,n
do 60 j = 1,n
a(i,j) =0.
continue
continue

i=0

do 10 j = 1,nsqgrt
i=1i+1
a(i,i) = 4. - lambda
do 20 k = 2,nsqrt

i=i+1
a(i,i) = 4. - lambda
a(i,i-1) = -1.
a(i-1,i) = -1.
continue
continue
~ do 30 i = nsqrt+l,n

a(i,i-nsqrt) = -1.
a(i-nsqrt,i) = -1,
continue

end

subroutine bbW (a,lda,n, ml,mu)

builds matrix W in SGB-format

integer lda,n, ml,mu,m
real a(lda,n)

k(i,))=i-j+m
n =21
ml =1

12



50
40

60

mu =1
m=ml +mu+1

do 40 ii=1,ml + ml + mu + 1
do 50 jj =1,n
a(ii,jj) = 0.
continue
continue
a(k(1,1),1) = -0.7461942
do 60 j = 2,n
a(k(j,j), j) =11. -] - 10.7461942
a(k(j,j-1,j-1) = 1.
a(k(j-1.).)) 1.
continue

n

end

60

subroutine tbW(n,!,d,u)

builds matrix W in SGT-format

integer n
real 1(n),d(n),u(n)

n=21

do 80 i =1,n
1) =1.
d(i) =11. - i - 10.7461942
u(i) =1.

continue

end

subroutine nbP (n, ia,ja,a)
builds matrix P in NDRV-format

integer n,nsqrt, ia(l),ja(l), aptr
real a(l),h,lambda

nsqrt = sqrt(float(n))
h = float(nsqrt) + 1.

lambda = 8 * (sin (3.1415926 / (2%h))) *x 2

aptr =1

13



do 100 i 1,n
ia(i) = aptr
if ((i-nsqrt) .le. 0) goto 10
a(aptr) = -1. )
ja(aptr) = i-nsqrt
aptr = aptr + 1

10 ~continue
it ((mod(i-1, nsqrt) .eq. 0) .or. (i-1 .le. 0)) goto 20
a(aptr) = -1.
ja(aptr) = i-1
aptr = aptr + 1
20 continue
a(aptr) = 4. - |lambda
- ja(aptr) =i
aptr = aptr + 1
if ((mod(i, nsqrt) .eq. 0) .or. (i+l .gt. n)) goto 30
a(aptr) = -1.
ja(aptr) = i+l
aptr = aptr + 1
30 continue
if ((i+nsqrt) .gt. n) goto 40
a(aptr) = -1.
ja(aptr) = i+nsqrt
aptr = aptr + 1
40 continue
100 continue
ia(n+l) = aptr

end

subroutine sbP (n, ia,ja,a)
builds matrix P in SDRV-format

integer n,nsqrt, ia(l),ja(l), aptr
real a(l),h, lambda

nsqrt = sqrt(float(n))
h = float(nsqrt) + 1.
lambda = 8 * (sin (3.1415926 / (2%h))) ** 2

aptr =1
do 100 i 1,n
ia(i) = aptr
a(aptr) = 4. - lambda
jalaptr) =i
aptr = aptr + 1

14



if ((mod(i, nsqrt) .eq. 0) .or. (i+l .gt. n)) goto 30
a(aptr) = -1.
jalaptr) = i+l
aptr = aptr + 1
30 continue
if ((i+nsqrt) .gt. n) goto 40
a(aptr) = -1.
ja(aptr) = i+nsqrt
aptr = aptr + 1
40 continue
100 continue
ia(n+1) = aptr

end
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5 Source Code Listings

5.1 SGEDBE

O OO0 000000000000

The routines in this package implement the deflated block-
-elimination algorithm for solving systems of the form:

| | A B |
b= !
I | ¢t b |

I x| | £ 1
=1
Iyl |l gl

discussed in T. F. Chan and D. Resasco, "Generalized Deflated
Block=Elimination®, Technical Report YALEU/DCS/RR-337, Dept. of
Computer Science, Yale Univ., 1985.

This set of routines calls LINPACK’s SGE- routines and the SBLAs.
Implemented by Thomas A. Grossi, Yale University, 1985.

CANININININININININININININININININININININININININININININININININ NN

Co<><OMLIILOLILILIOLIIOILOILILILDILILIILILILILILCILILILILILOLO IO L

ENANNNNNNNNNNNNNNNNINININININANININININININININININININY

c

OO OO OO0 000000000000

SUBROUTINE SGEDBE

* (N,M, A,LDA, IPVT, B,LDB, CT,LDC ,D,LDD, F,G, X,Y,
* WORK1,LDW1, WORK2,LDW2, JOB)

the deflated block elimination algorithm

arguments:

on entry:

N INTEGER
the order of the matrix A

M INTEGER
the order of the borders to A in M

A REAL (LDA,N)
the matrix to be factored.

LDA INTEGER
the leading dimension of the array A. LDA >= N.
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IPVT

LbB

cT

LDC

LDD

WORK1

LDW1

WORK2

LDwW2

JoB

INTEGER(N+M)
an integer vector of pivot indices. The last m spaces are
required for working space

REAL (LDB,M)
right-side border to matrix A in matrix M

INTEGER
the leading dimension of the array B. LDB >= N.

REAL (LDC,N)
bottom border to matrix A in matrix M

INTEGER ,
the leading dimension of the array CT. LDC >= M.

REAL (LDD, M)
lower right-hand entries of M

INTEGER (
the leading dimension of the array D. LDD >= M.

REAL (N)
REAL (M)
right-hand side to solve with

REAL (LDW1,M+4)
used to hold Vd, Wd, psiT B, psi and phi

INTEGER
the leading dimension of the array WORK1. LDW1 >= N.

REAL (LDW2,M+3)
used to hold E, g’,psiT f and delta

INTEGER
the leading dimension of the array WORK2. LDW2 >= M+1.

CHARACTER*6
indicates which inputs are the same as in the last call
to SGEDBE. If there was no such call, set JOB =
’ ' or 'a ' (see below). Otherwise, JOB contains
as many of the following apply:
'A’ if A stays the same
'S’ if A is new but already factored by SGECO or SGEFA
'B’ if B stays the same
'C’ if CT stays the same
'D’ if D stays the same
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'F' if F stays the same
'G’ if G stays the same

on exit:

A REAL (LDA,N)
contains an upper triangular matrix and
the multipliers which were used to obtain it. The
factorization can be written A = L*U, where L is the
product of permutation and unit lower triangular ma-
trices and U is upper triangular.

IPVT INTEGER(N+M)
an integer vector of pivot indices. The last m spaces are
required for working space.

X REAL (N)
Y REAL (M+1)
solution vector (Y(M+1) is an extra storage location).

WORK1  REAL(LDW1, M+4)
used to hold Vd, Wd, psiT B, psi and phi

WORK2  REAL (LDW2,M+3)
used to hold E, g’,psiT f and delta

Savings on storage:
the following pairs of inputs may be equivalent:

(X,F) (Y,G) (B,WORK1) (D,WORK2)
In general, if equivalent storage is used, then a change in any
of the inputs in either of the groups (A,B,C,D) or (F,G)
requires that the entire group be re-entered. Specific
exceptions to this rule can be determined by examining
the algorithm.

INTEGER N,M, LDA,LDB,LDC,LDD,LDW1,LDW2, IPVT(N), AJOB

REAL A(LDA,N), B(LDB,M),CT(LDC,N),D(LDD,M), F(N),G(M), X(N),Y(M)
REAL WORK1(LDW1,M),WORK2(LDW2,M), DELTA

CHARACTER*6 JOB

LOGICAL NEWA,NEWB,NEWC,NEWD,NEWF,NEWG

the following constants are used to partition WORK1 and WORK2
into their various vectors; MP1 stands for the "extra" row and
column added to D in forming E. WORKl is primarily used for Vd,
and WORK2 for E

INTEGER MP1,CB,WD,CF,PSI,PHI,GP,ALPHA

MP1'= M + 1
CB = Mpl
WD =CB+1 -

18



OO OO OO0 OO0 000000000

(o]

CF = MP1

PSI = WD + 1
PHI = PSI + 1
GP = MP1 + 1
ALPHA = MP1

AJOB =0
IF (INDEX(JOB,’'A’) .NE. 0) AJOB = 2
IF (INDEX(JOB,’S’) .NE. 0) AJOB = 1

NEWA = (AJOB .NE. 2)

NEWB = (INDEX(JOB,’B’') .EQ. 0)
NEWC = (INDEX(JOB,’C') .EQ. 0)
NEWD = (INDEX(J0B,'D') .EQ. 0)
NEWF = (INDEX(JOB,'F’) .EQ. 0)
NEWG = (INDEX(JOB,'G’) .EQ. 0)
Algorithm:

factor A, compute psi, phi, delta
compute deflated solution to AV =B
compute deflated solution to A w=f

build E: | (D - eT Vd) (cT phi) |
| CbT delta |
build g': | g - cT Wd |
| cf |
solve E| y | = g' fory
| alpha |

x = Wd - Vd y + alpha phi

if AJOB =0 or 1, or B is new, we start by solving A Vd = B;
this may imply factoring A, and/or computing psi, phi and delta
IF (NEWA .OR. NEWB) THEN

for the first element of Vd, AJOB will tell sgeDF what to do
CALL SGEDF (A,LDA,N,IPVT, B(1,1), WORK1(1,PSI),WORK1(l,PHI),
DELTA, WORK1(l,1),WORK1(1,CB),AJOB)

compute remaining columns of Vd using results of first call
IF (M .GT. 1) THEN
DO10I=2M
CALL SGEDF (A,LDA,N,IPVT, B(1,I), WORK1(1,PSI),
WORK1(1,PHI), DELTA, WORK1(1,I),WORK1(I,CB),2)
CONTINUE
ENDIF
ENDIF

We must recompute Wd and Cf if A or F have changed
IF (NEWA .OR. NEWF) THEN
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CALL SGEDF (A,LDA,N,IPVT, F, WORK1(1,PSI),WORK1(1,PHI),
* DELTA, WORK1(1,WD),WORK2(CF,GP),2)
ENDIF

c build and factor E
IF (NEWA .OR. NEWB .OR. NEWC .OR. NEWD) THEN
CALL SCOPY (M, WORK1(1,CB),1, WORK2(MP1,1),LDW2)
WORK2 (MP1,MP1) = DELTA

D030 I=1,M
o
C compute D - ¢T Vd, column by column
DO 20 J =1,M

WORK2(I,J) = D(I,J) - SDOT(N, CT(I,1),LDC, WORK1(1,J),1)
20 CONTINUE

C compute cT PHI element by element
WORK2(I,MP1) = SDOT(N, CT(I,1),LDC, WORK1(1,PHI),1)
30 CONTINUE

[«
c factor E
CALL SGEFA (WORK2,LDW2,MP1,IPVT(N+1),INFO)
ENDIF '
o

C g’ depends on a lot of things
IF (NEWA .OR. NEWC .OR. NEWF .OR. NEWG) THEN
D040 I=1,M .
WORK2(I,GP) = G(I) - SDOT(N, CT(I,1),LDC, WORKi(1,wD),1)
40 CONTINUE
ENDIF

C compute x and y
CALL SCOPY (MP1, WORK2(1,GP),1, Y,1)
CALL SGESL (WORK2,LDW2,MP1,IPVT(N+1), Y, 0)
DOSOI=1,N
X(I) = WORK1(I,WD) - SDOT(M, WORK1(I,1),LDW1, Y,1)
50  CONTINUE
CALL SAXPY (N,Y(ALPHA), WORK1(1,PHI),1, X,1)
WORK2(1,GP+1) = DELTA

END

CININININININININININININININININININININININININININININININININ NN/
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C

SUBROUTINE SGEDF(A,LDA,N,IPVT,P,PSI,PHI,DELTA,ZD,CP,J0OB)

C
C computes the deflated decomposition of A z = p, returning
C solution in the form:

20



OO OO0 OO0 0000 000000000000 0O000O0O0O0O0O0O00O00O00O000000000O00n

z

=z + phi (c / delta)
d P

arguments are the same as for SGEDBE except:

on entry:

PSI
PHI

DELTA

JoB

on exit:
PSI
PHI

DELTA

ZD

CP

INTEGER

REAL(N)
contains rhs to system of equations

REAL (N)

REAL(N)

left and right null vectors to matrix A
(only on entry if JOB >= 2)

REAL
smallest singular value for matrix A
(only on entry if JOB >= 2)

INTEGER

JOB = 0 : start the deflation algorithm from scratch; i.e.,
it factors the matrix, performs inverse iteration to
determine PSI, PHI and DELTA, and then computes the
deflated solution.

: assume that A has already been factored by SGECO
or SGEFA (or a previous call to SYN[D]BE), and
continue from there.

JOB > 1 : additionally, PSI, PHI and DELTA have already

been computed.

JoB

"
—

REAL (N)

REAL (N)

left and right null vectors to matrix A
REAL

smallest singular value for matrix A
REAL (N)

deflated solution to system A z = p
Note that P and ZD may be the same vector

REAL
phiT p.
LDA,N,IPVT(N),JOB,IJ0B
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REAL A(LDA,N) ,P(N),PSI(N),PHI(N),DELTA,ZD(N),CP
INTEGER INFO

REAL PSITP,RCOND

LOGICAL TRANS

IJ0B = JOB
TRANS = (IJOB .GE. 10)
IF (TRANS) IJOB = IJOB - 10

IF (IJ0B .EQ. 0)
*  CALL SGEFA (A,LDA,N,IPVT,INFO)
IF (IJOB .LE. 1)
*  CALL SGEII (A,LDA,N,IPVT,PSI,PHI,DELTA,0,3)

IF (TRANS) GOTO 20

o

Perform deflation with A

C A Zd =p - (psiT p) psi ; solve for Zd ; Cp is approx (psiT p)
CP = SDOT (N,P,1,PSI,1)

CALL SCOPY (N,P,1,ZD,1)

CALL SAXPY (N,-CP,PSI,1,2D,1)

CALL SGESL (A,LDA,N,IPVT,ZD,0)

C
C orthogonalize Zd with respect to phi
CALL SAXPY(N,-SDOT(N,PHI,1,ZD,1),PHI,1,2D,1)
GOTO 30
20  CONTINUE
C T
C Perform deflation with A
C T
c A Zd = p - (phiT p) phi ; solve for Zd ; Cp =~ (phiT p)
CP = sDOT (N,P,1,PHI,1)
CALL SCOPY (N,P,1,ZD,1)
CALL SAXPY (N,-CP,PHI,1,ZD,1)
CALL SGESL (A,LDA,N,IPVT,ZD,1)
C
C orthogonalize Zd wrt psi

CALL SAXPY(N,-SDOT(N,PSI,1,2D,1),PSI,1,2D,1)

30  CONTINUE
END

CININININININININININININININININININININININININININININININININN AN/
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C

SUBROUTINE SGEII (A,LDA,N,IPVT,PSI,PHI,DELTA,JOB,ITER)
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computes approximate left and right null vectors of A by applying
the inverse iteration algorithm described in T. F. Chan, *Deflated
Decomposition of Solutions of Nearly Singular Systems,* SIAM J.
Numer. Anal., vol. 21 no. 4 (August, 1984)

arguments are the same as for SGEDF except:
on entry:

Jos INTEGER
if an approximate null vector is already known, the user
may pass it to SGEII. JOB indicates where to find it.
JOB =0 : no initial guess
JOB < 0 : approximate left null vector is passed in PSI
JOB > 0 : approximate right null vector is passed in PHI

ITER INTEGER
governs how many iterations are performed
ITER = 0 : continue iterating until PSI and PHI converge
on accurate values. If A is nearly singular
this usually occurs with 2 or 3 iterations.
ITER > 0 : do up to ITER many iterations.

resol = resolution of convergence
REAL RESOL
PARAMETER (RESOL = .0001)
INTEGER LDA,N,IPVT(N),JOB,ITER
REAL A(LDA,N),PSI(N),PHI(N),DELTA,PSILEN,PHILEN

note: since SGESL destroys the rhs given to it, PSI and PHI
here are both computed in PSI, until the last step

IF (JOB .EQ. 0) THEN

no initial guess; fill PSI with 1’s

D010 I =1,N
PSI(D) = 1.
CONTINUE

ELSEIF (JOB .EQ. 1) THEN

initial guess is in PHI;

move to PSI, then solve for initial PSI
phi’ = phi’ / |lphi’ll

CALL SCOPY (N,PHI,1,PSI,1)

PHILEN = SNRM2(N,PSI,1)

CALL SSCAL (N,1/PHILEN,PSI,1)
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T
A psi’' = phi’
CALL SGESL (A,LDA,N,IPVT,PSI,1)

ENDIF

PSI now contains initial guess; normalize it
psi’ =psi’ / llpsi’ll

PSILEN = SNRM2(N,PSI,1) &

CALL SSCAL (N,1/PSILEN,PSI,1)

............................................. main loop of routine

IF (ITER .NE. 0) IINC =1
I =T1INC

repeat until convergence

50  CONTINUE

O O 00

A phi’ = psi
CALL SGESL (A,LDA,N,IPVT,PSI,0)

phi’ = phi’ / llphi’ll -
PHILEN = SNRM2(N,PSI,1)
CALL SSCAL (N,1/PHILEN,PSI,1)

T A
A psi’ = phi’
CALL SGESL (A,LDA,N,IPVT,PSI,1)

psi’ = psi® / |lpsi’l|
PSILEN = SNRM2(N,PSI,1)
CALL SSCAL (N,1/PSILEN,PSI,1)

increment counter
I =1+ IINC

end

IF (I .LE. ITER .AND. ABS(1/PHILEN - 1/PSILEN) .GT. RESOL)
* GOTO 50

do phi’ once more

CALL SCOPY (N,PSI,1,PHI,1)

CALL SGESL (A,LDA,N,IPVT,PHI,0)

DELTA = 1/llphi’ ||

DELTA gets a sign such that PSI(1) and PHI(1) have the same sign
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C when A is symmetric, PSI = PHI, and DELTA is smallest eigenvalue
DELTA = SIGN(1/SNRM2(N,PHI,1) ,PSI(1)*PHI(1))
CALL SSCAL (N,DELTA,PHI,1)

END

CININININININININININININININININININININININININININININININININININA
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c ’ .
SUBROUTINE SGEBE
* (N,M, A,LDA, IPVT, B,LDB, CT,LDC ,D,LDD, F.G, X,Y,
WORK1,LDW1, WORK2,LDW2, JOB)

C
c the ordinary (undefiated) block elimination algorithm
c
C all arguments are the same as in SGEDBE.
c
INTEGER N,M, LDA,LDB,LDC,LDD,LDW1,LDW2, IPVT(N), AJOB
REAL A(LDA,N), B(LDB,M),CT(LDC,N),D(LDD,M), F(N),G(M), X(N),Y(M)
REAL WORK1(LDW1,M),WORK2(LDW2,M), DELTA
CHARACTER*6 J0OB
INTEGER MP1
LOGICAL NEWA,NEWB,NEWC,NEWD,NEWF,NEWG
MP1 =M + 1
c
AJOB = 0
IF (INDEX(JOB,'A’) .NE. 0) AJOB = 2
IF (INDEX(JOB,’a’) .NE. 0) AJOB =1
NEWA = (AJOB .NE. 2)
NEWB = (INDEX(J0B,’B’) .EQ. 0)
NEWC = (INDEX(JOB,'C’) .EQ. 0)
NEWD = (INDEX(JOB,'D’) .EQ. 0)
NEWF = (INDEX(JOB,’F’) .EQ. 0)
NEWG = (INDEX(JOB,'G') .EQ. 0)
C

C solve AV =B for V
IF (AJOB .EQ. 0) CALL SGEFA (A,LDA,N,IPVT,INFO)
IF (NEWA .OR. NEWB) THEN
DO10I =1,M
CALL SCOPY (N, B(1,I),1, WORK1(1,I),1)
CALL SGESL (A,LDA,N,IPVT,WORK1(1,I),0)
10 CONTINUE
ENDIF

C solve A w=1f for w
IF (NEWA .OR. NEWF) THEN
CALL SCOPY (N, F,1, WORK1(1,MP1),1)
CALL SGESL (A,LDA,N,IPVT,WORK1(1,MP1),0)
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ENDIF

compute E (= D - ¢cT V)
IF (NEWA .OR. NEWB .OR. NEWC .OR. NEWD) THEN
D030I=1,M
DO 20 J =1,M
WORK2(I,J) = D(I,J) = SDOT(N, CT(I,1),LDC, WORK1(1,J),1)
CONTINUE
CONTINUE
CALL SGEFA (WORK2,LDW2,M,IPVT(N+1),INFO)
ENDIF

compute g' (=g - cT w)
IF (NEWA .OR. NEWC .OR. NEWF .OR. NEWG) THEN
DO 40 I=1,M
WORK2(I,MP1) = G(I) - SDOT(N, CT(I,1),LDC, WORK1(1,MP1),1)
CONTINUE
ENDIF

solve for y
CALL SCOPY (M, WORK2(1,MP1),1, Y,1)
CALL SGESL (WORK2,LDW2,M,IPVT(N+1),Y,0)

compute x
DOBOI=1,N )
X(I) = WORK1(I,MP1) - SDOT(M, WORK1(I,1),LDW1, Y,1)
CONTINUE
END
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5.

2

4

SGBDBE

O OO0 00 0000000000

The routines in this package implement the deflated block-
-elimination algorithm for solving systems of the form:

I I A B |
=1 l
I | ¢t b |

| x| | £ 1
=1 |
|yl | gl

discussed in T. F. Chan and D. Resasco, "Generalized Deflated
Block-Elimination®, Technical Report YALEU/DCS/RR-337, Dept. of
Computer Science, Yale Univ., 1985.

This set of routines calls LINPACK’s SGE- and SGB- routines, and
the SBLAs. Implemented by Thomas A. Grossi, Yale University, 1985.
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C
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SUBROUTINE SGBDBE

* (N,M, A,LDA,ML,MU, IPVT, B,LDB, CT,LDC ,D,LDD, F,G,
* X,Y, WORK1,LDW1, WORK2,LDW2, JOB)

the deflated block elimination algorithm

arguments:

on entry:

N INTEGER
the order of the matrix A

M INTEGER
the order of the borders to A in M

A REAL (LDA,N)
the matrix to be factored.

LDA INTEGER
the leading dimension of the array A. LDA >= N.

ML INTEGER
number of diagonals below the main diagonal in A.
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MU

IPVT

LDB

cT

LDC

LDD

WORK1

LDwW1

WORK2

LDw2

JoB

0<=ML <N .

INTEGER

number of diagonals above the main diagonal in A.
0<=MU <N,

more efficient if ML <= MU .

INTEGER(N+M)
an integer vector of pivot indices. The last M spaces are
required for working space

REAL (LDB, M)
right-side border to matrix A in matrix M

INTEGER
the leading dimension of the array B. LDB >= N.

REAL(LDC,N)
right and bottom borders to matrix A in matrix M

INTEGER
the leading dimension of the array CT. LDC >= M.

REAL (LDD,M)
lower right-hand entries of M.

INTEGER
the leading dimension of the array D. LDD >= M.

REAL (N)
REAL (M)
right-hand side to solve with

REAL(LDW1, M+4) LDW1 >= N
used to hold Vd, Wd, psiT B, psi and phi

INTEGER
the leading dimension of the array WORK1. LDW1 >= N.

REAL (LDW2,M+3)
used to hold E, g’,psiT f and delta

INTEGER
the leading dimension of the array WORK2. LDW2 >= M+1.

CHARACTER*8

indicates which inputs are the same as in the last call

to SGBDBE. If there was no such call, set JOB =

’ ' or ’a ' (see below). Otherwise, JOB contains
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as many of the following apply:
'A’ if A stays the same
'S’ if A is new but already factored by SGBCO or SGBFA
'B’ if B stays the same
'C’ if CT stays the same
'D* if D stays the same
'F’ if F stays the same
'G’ if G stays the same

on exit:

A real (lda,n)
contains an upper triangular matrix and
the multipliers which were used to obtain it. The
factorization can be written A = L*U, where L is the
product of permutation and unit lower triangular ma-
trices and U is upper triangular.

IPVT INTEGER(N+M)
an integer vector of pivot indices. The last m spaces are
required for working space.

REAL(N)
Y REAL (M+1)
solution vector

WORK1  REAL (LDW1,M+4)
used to hold Vd, Wd, psiT B, psi and phi

WORK2  REAL (LDW2,M+3)
used to hold E, g’,psiT f and delta

Savings on storage:
the following pairs of inputs may be equivalent:

(X,F) (Y,G) (B,WORK1) (D,WORK2)
In general, if equivalent storage is used, then a change in any
of the inputs in either of the groups (A,B,C,D) or (F,G)
requires that the entire group be re-entered. Specific
exceptions to this rule can be determined by examining
the algorithm.

INTEGER N,M, LDA,ML,MU,LDB,LDC,LDD,LDW1,LDW2, IPVT(N), AJOB
CHARACTER*6 J0OB . ’

REAL A(LDA,N), B(LDB,M),CT(LDC,N),D(LDD,M), DELTA

REAL F(N),G(M), X(N),Y(M), WORK1(LDW1,6M),6WORK2(LDW2,M)
LOGICAL NEWA,LNEWB,NEWC,NEWD,NEWF,NEWG

the following constants are used to partition WORK1 and WORK2
into their various vectors; MP1 stands for the "extra" row and
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column added to D in forming E. WORK1 is primarily used for Vd,
and WORK2 for E
INTEGER MP1,CB,WD,CF,PSI,PHI,GP,ALPHA

MPL = M + 1
€8 = Mpl

WD =CB + 1
CF = NP1

PSI = WD + 1
PHI = PSI + 1
GP = MPL + 1
ALPHA = MP1
AJOB = 0

IF (INDEX(JOB,’A’) .NE. 0) AJOB = 2
IF (INDEX(JOB,’S’) .NE. 0) AJOB = 1

NEWA = (AJOB .NE. 2) :
NEWB = (INDEX(JOB,'B’) .EQ. 0)
NEWC = (INDEX(JOB,'C’) .EQ. 0)
NEWD = (INDEX(JOB,'D’) .EQ. 0)
NEWF = (INDEX(JOB,'F’) .EQ. 0)
NEWG = (INDEX(J0B,’'G*) .EQ. 0)
Algorithm:

. factor A, compute psi, phi, delta
compute deflated solution to A V

1]

compute deflated solution to A w="f
build E: | (D - ¢T Vd) (cT phi) |
| ~CbT defta |
build g’: | g - cT Wd |
| cf |
solve E| y | = g fory
| alpha |

x =Wd - Vd y + alpha phi

if AJOB =0 or 1, or B is new, we start by solving A Vd = B;
this may imply factoring A, and/or computing psi, phi and delta
IF (NEWA .OR. NEWB) THEN

for the first element of Vd, AJOB will tell sgeDF what to do
CALL SGBDF (A,LDA,N,ML,MU,IPVT, B(1,1), WORK1(1,PSI),
WORK1 (1,PHI) ,DELTA, WORK1(1,1),WORK1(1,CB),AJ0B)

compute remaining columns of Vd using results of first call
IF (M .GT. 1) THEN
DO 10 I =2,M
CALL SGBDF (A,LDA,N,ML,MU,IPVT, B(1,I), WORK1(1,PSI),
WORK1(1,PHI), DELTA, WORK1(1,I),WORK1(I,CB),2)
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10 CONTINUE

ENDIF
ENDIF
C
C We must recompute Wd and Cf if A or F have changed
IF (NEWA .OR. NEWF) THEN
CALL SGBDF (A,LDA,N,ML,MU,IPVT, F, WORK1(1l,PSI),WORK1(1,PHI),
* DELTA, WORK1(1,WD),WORK2(CF,GP),2)
ENDIF
C

C build and factor E
IF (NEWA .OR. NEWB .OR. NEWC .OR. NEWD) THEN
CALL SCOPY (M, WORK1(1,CB),1, WORK2(MP1,1),LDW2)
WORK2(MP1,MP1) = DELTA

D0 30 I =1,M
¢
c compute D - c¢T Vd, column by column

DO 20 J =1.,M
WORK2(I,J) = D(I,J) - SDOT(N, CT(I,1),LDC, WORK1(1,J),1)
20 CONTINUE
C
C compute c¢T PHI element by element
WORK2(I,MP1) = SDOT(N, CT(I,1),LDC, WORK1(1,PHI),1)
30 CONTINUE
c .
c factor E
' CALL SGEFA (WORK2,LDW2,MP1,IPVT(N+1),INFQ)
ENDIF
o
C g’ depends on a lot of things:
IF (NEWA .OR. NEWC .OR. NEWF .OR. NEWG) THEN
DO 40 I =1,M
WORK2(I,GP) = G(I) - SDOT(N, CT(I,1),LDC, WORK1(1,wD),1)
40 CONTINUE
ENDIF
C
C compute x and y

CALL SCOPY (MP1, WORK2(1,GP),1, Y,1)
CALL SGESL (WORK2,LDW2,MP1,IPVT(N+1), Y, 0)
DO SOI=1,N
X(I) = WORK1(I,wD) - SDOT(M, WORK1(I,1),LDW1, Y,1)
50  CONTINUE
CALL SAXPY (N,Y(ALPHA), WORK1(1l,PHI),1, X,1)
WORK2(1,GP+1) = DELTA '

END
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SUBROUTINE SGBDF

* {A,LDA,N,ML,MU,IPVT, P, PSI,PHI,DELTA, ZD,CP, JOB)

computes the defiated decomposition of A z = p, returning
solution in the form:

z=2 + phi (¢ / delta)
d P

arguments are the same as for SGBDBE except:
on entry:

P REAL (N)
contains rhs to system of equations

PSI REAL (N)

PHI REAL (N)
left and right null vectors to matrix A
(only on entry if JOB >= 2)

DELTA  REAL
smallest singular value for matrix A
(only on entry if JOB >= 2)

JoB INTEGER

JOB = 0 : start the deflation algorithm from scratch; i.e.,
it factors the matrix, perform inverse iteration to
determine PSI, PHI and DELTA, and the computes the
deflated solution.

JOB = 1 : assume that A has already been factored by SGBCO
or SGBFA, (or by a previous call to SGB[D]BE)
and continue from there.

JOB > 1 : additionally, PSI, PHI and DELTA have already
been computed.

on exit:

PSI REAL (N)
PHI REAL (N)
ieft and right null vectors to matrix A

DELTA  REAL
smallest singular value for matrix A

ZD REAL (N)
deflated solution to system A z = p

O OO0 O 0000 00000000000 0O00000O000O0O0O0C000000O000000000O0O0OON
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Note that P and ZD may be the same vector .

CP REAL
phiT p.

OO OO0 00

INTEGER LDA,N,IPVT(N),JOB,IJOB, INFO

REAL A(LDA,N),P(N),PSI(N),PHI(N),DELTA,ZD(N),CP
REAL PSITP

LOGICAL TRANS

1J0B = JOB
TRANS = (IJ0B .GE. 10)
IF (TRANS) IJOB = IJOB - 10

IF (IJ0B .EQ. 0)

*  CALL SGBFA (A,LDA,N,ML,MU,IPVT,INFO)

IF (IJOB .LE. 1)

*  CALL SGBII (A,LDA,N,ML,MU,IPVT,PSI,PHI,DELTA,0,3)

IF (TRANS) GOTO 20

c A Zd =p - (psiT p) psi ; solve for Zd ; Cp is approx (psiT p)
CP = spOT (N,P,1,PSI,1)
CALL SCOPY (N,P,1,2D,1)
CALL SAXPY (N,-CP,PSI,1,ZD,1)
CALL SGBSL (A,LDA,N,ML,MU,IPVT,ZD,0)

C orthogonalize Zd with respect to phi
CALL SAXPY(N,-SDOT(N,PHI,1,ZD,1),PHI,1,2D,1)
GOTO 30
20  CONTINUE
T
Perform deflation with A
T
A Zd = p - (phiT p) phi ; solve for Zd ; Cp =~ (phiT p)
CP = SDOT (N,P,1,PHI,1)
CALL scoPY (N,P,1,2D,1)
CALL SAXPY (N,-CP,PHI,1,ZD,1)
CALL SGBSL (A,LDA,N,ML,MU,IPVT,ZD,0)

O O o0

C orthogonalize Zd wrt psi
CALL SAXPY(N,-SDOT(N,PSI,1,2D,1),PSI,1,2D,1)

30  CONTINUE
END
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SUBROUTINE SGBII (A,LDA,N,ML,MU,IPVT,PSI,PHI,DELTA,JOB,ITER)
computes approximate left and right null vectors of A by applying
the inverse iteration algorithm described in T. F. Chan, "Deflated
Decomposition of Solutions of Nearly Singular Systems,® SIAM J.
Numer. Anal., vol. 21 no. 4 (August, 1984)

arguments are the same as for SGBDF except:
on entry:

JoB INTEGER
if an approximate null vector is already known, the user
may pass it to SGII. JOB indicates where to find it.
JOB =0 : no initial guess
JOB < 0 : approximate left null vector is passed in PSI
JOB > 0 : approximate right null vector is passed in PHI

ITER INTEGER
governs how many iterations are performed
ITER = 0 : continue iterating until PSI and PHI converge
on accurate values. If M is nearly singular
this usually occurs with 2 or 3 iterations.
ITER > 0 : do up to ITER many iterations.

resol = resolution of convergence
REAL RESOL
PARAMETER (RESOL = .0001)
INTEGER LDA,N,IPVT(LDA,2),J0B,ITER
REAL A(LDA,LDA) ,PSI(N),PHI(N),DELTA,PSILEN,PHILEN

note: since SGBSL destroys the rhs given to it, PSI and PHI
here are both computed in PSI, until the last step

IF (JOB .EQ. 0) THEN

no initial guess; fill PSI with 1°s

DO 10 I =1,N
PSI(I) = 1.
CONTINUE

ELSEIF (JOB .EQ. 1) THEN

initial guess is in PHI;

move to PSI, then solve for initial PSI
phi’ = phi* / |lphi’ll

CALL SCOPY (N,PHI,1,PSI,1)
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PHILEN = SNRM2(N,PSI,1)
CALL SSCAL (N,1/PHILEN,PSI,1)

C
C T
C A psi’ = phi’
CALL SGBSL (A,LDA,N,ML,MU,IPVT,PSI,1)
ENDIF
C
o PSI now contains initial guess; normalize it

o psi’ = psi’ / llpsi’ll
PSILEN = SNRM2(N,PSI,1)
CALL SSCAL (N,1/PSILEN,PSI,1)

C
G e e main loop of routine
IINC =0
IF (ITER .NE. 0) IINC =1
I = IINC
C
C repeat until convergence
50  CONTINUE
c
C A phi’' = psi
CALL SGBSL (A,LDA,N,ML,MU,IPVT,PSI,0)
c :
C phi® = phi’ / |lphi’l|
PHILEN = SNRM2(N,PSI,1)
CALL SSCAL (N,1/PHILEN,PSI,1)
C
C T
[« A psi’ = phi’
CALL SGBSL (A,LDA,N,ML,MU,IPVT,PSI,1)
C
C psi’ = psi’ / llpsi’ll
PSILEN = SNRM2(N,PSI,1)
* CALL SSCAL (N,1/PSILEN,PSI,1)
c
C increment counter
I=1+TINC
c
C end
IF (I .LE. ITER .AND. ABS(1/PHILEN - 1/PSILEN) .GT. RESOL)
*  GOTO 50
[«
C do phi' once more -- this time for the record
CALL SCOPY (N,PSI,1,PHI,1)
CALL SGBSL (A,LDA,N,ML,MU,IPVT,PHI,0)
[«

C DELTA = 1/[lphi’ |l
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DELTA gets a sign such that PSI(1) and PHI(1) have the same sign
when A is symmetric, PSI = PHI, and DELTA is smallest eigenvalue
DELTA = SIGN(1/SNRM2(N,PHI,1) ,PSI(1)*PHI(1))

CALL SSCAL (N,DELTA,PHI,1)

END
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SUBROUTINE SGBBE
* (N.M, A,LDA,ML MU, IPVT, B,LDB, CT,LDC ,D,LDD, F,G,
* X,Y, WORK1,LDW1, WORK2,LDw2, J0OB)

the ordinary {undeflated) block elimination algorithm
all arguments are the same as in SGBDBE.

INTEGER N,M, LDA,ML,MU,LDB,LDC,LDD,LDW1,LDW2, IPVT(N), AJOB
CHARACTER*6 JOB

REAL A(LDA,N), B(LDB,M),CT(LDC,N),D(LDD,M),DELTA

REAL F(N),G(M), X(N),Y(M), WORK1(LDW1,M),6WORK2(LDW2,M)
INTEGER MP1

LOGICAL NEWA,NEWB,NEWC,NEWD,NEWF,NEWG

MP1 =M+ 1

AJOB =0

IF (INDEX(JOB,’A’) .NE. 0) AJOB = 2
IF (INDEX(J0B,'a’) .NE. 0) AJOB =1
NEWA = (AJOB .NE. 2)

NEWB = (INDEX(JOB,’B’) .EQ. 0)
NEWC = (INDEX(JOB,'C’) .EQ. 0)
NEWD = (INDEX(JOB,'D’) .EQ. 0)
NEWF = (INDEX(JOB,'F’) .EQ. 0)
NEWG = (INDEX(JOB,’'G’) .EQ. 0)

solve AV =B for V
IF (AJOB .EQ. 0) CALL SGBFA (A,LDA,N,ML,MU,IPVT,INFQ)
IF (NEWA .OR. NEWB) THEN
DO 10I=1,M
CALL SCOPY (N, B(1,I),1, WORK1(1,I),1)
CALL SGBSL (A,LDA,N,ML,MU,IPVT,WORK1(1,1I),0)
CONTINUE
ENDIF

solve A w=1f for w
IF (NEWA .OR. NEWF) THEN
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CALL SCOPY (N, F,1, WORK1(1,MP1),1)
CALL SGBSL (A,LDA,N,ML,MU,IPVT, WORK1(1,MP1),0)
ENDIF

compute E (=D - ¢T V)
IF (NEWA .OR. NEWB .OR. NEWC .OR. NEWD) THEN
DO3I=1,M
DO 20 J = 1,M
WORK2(I,J) = D(I,J) - SDOT(N, CT(I,1),LDC, WORK1(1,J),1)
CONTINUE
CONTINUE
CALL SGEFA (WORK2,LDW2,M,IPVT(N+1),INFO)
ENDIF

compute g’ (=g - cT w)
IF (NEWA .OR. NEWC .OR. NEWF .OR. NEWG) THEN
DO40I=1,M
WORK2(I,MP1) = G(I) - SDOT(N, CT(I,1),LDC, WORK1(1,MP1),1)
CONTINUE
ENDIF

solve for y
CALL SCOPY (M, WORK2(1,MP1),1, Y,1)
CALL SGESL (WORK2,LDW2,M,IPVT(N+1),Y,0)

compute x
DOSOI=1,N
X(I) = WORK1(I,MP1) - SDOT(M, WORK1(I,1),LDW1, Y,1)
CONTINUE N
END
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5.3 SGTDBE

The routines in this package implement the deflated block-
-elimination algorithm for solving systems of the form:
I x| I A B || x| I £
ML= =1 1
Lyl I ¢t D |1yl | g |

discussed in T. F. Chan and D. Resasco, "Generalized Deflated
Block-Elimination®, Technical Report YALEU/DCS/RR-337, Dept. of
Computer Science, Yale Univ., 1985.

This set of routines calls LINPACK’s SGE- and SGT- routines,
and the SBLAs. Implemented by Thomas A. Grossi, Yale University, 1985.
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SUBROUTINE SGTDBE
* (N,M, L,DI,U, B,LDB, CT,LDC ,D,LDD, F,G, X,Y,
WORK1,LDW1, WORK2,LDW2, JOB)

the deflated block elimination algorithm
arguments:
on entry:

N INTEGER
the order of the matrix A

INTEGER
the order of the borders to A in M

L REAL(N)

is the subdiagonal of the tridiagonal matrix.
L(2) through L(n) should contain the subdiagonal.
Unlike LINPACK, our routines do not change the
the contents of L.

DI REAL (N)
is the diagonal of the tridiagonal matrix.

OO OO0 OO0 0000000000 00O00O0
=
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The contents of DI remain unchanged by our routines.

v} REAL(N)
is the superdiagonal of the tridiagonal matrix.
U(1) through U(n-1) should contain the superdiagonal.
The contents of U remain unchanged by our routines.

B REAL(LDB,M)
right-hand border to the matrix A in matrix M

LDB INTEGER
the leading dimensions of the array B. LDB >= N.

CcT REAL (LDC,N)
bottom border to matrix A in matrix M

LDC INTEGER
the leading dimension of the array CT. LDC >= M.

D REAL (LDD, M)
lower right-hand entries of M.

LDD INTEGER
the leading dimension of the array D. LDD >= M.

F REAL (N)
REAL (M)
right-hand side to solve with

WORK1  REAL(LDW1,M+T7)
used to hold Vd, Wd, psiT B, psi and phi, plus scratch space
for factoring A

LDw1 INTEGER
the leading dimension of the array WORK1. LDW1 >= N.

WORK2  REAL(LDW2,M+3)
used to hold E, g’,psiT f and delta, and a list of pivot
indices.

LDwW2 INTEGER
the leading dimension of the array WORK2. LDW2 >= M+1.

JoB CHARACTER*8
indicates which inputs are the same as in the last call
to SGTDBE. If there was no such call, set JOB =
! 'or ’a ' (see below). Otherwise, JOB contains
as many of the following apply:
'A’ if A stays the same
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'S" if A is new but already factored by SGTCO or SGTFA
B’ 'if B stays the same
'C’ if CT stays the same
'D* if D stays the same
'F' if F stays the same
G’ if G stays the same

on exit:
X REAL(N)
Y REAL (M+1)

solution vector

WORK1  REAL (LDW1,M+7)
used to hold Vd, Wd, psiT B, psi and phi, plus scratch space
for factoring A

WORK2  REAL (LDW2,M+3)
used to hold E, g',psiT f and delta

Savings on storage:
the following pairs of inputs may be equivalent:

(X,F) (Y,Q) (B,WORK1) (D,WORK2)
In general, if equivalent storage is used, then a change in any
of the inputs in either of the groups (A,B,C,D) or (F,Q)
requires that the entire group be re-entered. Specific
exceptions to this rule can be determined by examining
the algorithm.

INTEGER N,M, LDA,LDB,LDC,LDD,LDW1,LDW2, AJOB
CHARACTER*6 JOB

REAL L(N),DI(N),U(N), B(LDB,M),CT(LDC,N),D(LDD,M), DELTA
REAL F(N),G(M), X(N),Y(M), WORK1(LDW1,6M),WORK2(LDW2,M)
LOGICAL NEWA,NEWB,NEWC,NEWD,NEWF,NEWG

the following constants are used to partition WORK1 and WORK2
into their various vectors; MPl stands for the "extra® row and
column added to D in forming E. WORK1 is primarily used for Vd,
and WORK2 for E

INTEGER MP1,CB,WD,CF,PSI,PHI,SAVE,IPVT,GP,ALPHA

MPL = M + 1

CB = Mpl

WD = CB + 1

CF = MP1

PSI = WD + 1
PHI = PST + 1
SAVE = PHI + 1
GP = MP1 + 1
IPVT = GP + 1
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ALPHA = MP1

AJOB =0
IF (INDEX(JOB,’A’) .NE. 0) AJOB = 2
IF (INDEX(JOB,'S’) .NE. 0) AJOB =1

NEWA = (AJOB .NE. 2)
NEWB = (INDEX(J0B,'B’) .EQ. 0)

NEWC = (INDEX(JOB,'C’) .EQ. 0)
NEWD = (INDEX(JOB,'D’) .EQ. 0)
NEWF = (INDEX(JOB,'F’) .EQ. 0)
NEWG = (INDEX(JOB,'G’) .EQ. 0)
Algorithm:

factor A, compute psi, phi, delta
compute deflated solution to A V
compute deflated solution to A w =T

build E: | (D - cT Vvd) (cT phi) |
| CbT delita |
build g*: | g = cT Wd |
| cf |
solve E|l y | = g’ fory
| alpha |

x = Wd - Vd y + alpha phi

if AJOB=0or 1, or B is new, we start by solving A Vd = B;
this may imply factoring A, and/or computing psi, phi and delta
IF (NEWA .OR. NEWB) THEN

for the first element of Vd, AJOB will tell sgeDF what to do
CALL SGTDF (N, L,DI,U,WORK1(1,SAVE), B(1,1), WORK1(1,PSI),
* WORK1(1,PHI) ,DELTA, WORK1(1,1),WORK1(1,CB),AJOB)

compute remaining columns of Vd using results of first call
IF (M .GT. 1) THEN
D010 I =2,M
CALL SGTDF(N, L,DI,U,WORK1(1,6SAVE),B(1,I),WORK1(1,PSI),
* WORK1(1,PHI), DELTA, WORK1(1,I),WORK1(I,CB),2)
CONTINUE
ENDIF
ENDIF

We must recompute Wd and Cf if A or F have changed
IF (NEWA .OR. NEWF)
*  CALL SGTDF (N, L,DI,U,WORK1(1,SAVE), F, WORK1(1,PSI),
WORK1(1,PHI),DELTA, WORK1(1,WD),WORK2(CF,GP),2)

build and factor E
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IF (NEWA .OR. NEWB .OR. NEWC .OR. NEWD) THEN
CALL SCOPY (M, WORK1(1,CB),1, WORK2(MP1,1),LDW2)
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5.4 SYNDBE

The routines in this package implement the deflated block-
-elimination algorithm for solving systems of the form:

| I I £l
I =1 b= 1 1
! 1yl I gl

discussed in T. F. Chan and D. Resasco, "Generalized Deflated
Block-Elimination®, Technical Report YALEU/DCS/RR-337, Dept. of
Computer Science, Yale Univ., 1985.

This set of routines calls YSMP’s general routines with non-
-compressed storage, Linpack's SGE- routines, and the SBLAs.
Implemented by Thomas A. Grossi, Yale University, 1985.

nnnonnonnnonnnnnnnnonnnnnnnnnnnnnnnnonnnnnn

STORAGE SCHEME FOR THESE ROUTINES

The nonzero entries of the coefficient matrix M are stored
row-by-row in the array A. To identify the individual nonzero
entries in each row, we need to know in which column each entry
lies. The column indices which correspond to the nonzero entries
of M are stored in the array JA; i.e., if A(K) = M(I,J), then
JA(K) = J. In addition, we need to know where each row starts and
how long it is. The index positions in JA and A where the rous of
M begin are stored in the array IA; i.e., if M(I,J) is the first
nonzero entry (stored) in the I-th row and A(K) = M(I,J), then
IA(I) = K. moreover, the index in JA and A of the first location
following the last element in the last row is stored in IA(N+1).
thus, the number of entries in the I-th row is given by
IA(I+1) - IA(I), the nonzero entries of the I-th row are stored
consecutively in
ACTA(D)), ACTA(D+1), ..., A(TA(I+D)-1),

and the corresponding column indices are stored consecutively in
JACTA(D)), JACTAMD+D), ..., JACTA(I+D)-1).

for example, the 5 by 5 matrix

| 1.0.2.0.0.1
| 0.3.0. 0.0.1
M=1]0.4.5. 6.0.]
| 0.0.0.7.0.1
| 0.0.0.8.9.}|

would be stored as
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Al 1.2 3.4.5.6.7.8.09.
N INTEGER

number of variables/equations.

A INTEGER(¥)
nonzero entries of the coefficient matrix A, stored
by rows.
size = number of nonzero entries in A.

IA INTEGER(N+1)
pointers to delimit the rows in A.

JA INTEGER(*)
column numbers corresponding to the elements of A.
size = size of A.

The rows and columns of the original matrix A can be
reordered (e.g., to reduce fill-in or ensure numerical stability)

" before calling the driver. If no reordering is done, then set

R(I) = C(I) = IC(I) =1 FOR I=1,...,N. The solution A is
returned in the original order.

R INTEGER(N)
ordering of the rows of A.

C INTEGER(N)
ordering of the columns of A.

IC INTEGER(N)
inverse of the ordering of the columns of A; i.e.,
IC(C(I)) = 1 for I=1,...,n.

Working storage is needed for the factored form of the matrix
A plus various temporary vectors. The arrays ISP and RSP should
be equivalenced; integer storage is allocated from the beginning
of ISP and real storage from the end of RSP.

NSP INTEGER
declared dimension of RSP;
the exact value of NSP will be specified below

ISP INTEGER(*)
integer working storage divided up into various arrays
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needed by the subroutines; ISP and RSP should be
equivalenced.

size = LRATIO*NSP, where LRATIO = size of storage for a
real number divided by the size of storage for an integerf

RSP REAL (NSP)
real working storage divided up into various arrays
needed by the subroutines; ISP and RSP should be
equivalenced. :

ESP INTEGER
if sufficient storage was available to perform the
symbolic factorization (NSFC), then ESP is set to the
amount of excess storage provided (negative if
insufficient storage was available to perform the
numeric factorization (NNFC)).
if ESP > 2*N, then those last 2n position of RSP will
contain approximate left and right null vectors for A.
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SUBROUTINE SYNDBE
* (N,M, R,C,IC, IA,JA A, NSP,ISP,RSP,ESP, B,LDB,
* CT, LDC, D,LDD, F,G, X,Y, WORK1,LDW1, WORK2,LDW2, JOB)

the deflated block elimination algorithm
arguments:
on entry:

N INTEGER
the order of the matrix A

M INTEGER
the order of the borders to A in M

R INTEGER(N)
ordering of the rows of A.

C INTEGER(N)
ordering of the columns of A.

IC INTEGER(N)

inverse of the ordering of the columns of A; i.e
ICCM)) =1 for I=1,...,n.

..
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IA

JA

NSP

isp

RSP

LDB

cT

LDC

LDD

INTEGER(N+1)
pointers to delimit the rows in A.

INTEGER(*)
column numbers corresponding to the elements of A.
size = size of A.

INTEGER(*)

nonzero entries of the coefficient matrix A, stored
by rows.

size = number of nonzero entries in A.

INTEGER
declared dimension of RSP;
the exact value of NSP will be specified below.

INTEGER(*)

integer working storage divided up into various arrays
needed by the subroutines; ISP and RSP should be
equivalenced.

size = LRATIO*NSP, where LRATIO = size of storage for a
real number divided by the size of storage for an integer.

REAL (NSP)

real working storage divided up into various arrays
needed by the subroutines; ISP and RSP should be
equivalenced.

REAL (LDB,M)
right-hand border to matrix A in matrix M.

INTEGER
the leading dimension of the array B. LDB >= N.

REAL (LDC,N)
bottom border to matrix A in matrix M

INTEGER
the leading dimension of the array CT. LDC >= M.

REAL (LDD, M)
lower right-hand entries of M.

INTEGER
the leading dimension of the array D. LDD >= M.

REAL (N)
REAL (M)
right-hand side to solve with
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WORK1

LDW1

WORK2

LDw2

Jos

on exit:

RSP

ESP

WORK1

REAL(LDW1,M+4) LDW1 >= N
used to hoid Vd, Wd, psiT B, psi and phi.

INTEGER
the leading dimension of the array WORK1. LDW1 >= N.

REAL (LDW2,M+4) LDW2 >= M+1

used to hold E, g’,psiT f and delta, and pivot indices for E.

INTEGER
the leading dimension of the array WORK2. LDW2 >= M+1.

CHARACTER*6
indicates which inputs are the same as in the last call
to SGEDBE. If there was no such call, set JOB =
' ' or 'a '’ (see below). Otherwise, JOB contains
as many of the following apply:
'A’ if A stays the same
'S’ if A is new but already factored by SGECO or SGEFA
'B’ if B stays the same
'C’ if CT stays the same
'D’ if D stays the same
'F’ if F stays the same
'G’ if G stays the same

REAL (NSP)
the last 2n positions of RSP contain approximate
left and right null vectors for A if ESP > 2xN.

INTEGER

if sufficient storage was available to perform the
symbolic factorization (NSFC), then ESP is set to the
amount of excess storage provided (negative if
insufficient storage was available to perform the
numeric factorization (NNFC)).

if ESP > 2#N, then those last 2n position of RSP will
contain approximate left and right null vectors for A.

REAL (N)
REAL (M+1)
solution vector.

REAL(LDW1,M+4) LDW1 >= N
used to hold Vd, Wd, psiT B, psi and phi.
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WORK2 ~ REAL(LDW2,M+4) LDW2 >= M+1
used to hold E, g',psiT f and delta, and pivot indices for E

Savings on storage:
the following pairs of inputs may be equivaient:

(X,F) (Y,6) (B,WORK1) (D,WORK2)
in general if equivalent storage is used, then a change in one
of the inputs in either the left-hand-side group or the right-
-hand-side group requires that the entire group be re-entered.
Specific exceptions to this rule can be determined by examining
the algorithm.

INTEGER N,M, LDB,LDC,LDD,LDW1,LDW2, AJOB, LRATIO
INTEGER R(N) ,C(N) ,IC(N), IA(N),JA(*), NSP,ISP(NSP),ESP
REAL A(*),RSP(NSP)

REAL B(LDB,M) ,CT(LDC,N),D(LDD,M), F(N),G(M), X(N),Y(M)
REAL WORK1(LDW1,M) ,WORK2(LDW2,M), DELTA

CHARACTER*6 JOB

LOGICAL NEWA,NEWB,NEWC,KNEWD,NEWF,NEWG

the following constants are used to partition WORK1 and WORK2
into their various vectors; MP1 stands for the "extra® row and
column added to D in forming E. WORK1 is primarily used for Vd,
and WORK2 for E

INTEGER MP1,CB,WD,CF,PSI,PHI,GP,IPVT,ALPHA

DATA LRATIO /1/

MP1 =M+ 1

CB = Mpl

W =CB+1

CF = MP1

PSI = WD + 1

PHI = PSI + 1

GP = MP1 + 1

IPVT =GP + 1

ALPHA = MP1

]

L]

AJOB =0
IF (INDEX(JOB,’A’) .NE. 0) AJOB
IF (INDEX(J0B,’S’) .NE. 0) AJOB

iou
- N

NEWA = (AJOB .NE. 2)

NEWB = (INDEX(JOB,’B’) .EQ. 0)
NEWC = (INDEX(JOB,’'C’) .EQ. 0)
NEWD = (INDEX(JOB,'D’) .EQ. 0)
NEWF = (INDEX(JOB,'F’) .EQ. 0)
NEWG = (INDEX(JOB,’'G’) .EQ. 0)
Algorithm:

factor A, compute psi, phi, delta
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compute deflated solution to A V

compute deflated solution to A w=f
build E2 | (D - cT Vd) (cT phi) |
| CbT delta |
build g’: | g = cT Wd |
| ct |
solve E|l y | = g fory
| alpha |

x = Wd - Vd y + alpha phi

if AJOB =0 or 1, or B is new, we start by solving A Vd = B;
this may imply factoring A, and/or computing psi, phi and delta
IF (NEWA .OR. NEWB) THEN

O OO 0O 000000000

c
C for the first element of Vd, AJOB will tell sgeDF what to do
CALL SYNDF (N, R,C,IC, IA,JA,A, NSP,ISP,RSP,ESP, B(1,1),
*  WORK1(1,PSI),WORK1(1,PHI),DELTA, WORK1(1,1),WORK1(1,CB),AJOB)
C
c compute remaining columns of Vd using results of first call
IF (M .GT. 1) THEN
DO 10I =2,M
CALL SYNDF (N, R,C,IC, IA,JA,A, NSP,ISP,RSP,ESP, B(1,I),
WORK1(1,PSI),WORK1(1,PHI),DELTA,
* WORK1 (1, I),WORK1(I,CB),2)
10 CONTINUE
ENDIF
ENDIF
c We must recompute Wd and Cf if A or F have changed
IF (NEWA .OR. NEWF)
*  CALL SYNDF (N, R,C,IC, IA,JA,A, NSP,ISP,RSP,ESP, F,
* WORK1(1,PSI),WORK1(1,PHI), DELTA,
* WORK1 (1,WD) ,WORK2(CF,GP) ,2)
C

C build and factor E
IF (NEWA .OR. NEWB .OR. NEWC .OR. NEWD) THEN
CALL SCOPY (M, WORK1(1,CB),1, WORK2(MP1,1),LDW2)
WORK2 (MP1,MP1) = DELTA

DO30I=1,M
C
C compute D - ¢T Vd, column by column
DO 20 J =1,M

WORK2(I,J) = D(I,J) - SDOT(N, CT(I,1),LDC, WORK1(1,J),1)
20 CONTINUE

C compute c¢T PHI element by element
WORK2(I,MP1) = SDOT(N, CT(I,1),LDC, WORK1(1l,PHI),1)
30 CONTINUE
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factor E
CALL SGEFA (WORK2,LDH2,MP1,WORK2(1.IPVT),INEO)
ENDIF

g’ depends on a lot of things
IF (NEWA .OR. NEWC .OR. NEWF .OR. NEWG) THEN
DO 40I=1,M
WORK2(I,GP) = G(I) - SDOT(N, CT(I,1),LDC, WORK1(1,WD),1)
CONTINUE
ENDIF

compute x and y
CALL SCOPY (MP1, WORK2(1,GP),1, Y,1)
CALL SGESL (WORK2,LDW2,MP1,WORK2(1,IPVT), Y, 0)
DO SO I=1,N
X(I) = WORK1(I,WD) - SDOT(M, WORK1(I,1),LDW1, Y,1)
CONTINUE
CALL SAXPY (N,Y(ALPHA), WORK1(1,PHI),1, X,1)
WORK2(1,IPVT+1) = DELTA

END

CININININININININININININININININININININININININININININININININ NN/
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O OO OO0 000 000000000000

SUBROUTINE SYNDF (N, R,C,IC, IA,JA,A, NSP,ISP,RSP,ESP,
* P, PSI,PHI,DELTA, ZD,CP, JOB)

computes the deflated decomposition of A z = p, returning
solution in the form:

z=2z + phi (¢ / delta)
d P

arguments are the same as for SYNDBE except:
on entry:

P REAL (N)
contains rhs to system of equations

PSI REAL (N)

PHI REAL(N)
left and right null vectors to matrix A
(only on entry if JOB >= 2)

DELTA  REAL
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smallest singular value for matrix M (same as SV in SYNII)
(only on entry if JOB >= 2)

JoB INTEGER
JOB = 0 : start the deflation algorithm from scratch; i.e.,
it factors the matrix, performs inverse iteration to
determine PSI, PHI and DELTA, and then computes the
deflated solution.
: assume that A has already been factored by CDRV
(or a previous call to SYC[DIBE) and continue
from there.
JOB >= 2 : additionally, PSI, PHI and DELTA have already
been computed.

JoB

1]
—

on exit:

PSI REAL(N)
PHI REAL (N)
left and right null vectors to matrix A

DELTA  REAL
smallest singular value for matrix M (same as SV in SYNII)

0 REAL(N)
deflated solution to system A z = p
Note that P and ZD may be the same vector

CP REAL
coefficient of projection of Z onto right null vector (PHI)

INTEGER N, R(N),C(N),IC(N),IA(N),JA(1) NSP,ISP(1),ESP
INTEGER J0B,IJOB, FLAG

REAL A(1), RSP(NSP), P(N), PSI(N),PHI(N), ZD(N), CP
REAL DELTA, PSITP, SV

LOGICAL TRANS

1J0B = JOB
TRANS = (IJ0B .GE. 10)
IF (TRANS) IJ0B = IJOB - 10

IF (IJOB .EQ. 0)
*  CALL NDRV (N, R,C,IC, IA,JA,A, PHI,PHI,
* NSP,ISP,RSP,ESP, 1,FLAG)

IF (IJOB .LE. 1)

*  CALL SYNII (N, R,C,IC, IA,JA,A, NSP,ISP,RSP,ESP,
* PSI,PHI,DELTA, 0,3)
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IF (TRANS) GOTO 20

(o]

Perform deflation with A

c AZd =p - (psiT p) psi ; solve for Zd ; Cp is approx (psiT p)
CP = SDOT(N,P,1,PSI,1)

CALL SCOPY (N,P,1,ZD,1)

CALL SAXPY (N,-CP,PSI,1,2D,1)

CALL NDRV (N, R,C,IC, IA,JA,A, ZD,ZD, NSP,ISP,RSP,ESP, 3,FLAG)

C orthogonalize Zd with respect to phi
CALL SAXPY(N,-SDOT(N,PHI,1,ZD,1),PHI,1,2ZD,1)
GOTO 30
20  CONTINUE
T
Perform deflation with A
T
A Zd = p - (phiT p) phi ; solve for Zd ; Cp is approx (phiT p)
CP = SDOT(N,P,1,PHI,1)
CALL SCOPY (N,P,1,2ZD,1)
CALL SAXPY (N,-CP,PHI,1,2D,1)
CALL NDRV (N, R,C,IC, IA,JA,A, ZD,ZD, NSP,ISP,RSP,ESP, 3,FLAG)

O OO0

orthogonalize Zd wrt psi
CALL SAXPY(N,-SDOT(N,PSI,1,2D,1),PSI,1,ZD,1)

30  CONTINUE
END

CINNNINININININININININININININININININININININININININININININININA
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SUBROUTINE SYNII

*(N, R,C,IC, IA,JA,A, NSP, ISP, RSP,ESP, PSI,PHI, DELTA, JOB,ITER)

computes approximate left and right null vectors of A by applying
the inverse iteration algorithm described in T. F. Chan, "Deflated
Decomposition of Solutions of Nearly Singular Systems,* SIAM J.
Numer. Anal., vol. 21 no. 4 (August, 1984)

arguments are the same as for SYNDBE except:
on entry:

NSP INTEGER
ISP REAL (*)
RSP REAL (NSP)
ESP INTEGER
must contain a factorization of A, produced by NDRV with

O OO OO0 0000000000
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10

PATH = 1, (which may have been done by SGEDBE)

JoB INTEGER
if an approximate null vector is already known, the user
may pass it to SYNII. JOB indicates where to find it.
JOB =0 : no initial guess
JOB < 0 : approximate left null vector is passed in PSI
JOB > 0 : approximate right null vector is passed in PHI

ITER INTEGER
governs how many iterations are performed
ITER = 0 : continue iterating until PSI and PHI converge
on accurate values. If M is nearly singular
this usually occurs with 2 or 3 iterations.
ITER > 0 : do up to ITER many iterations.

on exit:

PSI,PHI REAL(N)
on output, contain the left and right null vectors,
respectively, of the matrix A.

resol = resolution of convergence
REAL RESOL
PARAMETER (RESOL = .0001)
INTEGER N, R(1),C(1),IC(1),IA(1),JA(1),NSP,ISP(1),ESP, JOB,ITER
INTEGER FLAG
REAL A(1), RSP(1), PSI(1), PHI(1), DELTA
REAL PSILEN,PHILEN

IF (JOB .EQ. 0) THEN

no initial guess; fill PSI with 1's

DO 10 I =1,N
PSI(I) = 1.
CONTINUE

ELSEIF (JOB .EQ. 1) THEN

initial guess is in PHI; solve for initial PSI
phi’ = phi’ / |lphi’|l

PHILEN = SNRM2(N,PHI,1)

CALL SSCAL (N,1/PHILEN,PHI, 1)

T
A psi’ = phi’
CALL NDRV

* (N, R,C,IC, IA,JA,A, PHI,PSI, NSP,ISP,RSP,ESP, 4,FLAG)
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ENDIF

PSI now contains initial guess; normalize it
psi’ = psi’ / |lpsi’ll

PSILEN = SNRM2(N,PSI,1)

CALL SSCAL (N,1/PSILEN,PSI,1)

.......................................... main loop of routine

IF (ITER .NE. 0) IINC =1
I = IINC

repeat until convergence
CONTINUE

A phi’ = psi
CALL NDRV
* (N, R.C,IC, IA,JA,A, PSI,PHI, NSP,ISP,RSP,ESP, 3,FLAG)

phi® = phi® / Ilphi’ll
PHILEN = SNRM2(N,PHI,1)
CALL SSCAL (N,1/PHILEN,PHI,1)

T
A psi’ = phi’
CALL NDRV ,

* (N, R.C,IC, IA,JA,A, PHI,PSI, NSP,ISP,RSP,ESP, 4,FLAG)

psi’ = psi’' / |lpsi’ll
PSILEN = SNRM2(N,PSI,1)
CALL SSCAL (N,1/PSILEN,PSI,1)

increment counter
I =1+T1INC

end
IF (I .LE. ITER .AND. ABS(1/PHILEN - 1/PSILEN) .GT. RESOL)
*  GOTO 50

do phi’ once more
CALL NDRV (N, R,C,IC, IA,JA,A, PSI,PHI, NSP,ISP,RSP,ESP, 3,FLAG)

delta = 1/[lphi’l]
DELTA gets a sign such that PSI(1) and PHI(1) have the same sign
when A is symmetric, PSI = PHI, and DELTA is smallest eigenvalue

DELTA = SIGN(1/SNRM2(N,PHI,1) ,PSI(1)*PHI(1))
CALL SSCAL (N,DELTA,PHI,1)
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SUBROUTINE SYNBE
* (N,M, R,C,IC, IA,JA,A, NSP,ISP,RSP,ESP, B,LDB,
* CT, LDC, D,LDD, F,G, X,Y, WORK1,LDWl, WORK2,LDW2, JOB)

the ordinary (undeflated) block elimination algorithm

all arguments are the same as in SYNDBE.

O OO0 o0

INTEGER N,M, LDB,LDC,LDD,LDW1,LDW2, AJOB, LRATIO
INTEGER R(N),C(N),IC(N), IA(N),JA(*), NSP,ISP(NSP),ESP
REAL A(*),RSP(NSP)

REAL B(LDB,M),CT(LDC,N),D(LDD,M), F(N),G(M), X(N),Y(M)
REAL WORK1(LDW1,M),WORK2(LDW2,M), DELTA

CHARACTER*6 JOB

LOGICAL NEWA,NEWB,NEWC,NEWD,NEWF,NEWG

INTEGER MP1,IPVT
MPL =M + 1
IPVT = MP1 + 1

AJOB =0

IF (INDEX(JOB,'A’) .NE. 0) AJOB
IF (INDEX(JOB,'a’) .NE. 0) AJOB
NEWA = (AJOB .NE. 2)

NEWB = (INDEX(JOB,'B’) .EQ. 0)
NEWC = (INDEX(JOB,’'C’) .EQ. 0)
NEWD = (INDEX(JOB,’'D’) .EQ. 0)
NEWF = (INDEX(JOB,’'F’) .EQ. 0)
NEWG = (INDEX(JOB,'G’) .EQ. 0)

wononounu
Wnon
- N

C solve AV =B for V
IF (AJOB .EQ. 0)
* CALL NDRV (N, R,C,IC, IA,JA,A, X,X, NSP,ISP,RSP,ESP, 1, FLAG)

IF (NEWA .OR. NEWB) THEN

D010I =1,M
CALL NDRV (N, R,C,IC, IA,JA,A, B(1,I),WORK1(1,D),
* NSP,ISP,RSP,ESP, 1, FLAG)
10 CONTINUE
ENDIF
C
C solve A w=1f for w

IF (NEWA .OR. NEWF)
*  CALL NDRV (N, R,C,IC, IA,JA,A, F,WORK1(1,MP1),
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40

50

NSP,ISP,RSP,ESP, 1, FLAG)

compute E (=D - cT V)
IF (NEWA .OR. NEWB .OR. NEWC .OR. NEWD) THEN
DO30I=1,M
DO 20 J = 1,M

WORK2(I,J) = D(I,J) - SDOT(N, CT(I,1),LDC, WORK1(1,J),1)

CONTINUE
CONTINUE
CALL SGEFA (WORK2,LDW2,M,WORK2(1,IPVT),INFQ)

ENDIF

compute g° (=g - cT w)

IF (NEWA .OR. NEWC .OR. NEWF .OR. NEWG) THEN

DO 40 I=1,M

WORK2(I,MP1) = G(I) - SDOT(N, CT(I,1),LDC, WORK1(1,MP1),1)

CONTINUE

ENDIF

solve for y
CALL SCOPY (M, WORK2(1,MP1),1, Y,1)
CALL SGESL (WORK2,LDW2,M,WORK2(1,IPVT),Y,0)

compute
DO 60 I

X(I)
CONTINUE
END

1,N

WORK1(I,MP1) - SDOT(M, WORK1(I,1),LDW1, Y,1)
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5.5 SYCDBE

The routines in this package implement the deflated block-
-elimination algorithm for solving systems of the form:

discussed in T. F. Chan and D. Resasco, "Generalized Deflated
Block-Elimination®, Technical Report YALEU/DCS/RR-337, Dept. of
Computer Science, Yale Univ., 1985.

This set of routines calls YSMP’s general routines with
compressed storage, Linpack's SGE- routines, and the SBLAs.
Implemented by Thomas A. Grossi, Yale University, 1985.

OO0 O 00 0000000000000 O0O000O000O0O00O00O0000O0O0O0O0O0O0O0O0

STORAGE SCHEME FOR THESE ROUTINES

The nonzero entries of the coefficient matrix M are stored
row-by-row in the array A. To identify the individual nonzero
entries in each row, we need to know in which column each entry
lies. The column indices which correspond to the nonzero entries
of M are stored in the array JA; i.e., if A(K) = M(I,J), then
JAK) = J. 1In addition, we need to know where each row starts and
how long it is. The index positions in JA and A where the rows of
M begin are stored in the array IA; i.e., if M(I,J) is the first
nonzero entry (stored) in the I-th row and A(K) = M(I,J), then
IA(I) = K. moreover, the index in JA and A of the first location
following the last element in the last row is stored in IA(N+1).
thus, the number of entries in the I-th row is given by
IA(I+1) - IA(I), the nonzero entries of the I-th row are stored
consecutively in
ACTA(D), ACTADI+1), ..., ACTA(I+1)-1),

and the corresponding column indices are stored consecutively in
JACTA(D)), JACTA(DY+1), ..., JACTA(I+D)-1).

for example, the 5 by 5 matrix

[1.0.2.0.0.]
| 0.3.0.0.0.1
M=1]0.4.5.6.0.]
| 0.0.0.7.0.1
| 0. 0. 0. 8. 9.1

would be stored as
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[
>
w
N
N

5

. 9.
N INTEGER

number of variables/equations,

A INTEGER (*)
nonzero entries of the coefficient matrix A, stored
by rows.
size = number of nonzero entries in A.

IA INTEGER(N+1)
pointers to delimit the rows in A.

JA INTEGER(*)
column numbers corresponding to the elements of A.
size = size of A.

The rows and columns of the original matrix A can be
reordered (e.g., to reduce fill-in or ensure numerical stability)
before calling the driver. If no reordering is done, then set
R(I) =C(I) =1IC(I) =1 FORI=1,...,N. The solution A is
returned in the original order.

R INTEGER(N)
ordering of the rows of A.

C INTEGER(N)
ordering of the columns of A.

IC INTEGER(N)
inverse of the ordering of the columns of m; i.e.,
IC(C(I)) =1 for I=1,...,n.

Working storage is needed for the factored form of the matrix
m plus various temporary vectors. The arrays ISP and RSP should
be equivalenced; integer storage is allocated from the beginning
of ISP and real storage from the end of RSP.

NSP INTEGER
declared dimension of RSP;
the exact value of NSP will be specified below

1spP INTEGER(*)
integer working storage divided up into various arrays
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needed by the subroutines; ISP and RSP shouid be
equivalenced.

size = LRATIO*NSP, where LRATIO = size of storage for a
real number divided by the size of storage for an integer.

RSP REAL (NSP)
real working storage divided up into various arrays
needed by the subroutines; ISP and RSP should be
equivalenced.

ESP INTEGER
if sufficient storage was available to perform the
symbolic factorization (NSFC), then ESP is set to the
amount of excess storage provided (negative if
insufficient storage was available to perform the
numeric factorization (NNFC)).
if ESP > 2#N, then those last 2n position of RSP will
contain approximate left and right null vectors for A.

O O O OO0 00000 000000000
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SUBROUTINE SYCDBE
* (N,M, R,C,IC, IA,JA,A, NSP,ISP,RSP,ESP, B,LDB,
* CT, LDC, D,LDD, F,G, X,Y, WORK1,LDW1, WORK2,LDW2, JOB)

the deflated block elimination algorithm
arguments:
on entry:

N INTEGER
the order of the matrix A

M INTEGER \
the order of the borders to A in M

R INTEGER(N)
ordering of the rows of A.

c INTEGER(N)
ordering of the columns of A.

IC INTEGER(N)
inverse of the ordering of the columns of m; i.e.
IC(C(I)) =1 for I=1,...,n.

O OO OO0 000000 000000000000
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IA

JA

NSP

Isp

RSP

LDB
cT

LDC

LDD

INTEGER(N+1)
pointers to delimit the rows in A.

INTEGER(*)
column numbers corresponding to the elements of A.
size = size of A.

INTEGER (%)

nonzero entries of the coefficient matrix A, stored
by rows.

size = number of nonzero entries in A.

INTEGER
declared dimension of RSP;
the exact value of NSP will be specified below.

INTEGER (%)

integer working storage divided up into various arrays
needed by the subroutines; ISP and RSP should be
equivalenced.

size = LRATIO*NSP, where LRATIO = size of storage for a
real number divided by the size of storage for an integer.

REAL (NSP)

real working storage divided up into various arrays
needed by the subroutines; ISP and RSP should be
equivalenced.

REAL(LDB,M)
right-hand border to matrix A in matrix M.

INTEGER
the leading dimension of the array B. LDB >= N.

REAL (LDC,N)
bottom border to matrix A in matrix M.

INTEGER
the leading dimension of the array CT. LDC >= M.

REAL (LDD, M)
lower right-hand entries of M.

INTEGER
the leading dimension of the array D. LDD >= M.

REAL (N)
REAL (M)
right-hand side to solve with
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WORK1  REAL(LDW1,M+4) LDW1 >= N
used to hold Vd, Wd, psiT B, psi and phi

LDW1 INTEGER
the leading dimension of the array WORK1. LDW1 >= N.

WORK2  REAL(LDW2,M+3 LDW2 >= M+l
used to hold E, g’,psiT f and delta, and pivot indices for E.

LDwW2 INTEGER
the leading dimension of the array WORK2. LDW2 >= M+1.

JoB CHARACTER#*8
indicates which inputs are the same as in the last call
to SGEDBE. If there was no such call, set JOB =
’ 'or ’'a ' (see below). Otherwise, JOB contains
as many of the following apply:
'A’ if A stays the same
'S’ if A is new but already factored by SGECO or SGEFA
'B’ if B stays the same
'C' if CT stays the same
'D? if D stays the same
'F' if F stays the same
'G’ if G stays the same

on exit:

RSP REAL (NSP)
the last 2n positions of RSP contain approximate
left and right null vectors for A if ESP > 2*N.

ESP INTEGER
if sufficient storage was available to perform the
symbolic factorization (NSFC), then ESP is set to the
amount of excess storage provided (negative if
insufficient storage was available to perform the
numeric factorization (NNFC)).
if ESP > 2%N, then those last 2n position of RSP will
contain approximate left and right null vectors for A.

REAL(N)
REAL (M+1)

solution vector

WORK1  REAL(LDW1,M+4) LDW1 >= N
used to hold Vd, Wd, psiT B, psi and phi.

WORK2  REAL(LDW2,M+4) LDW2 >= M+1
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used to hold E, g’,psiT f and delta, and pivot indices for E

Savings on storage:
the following pairs of inputs may be equivalent:

(X,F) (Y.G) (B,WORK1) (D,WORK2)
in general if equivalent storage is used, then a change in one
of the inputs in either the left-hand-side group or the right-
-hand-side group requires that the entire group be re-entered.
Specific exceptions to this rule can be determined by examining
the algorithm.

INTEGER N,M, LDB,LDC,LDD,LDW1,LDW2, AJOB, LRATIO
INTEGER R(N),C(N) ,IC(N), IA(N),JA(*), NSP,ISP(NSP), ESP
REAL A(*),RSP(NSP)

REAL B(LDB,M),CT(LDC,N),D(LDD,M), F(N),G(M), X(N),Y(M)
REAL WORK1(LDW1,M),WORK2(LDW2,M), DELTA

CHARACTER+6 J0B

LOGICAL NEWA,NEWB,NEWC,NEWD,NEWF,NEWG

the following constants are used to partition WORK1 and WORK2
into their various vectors; MP1l stands for the "extra® row and
column added to D in forming E. WORK1 is primarily used for Vd,
and WORK2 for E

INTEGER MP1,CB,WD,CF,PSI,PHI,GP,IPVT,ALPHA

DATA LRATIO /1/

MP1 =M+ 1

CB = Mpl

Wb =CB+1

CF = MP1

PSI = WD + 1

PHI = PSI + 1

GP = MP1 + 1

IPVT =GP _ 1

ALPHA = MP1

AJOB =0
IF (INDEX(JOB,’'A’) .NE. 0) AJOB
IF (INDEX(JOB,’S’') .NE. 0) AJCB

iwou
- N

NEWA = (AJOB .NE. 2)

NEWB = (INDEX(JOB,’B’) .EQ. 0)
NEWC = (INDEX(JOB,'C’) .EQ. 0)
NEWD = (INDEX(J0B,'D') .EQ. 0)
NEWF = (INDEX(JOB,’F’) .EQ. 0)
NEWG = (INDEX(J0B,'G') .EQ. 0)
Algorithm:

factor A, compute psi, phi, delta
compute deflated solution to A V=28
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compute deflated solution to A w=f

build E: | (D - cT Vd) (cT phi) |
I CoT delta |
build g’: | g = cT wd |
I cf |
solve E| y | = g’ fory
| alpha |

X =Wd - Vd y + alpha phi

if AJOB=0or 1, or B is new, we start by soiving A Vd = B;
this may imply factoring A, and/or computing psi, phi and deita
IF (NEWA .OR. NEWB) THEN

for the first element of Vd, AJOB will tell sgeDF what to do
CALL SYCDF (N, R,C,IC, IA,JA,A, NSP,ISP,RSP,ESP, B(1,1),
WORK1 (1,PSI) ,WORK1(1,PHI),DELTA, WORK1(1,1),WORK1(1,CB),AJOB)

compute remaining columns of Vd using results of first call
IF (M .GT. 1) THEN
DO 10 I =2M
CALL SYCDF (N, R,C,IC, IA,JA,A, NSP,ISP,RSP,ESP, B(1,I),
WORK1(1,PSI),WORK1(1,PHI),DELTA,
WORK1(1,I) ,WORK1(I,CB),2)
CONTINUE
ENDIF
ENDIF

We must recompute Wd and Cf if A or F have changed
IF (NEWA .OR. NEWF) THEN
CALL SYCDF (N, R,C,IC, IA,JA,A, NSP,ISP,RSP,ESP, F,
WORK1(1,PSI),WORK1(1,PHI), DELTA,
WORK1 (1,WD) ,WORK2(CF,GP),2)
ENDIF

build and factor E

IF (NEWA .OR. NEWB .OR. NEWC .OR. NEWD) THEN
CALL SCOPY (M, WORK1(1,CB),1, WORK2(MP1,1),LDW2)
WORK2(MP1,MP1) = DELTA
DO30I=1,M

compute D - c¢T Vd, column by column

DO 20 J =1,M
WORK2(I,J) = D(I,J) - SDOT(N, CT(I,1),LDC, WORK1(1,J),1)
CONTINUE

compute cT PHI element by element
WORK2(I,MP1) = SDOT(N, CT(I,1),LDC, WORK1(1,PHI),1)
CONTINUE

63




C factor E
CALL SGEFA (WORK2,LDW2,MP1,WORK2(1,IPVT),INF0)
ENDIF
C
C g’ depends on a lot of things
IF (NEWA .OR. NEWC .OR. NEWF .OR. NEWG) THEN
DO 40I=1,M

WORK2(I,GP) = G(I) - SDOT(N, CT(I,1),LDC, WORK1(1,wD),1)
40 CONTINUE
ENDIF

C compute x and y

CALL SCOPY (MP1, WORK2(1,GP),1, Y,1)

CALL SGESL (WORK2,LDW2,MP1,WORK1(1,IPVT), Y, 0)

DO 50 I=1,N

X(I) = WORK1(I,WD) - SDOT(M, WORK1(I,1),LDW1, Y,1)

50  CONTINUE

CALL SAXPY (N,Y(ALPHA), WORK1(1,PHI),1, X,1)

WORK2(1,IPVT+1) = DELTA

END

CININININININININININININININININININININININININININININININININNN A
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SUBROUTINE SYCDF (N, R,C,IC, IA,JA,A, NSP,ISP,RSP,ESP,
* . P, PSI,PHI,DELTA, ZD,CP, JOB)

computes the deflated decomposition of A z = p, returning
solution in the form:

z =2z + phi (c / delta)
d p

arguments are the same as for SYCDBE except:
on entry:

P REAL (N)
contains rhs to system of equations

PSI REAL (N)

PHI REAL (N)
left and right null vectors to matrix A
(only on entry if JOB >= 2)

O OO OO0 OO0 0000000000000

DELTA  REAL
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smallest singular value for matrix M (same as SV in SYCII)
(only on entry if JOB >= 2)

JoB INTEGER

JOB = 0 : start the deflation algorithm from scratch; i.e.,
it factors the matrix, performs inverse iteration to
determine PSI, PHI and DELTA, and then computes the
deflated solution.

JOB = 1 : assume that A has already been factored by CDRV
(or a previous call to SYC[D]IBE) and continue
from there.

JOB >= 2 : additionally, PSI, PHI and DELTA have already
been computed.

on exit:

PSI REAL (N)
PHI REAL(N)
left and right null vectors to matrix A

‘DELTA  REAL
smallest singular value for matrix M (same as SV in SYNII)

D REAL(N)
deflated solution to system A z = p
Note that P and ZD may be the same vector

CP REAL
coefficient of projection of Z onto right nuil vector (PHI)

INTEGER N, R(N),C(N),IC(N) ,IA(N),JA(1),NSP,ISP(1),ESP
INTEGER JOB,IJOB, FLAG

REAL A(1), RSP(NSP), P(N), PSI(N),PHI(N), ZD(N), CP
REAL DELTA, PSITP, SV

LOGICAL TRANS

IJ0B = JOB

TRANS = (TJOB .GE. 10)

IF (TRANS) IJOB = IJOB - 10

IF (IJOB .EQ. 0)
*  CALL CDRV (N, R,C,IC, IA,JA,A, PHI,PHI,
* ’ NSP,ISP,RSP,ESP, 1,FLAG)

IF (IJOB .LE. 1)

*  CALL SYCII (N, R,C,IC, IA,JA,A, NSP,ISP,RSP,ESP,
* PSI,PHI,DELTA, 0,3)
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IF (TRANS) GOTO 20

oo

Perform deflation with A

C A Zd = p - (psiT p) psi ; solve for Zd ; Cp is approx (psiT p)
CP = SDOT(N,P,1,PSI,1)

CALL SCOPY (N,P,1,2D,1)

CALL SAXPY (N,-CP,PSI,1,ZD,1)

CALL CDRV (N, R,C,IC, IA,JA,A, ZD,ZD, NSP,ISP,RSP,ESP, 3.FLAG)

C
C orthogonalize Zd with respect to phi
CALL SAXPY(N,-SDOT(N,PHI,1,2D,1),PHI,1,ZD,1)
GOTO 30
20  CONTINUE
C T
c Perform deflation with A
C T .
C A Zd = p - (phiT p) phi ; solve for Zd ; Cp is approx (phiT p)
CP = SDOT(N,P,1,PHI,1)
CALL SCOPY (N,P,1,2D,1)
CALL SAXPY (N,-CP,PHI,1,ZD,1)
CALL CDRV (N, R,C,IC, IA,JA,A, ZD,ZD, NSP,ISP,RSP,ESP, 3,FLAG)
c
c orthogonalize Zd wrt psi

CALL SAXPY(N,-SDOT(N,PSI,1,2D,1),PSI,1,2D,1)

30  CONTINUE
END
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SUBROUTINE SYCII
*(N, R,C,IC, IA,JA,A, NSP,ISP,RSP,ESP, PSI,PHI, DELTA, JOB,ITER)

computes approximate left and right null vectors of A by applying
the inverse iteration algorithm described in T. F. Chan, "Deflated
Decomposition of Solutions of Nearly Singular Systems," SIAM J.
Numer. Anal., vol. 21 no. 4 (August, 1984)

arguments are the same as for SYCDBE except:
on entry:

NSP INTEGER
Isp REAL ()
RSP REAL (NSP)
ESP INTEGER
must contain a factorization of A, produced by CDRV with

OO OO0 00000000000
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PATH = 1, (which may have been done by SGEDBE)

JoB INTEGER
if an approximate null vector is already known, the user
may pass it to SYCII. JOB indicates where to find it.
JOB =0 : no initial guess
JOB < 0 : approximate left null vector is passed in PSI
JOB > 0 : approximate right null vector is passed in PHI

ITER INTEGER
governs how many iterations are performed
ITER = 0 : continue iterating until PSI and PHI converge
on accurate values. If M is nearly singular
this usually occurs with 2 or 3 iterations.
ITER > 0 : do up to ITER many iterations.

on exit:

PSI,PHI REAL(N)
on output, contain the left and right null vectors,
respectively, of the matrix A. ’

resol = resolution of convergence
REAL RESOL
PARAMETER (RESOL = .0001)
INTEGER N, R(1),C(1),IC(1),IA(1),JA(1),NSP,ISP(1),ESP, JOB,ITER
INTEGER FLAG '
REAL A(1), RSP(1), PSI(1), PHI(1), DELTA
REAL PSILEN,PHILEN

IF (JOB .EQ. 0) THEN

no initial guess; fill PSI with 1’s

D010 I =1,N
PSI(I) = 1.
CONTINUE

ELSEIF (JOB .EQ. 1) THEN
initial guess is in.FHI; solve for initial PSI
phi’ = phi’ / Ilphi’ll
PHILEN = SNRM2(N,PHI, 1)
CALL SSCAL (N,1/PHILEN,PHI,1)

T
A psi’ = phi’
CALL CDRV ‘

(N, R,C,IC, IA,JA,A, PHI,PSI, NSP,ISP,RSP,ESP, 4,FLAG)
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ENDIF

PSI now contains initial guess; normalize it
psi’ = psi’ / llpsi’ll -

PSILEN = SNRM2(N,PSI,1)

CALL SSCAL (N,1/PSILEN,PSI,1)

.......................................... main loop of routine

IF (ITER .NE. 0) IINC =1
I =1INC

repeat until convergence
CONTINUE

A phi’ = psi
CALL CDRYV

* (N, R,C,IC, IA,JA,A, PSI,PHI, NSP,ISP,RSP,ESP, 3,FLAG)

phi® = phi* / [lphi*ll
PHILEN = SNRM2(N,PHI,1)
CALL SSCAL (N,1/PHILEN,PHI,1)

T
A psi’ = phi’
CALL CDRV

* (N, R,C,IC, IA,JA,A, PHI,PSI, NSP,ISP,RSP,ESP, 4,FLAG)

psi’ = psi’ / llpsi’ll
PSILEN = SNRM2(N,PSI,1)
CALL SSCAL (N,1/PSILEN,PSI,1)

increment counter
I =1+TIINC

end
IF (I .LE. ITER .AND. ABS(1/PHILEN - 1/PSILEN) .GT. RESOL)
* - GOTO 50

do phi’' once more
CALL CDRV (N, R,C,IC, IA,JA,A, PSI,PHI, NSP,ISP,RSP,ESP, 3,FLAG)

deita = 1/|]phi’ll
DELTA gets a sign such that PSI(1) and PHI(1) have the same sign
when A is symmetric, PSI = PHI, and DELTA is smallest eigenvalue

DELTA = SIGN(1/SNRM2(N,PHI,1) ,PSI(1)*PHI(1))
CALL SSCAL (N,DELTA,PHI,1)
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CINININININININININININININININININININININININININININININININININNN

£3<><ILIIICICILIDOLILILI DO OLIILII PP LIPSO OL
ENNNNNNINININININININININININININININININININININININININININININY
C

SUBROUTINE SYCBE

* (N,M, R,C,IC, IA,JA,A, NSP,ISP,RSP,ESP, B,LDB,

* CT, LDC, D,LDD, F,G, X,Y, WORK1,LDWl, WORK2,LDW2, JOB)

the ordinary (undeflated) block elimination algorithm

all arguments are the same as in SYCDBE.

O O 0O 00

INTEGER N,M, LDB,LDC,LDD,LDW1,LDW2, AJOB, LRATIO
INTEGER R(N),C(N) ,IC(N), IA(N),JA(*), NSP,ISP(NSP),ESP
REAL A(*) ,RSP(NSP)

REAL B(LDB,M),CT(LDC,N),D(LDD,M), F(N),G(M), X(N),Y(M)
REAL WORK1(LDW1,M),WORK2(LDW2,M), DELTA

CHARACTER*6 JOB

LOGICAL NEWA,NEWB,NEWC,NEWD,NEWF,NEWG

INTEGER MP1,IPVT
MPL =M+ 1
IPVT = MP1 + 1

AJOB =0

IF (INDEX(JOB,’'A’) .NE. 0) AJOB
IF (INDEX(JOB,'a’) .NE. 0) AJOB
NEWA = (AJOB .NE. 2)

NEWB = (INDEX(JOB,’B’) .EQ. 0)
NEWC = (INDEX(JOB,'C’) .EQ. 0)
NEWD = (INDEX(JOB,’D’) .EQ. 0)
NEWF = (INDEX(JOB,'F’) .EQ. 0)
NEWG = (INDEX(JOB,'G’) .EQ. 0)

[T | | I T [}
won

C solve AV =B for V
IF (AJOB .EQ. 0)
*  CALL CDRV (N, R,C,IC, IA,JA,A, X,X, NSP,ISP,RSP,ESP, 1, FLAG)

IF (NEWA .OR. NEWB) THEN

DO10I=1,M
CALL CDRV (N, R,C,IC, IA,JA,A, B(1,I),WORK1(1,I),
* NSP,ISP,RSP,ESP, 1, FLAG)
10 CONTINUE
ENDIF

solve A w=1f for w
IF (NEWA .OR. NEWF)
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* CALL CDRV (N, R,C,IC, IA,JA.A, F,WORK1(I,MP1), ¥
* NSP,ISP,RSP,ESP, 1, FLAG)

compute E (=D - cT V)
IF (NEWA .OR. NEWB .OR. NEWC .OR. NEWD) THEN
DO30I=1,M
DO 20J=1,M
WORK2(I,J) = D(I,J) - SDOT(N, CT(I,1),LDC, WORK1(1,J),1)
CONTINUE
CONTINUE -
CALL SGEFA (WORK2,LDW2,M,WORK2(1,IPVT),INFO)
ENDIF

compute g’ (=g - ¢cT w)
IF (NEWA .OR. NEWC .OR. NEWF .OR. NEWG) THEN
DO40I=1M
WORK2(I,MP1) = G(I) - SDOT(N, CT(I,1),LDC, WORK1(1,MP1),1)
CONTINUE
ENDIF

solve for y
CALL SCOPY (M, WORK2(1,MP1),1, Y,1)
CALL SGESL (WORK2,LDW2,M,WORK2(1,IPVT),Y,0)

compute x
DO SO I=1,N
X(I) = WORK1(I,MP1) - SDOT(M, WORK1(I,1),LDW1, Y,1)
CONTINUE
END
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5.6 SYSDBE

The routines in this package implement the deflated block-
-elimination algorithm for solving systems of the form:

discussed in T. F. Chan and D. Resasco, "Generalized Deflated
Block-Elimination®, Technical Report YALEU/DCS/RR-337, Dept. of
Computer Science, Yale Univ., 1985,

This set.of routines calls YSMP’s routines for symmetric matrices,
Linpack’'s SGE- routines, and the SBLAs.
Implemented by Thomas A. Grossi, Yale University, 1985.

O OO OO 0O OO0 000 0000000000000 000O0O0O0O0O0O0O0O0O0O0O0OO0O0nO0no0n

STORAGE SCHEME FOR THESE ROUTINES

The nonzero entries of the coefficient matrix M are stored
row-by-row in the array A. To identify the individual nonzero
entries in each row, we need to know in which column each entry
lies. The column indices which correspond to the nonzero entries
of M are stored in the array JA; i.e., if A(K) = M(I,J), then
JA(K) = J. In addition, we need to know where each row starts and
how long it is. The index positions in JA and A where the rows of
M begin are stored in the array IA; i.e., if M(I,J) is the first
nonzero entry (stored) in the I-th row and A(K) = M(I,J), then
IA(I) = K. moreover, the index in JA and A of the first location
following the last element 'in the last row is stored in IA(N+1).
thus, the number of entries in the I-th row is given by
IA(I+1) - IA(I), the nonzero entries of the I-th row are stored
consecutively in

ACIA(D)), AC(IA(D)+1), ..., ACTA(I+D)-1),
and the corresponding column indices are stored consecutively in
JACTA(DY), JACIA(DY+1), ..., JA(IA(I+D)-1).

Since the coefficient matrix is symmetric, only the nonzero entries
in the upper triangle need be stored, for example, the matrix
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could be stored as

11 2 3 45 6 7 8 910111213

IANl1 4 5 81214
JAl1l 3 4 21 3 1 3 4°5 5
All 2 3 4 25 6 6 7 8

or (symmetrically) as

1 2 3 45 67 8 9

. T Su—

IAl1 4 5 7 910

JAl1 3 4 2 3 4 45 5

All 2 3 45 6 7 8 9
N INTEGER

number of variables/equations.

A INTEGER(*)
nonzero entries of the coefficient matrix A, stored
; by rows.
size = number of nonzero entries in A.

IA INTEGER(N+1)
pointers to delimit the rows in A.

JA INTEGER(*)
column numbers corresponding to the elements of A.
size = size of A.

The rows and columns of the original matrix A can be !
reordered (e.g., to reduce fill-in or ensure numerical stabiliﬁy)
before calling the driver. If no reordering is done, then set
P(I) =IP(I) =1 for I=1l,...,N. The solution A is returned in
the original order.

P INTEGER(N)
ordering of the rows/columns of A.

IP INTEGER(N)
inverse of the ordering of the rows/columns of A; i.e.,
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IC(C(I)) =1 for I=1,....n.

Working storage is needed for the factored form of the matrix
A plus various temporary vectors. The arrays ISP and RSP should
be equivalenced; integer storage is allocated from the beginning
of ISP and real storage from the end of RSP.

NSP INTEGER
declared dimension of RSP;
the exact value of NSP will be specified below

IsP INTEGER(*)
integer working storage divided up into various arrays
needed by the subroutines; ISP and RSP should be
equivalenced.
size = LRATIO*NSP, where LRATIO = size of storage for a
real number divided by the size of storage for an integer.

RSP REAL (NSP)
real working storage divided up into various arrays
needed by the subroutines; ISP and RSP should be
equivalenced.

ESP INTEGER
if sufficient storage was available to perform the
symbolic factorization (CSFC), then ESP is set to the
amount of excess storage provided (negative if
insufficient storage was available to perform the
numeric factorization (CNFC)).
if ESP > 2*N, then those last 2n position of RSP will
contain approximate left and right null vectors for A.

OO OO0 0000000000000 000000000 0000060
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SUBROUTINE SYSDBE

* (N,M, P,IP, IA,JA,A, NSP,ISP,LRSP,ESP, B,LDB,
* CT, LDC, D,LDD, F,G, X,Y, WORK1,LDW1, WORK2,LDW2, J0OB)
the deflated block elimination algorithm

arguments:

on entry:

N INTEGER
the order of the matrix A

O O 0O O OO0 0000
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M INTEGER
the order of the borders to A in M

P INTEGER(N)
ordering of the rows/columns of A.

IpP INTEGER(N)
inverse of the ordering of the rows/columns of A; i.e.,
ICC(@M) =1 for I=1,...,n.

IA INTEGER (N+1)
pointers to delimit the rows in A.

JA INTEGER(*)
column numbers corresponding to the elements of A.
size = size of A.

A INTEGER (%)
nonzero entries of the coefficient matrix A, stored
by rous.
size = number of nonzero entries in A.

NSP INTEGER
declared dimension of RSP;
the exact value of NSP will be specified below

Isp INTEGER ()
integer working storage divided up into various arrays
needed by the subroutines; ISP and RSP should be
equivalenced.
size = LRATIO*NSP, where LRATIO = size of storage for a
real number divided by the size of storage for an integer.

RSP REAL (NSP)
real working storage divided up into various arrays
needed by the subroutines; ISP and RSP should be
equivalenced.

B REAL (LDB,M)
right-hand border to matrix A in matrix M.

LDB INTEGER
the leading dimension of the array B. LDB >= N.

cT REAL (LDC,N)
bottom border to matrix A in matrix M

LDC INTEGER
the leading dimension of the array CT. LDC >= M.
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LDD

WORK1

LDw1

WORK2

LDW2

JoB

on exit:

RSP

ESP

REAL (LDD,M)
lower right-hand entries of M

INTEGER
the leading dimension of the array D. LDD >= M.

REAL(N)
REAL (M)
right-hand side to solve with

REAL (LDW1,M+4) LDW1 >= N
used to hold Vd, Wd, psiT B, psi and phi

INTEGER
the leading dimension of the array WORK1. LDW1 >= N.

REAL (LDW2,M+4) LDW2 >= M+l
used to hold E, g’,psiT f and delta, and pivot indices for E.

INTEGER
the leading dimension of the array WORK2. LDW2 >= M+1.

CHARACTER#*6
indicates which inputs are the same as in the last call
to SGEDBE. If there was no such call, set JOB =
! ' or ’a ' (see below). Otherwise, JOB contains
as many of the following apply:
'A’ if A stays the same
'S’ if A is new but already factored by SGECO or SGEFA
'B’ if B stays the same
'C’ if CT stays the same
'D’ if D stays the same
'F* if F stays the same
'G’ if G stays the same

REAL (NSP)
the last 2n positions of RSP contain approximate
left and right null vectors for A if ESP > 2xN.

INTEGER

if sufficient storage was available to perform the
symbolic factorization (CSFC), then ESP is set to the
amount of excess storage provided (negative if
insufficient storage was available to perform the
numeric factorization (CNFC)).

if ESP > 2%N, then those last 2n position of RSP will
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OO OO0 0000 000000000000

OO OO0

contain approximate left and right null vectors for A.

X REAL (N)
Y REAL (M+1)
solution vector

WORK1  REAL(LDW1,M+4) LDW1 >= N
used to hold Vd, Wd, psiT B, psi and phi

WORK2 ~ REAL(LDW2,M+4) LDW2 >= M+l
used to hold E, g’,psiT f and delta, and pivot indices for E.

Savings on storage:
the following pairs of inputs may be equivalent:

(X,F) (Y,G) (B,WORK1) (D,WORK2)
in general if equivalent storage is used, then a change in one
of the inputs in either the left-hand-side group or the right-
-hand-side group requires that the entire group be re-entered.
Specific exceptions to this rule can be determined by examining
the algorithm.

INTEGER N,M, LDB,LDC,LDD,LDW1,LDW2, AJOB, LRATIO
INTEGER P(N),IP(N), IA(N),JA(*), NSP,ISP(NSP),ESP

REAL A(*),RSP(NSP)

REAL B(LDB,M),CT(LDC,N),D(LDD,M), F(N),G(M), X(N),Y(M)
REAL WORK1(LDW1,M),WORK2(LDW2,M), DELTA

CHARACTER+6 JOB

LOGICAL NEWA,NEWB,NEWC,NEWD,NEWF, NEWG

the following constants are used to partition WORK1 and WORK2
into their various vectors; MPl stands for the "extra® row and
column added to D in forming E. WORK1 is primarily used for Vd,
and WORK2 for E

INTEGER MP1,CB,WD,CF,PSI,PHI,GP,IPVT,ALPHA

DATA LRATIO /1/

MP1 = M + 1

8 = Mpl

WD =CB + 1

CF = MP1

PSI = WD + 1

PHI = PSI .
GP = MP1 + 1

IPVT = GP + 1

ALPHA = MP1

AJOB = 0

IF (INDEX(JOB,’A’) .NE. 0) AJOB = 2
IF (INDEX(JOB,’S’) .NE. 0) AJOB =1
NEWA = (AJOB .NE. 2)
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NEWB
NEWC
NEWD
NEWF
NEWG

(INDEX(JOB,'B’) .EQ. 0)
(INDEX(JOB,’C') .EQ. 0)
(INDEX(J0B,’D’) .EQ. 0)
(INDEX(JOB,'F’) .EQ. 0)
(INDEX(J0B,'G') .EQ. 0)

Algorithm:

factor A, compute psi, phi, delta
compute deflated solution to AV =8B
compute deflated solution to A w = f
build E: | (D - cT Vd) (cT phi) |

| CbT delta |
build g’: | g ="cT Wd |

| cf |
solve E| y | = g fory

| alpha |

x =Wd - Vd y + alpha phi

if AJOB =0 or 1, or B is new, we start by solving A Vd = B;
this may imply factoring A, and/or computing psi, phi and delta
IF (NEWA .OR. NEWB) THEN

OO OO0 0000000000000

C for the first element of Vd, AJOB will tell sgeDF what to do
CALL SYSDF (N, P,IP, IA,JA,A, NSP,ISP,RSP,ESP, B(].1),
* WORK1(1,PSI),DELTA, WORK1(1,1),WORK1(1,CB),AJOB)

c compute remaining columns of Vd using results of first call
IF (M .GT. 1) THEN
DO 10I =2,M
CALL SYSDF (N, P,IP, IA,JA,A, NSP,ISP,RSP,ESP, B(1,I),
* WORK1(1,PSI),DELTA, WORK1(1,I),WORK1(I,CB),2)
10 CONTINUE
ENDIF
ENDIF

C We must recompute Wd and Cf if A or F have changed
IF (NEWA .OR. NEWF)
*  CALL SYSDF (N, P,IP, IA,JA,A, NSP,ISP,RSP,ESP, F,
* WORK1(1,PSI),DELTA, WORK1(1,wD),WORK2(CF,GP),2)

C build and factor E
IF (NEWA .OR. NEWB .OR. NEWC .OR. NEWD) THEN
CALL SCOPY (M, WORK1(1,CB),1, WORK2(MP1,1),LDW2)
WORK2 (MP1,MP1) = DELTA
D030 I=1,M

C compute D - cT Vd, column by column
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D0 20 J=1,M .
WORK2(I,J) = D(I,J) - SDOT(N, CT(I,1),LDC, WORK1(1,J),1)
CONTINUE

compute cT PHI element by element
WORK2(I,MP1) = SDOT(N, CT(I,1),LDC, WORK1(l,PHI),1)
CONTINUE

factor E
CALL SGEFA (WORK2,LDW2,MP1,WORK2(1,IPVT),INFQ)
ENDIF

g’ depends on a lot of things
IF (NEWA .OR. NEWC .OR. NEWF .OR. NEWG) THEN
DO40I=1,M
WORK2(I,GP) = G(I) - SDOT(N, CT(I,1),LDC, WORK1(1,wD),1)
CONTINUE
ENDIF

compute x and y
CALL SCOPY (MP1, WORK2(1,GP),1, Y,1)
CALL SGESL (WORK2,LDW2,MP1,WORK2(1,IPVT), Y, 0)
DO B0 I =1,N
X(I) = WORK1(I,WD) - SDOT(M, WORK1(I,1),LDW1, Y,1)
CONTINUE
CALL SAXPY (N,Y(ALPHA), WORK1(1,PHI),1, X,1)
WORK2(1,IPVT+1) = DELTA

END

CINININININININININININININININININININININININININININININININININN
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C

O OO0 000000000

SUBROUTINE SYSDF (N, P,IP, IA,JA,A, NSP,ISP,RSP,ESP,

* RHS, PSI,DELTA, ZD,CP, JOB)

computes the deflated decomposition of A z = p, returning
solution in the form: )

z =12z + phi (¢ / delta)
d P

arguments are the same as for SYSDBE except:
on entry:

RHS REAL (N)
contains rhs to system of equations
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C
C PSI REAL (N)
C PHI REAL(N)
C left and right null vectors to matrix A
c (only on entry if JOB >= 2)
C
C DELTA  REAL
C ’ smallest singular value for matrix A
C (only on entry if JOB >= 2)
C
C Jos INTEGER
C JOB = 0 : start the deflation algorithm from scratch; i.e.,
C it factors the matrix, performs inverse iteration to
C determine PSI, PHI and DELTA, and then computes the
C deflated solution.
c JOB = 1 : assume that A has already been factored by CDRV
c (or a previous call to SYC[DIBE) and continue
C from there.
C JOB >= 1 : additionally, PSI, PHI and DELTA have already
« been computed.
C
C on exit:
C
C PSI REAL(N)
C PHI REAL(N)
c left and right null vectors to matrix A
C
C DELTA  REAL
C smallest singular value for matrix A
C
C ZD REAL (N)
C deflated solution to system A z = p
C Note that P and ZD may be the same vector
c
C cP REAL
C psiT p
C
INTEGER N, P(N) ,IP(N),IA(N),JA(1),NSP,ISP(1),ESP, JOB,IJOB, FLAG
REAL A(1), RSP(NSP), RHS(N), PSI(N), ZD(N), CP
REAL DELTA, PSITP, SV
LOGICAL TRANS
1J0B = JOB
IF (IJ0B .GE. 10) IJOB = IJOB - 10
IF (IJOB .EQ. 0)

*

CALL SDRV (N, P,IP, IA,JA,A, PSI,PSI,
NSP,ISP,RSP,ESP, 1,FLAG)
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IF (1J0B .LE. 1)
*  CALL SYSII (N, P,IP, IA,JA,A, NSP,ISP,RSP,ESP,
PSI,DELTA, 0,3)

A Zd = p - (psiT p) psi ; solve for Zd ; Cp is approx (psiT p)
CP = SDOT(N,RHS,1,PSI,1)

CALL SCOPY (N,RHS,1,2D,1)

CALL SAXPY (N,-CP,PSI,1,ZD,1)

CALL SDRV (N, P,IP, IA,JA,A, ZD,ZD, NSP,ISP,RSP,ESP, 3,FLAG)

orthogonalize Zd with respect to psi
CALL SAXPY(N,-SDOT(N,PSI,1,2D,1),PSI,1,2D,1)

CONTINUE
END
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SUBROUTINE SYSII
*(N, P,IP, IA,JA,A, NSP,ISP,RSP,ESP, PSI, DELTA, JOB,ITER)

computes an approximate null vector of A by applying

the inverse iteration algorithm described in T. F. Chan, "Deflated
Decomposition of Solutions of Nearly Singular Systems,* SIAM J.
Numer. Anal., vol. 21 no. 4 (August, 1984)

arguments are the same as for SYSDBE except:
on entry:

JoB INTEGER
if an approximate null vector is already known, the user
may pass it to SYSII. JOB indicates where to find it.
JOB = 0 : no initial guess
JOB <> 0 : approximate null vector is passed in PSI

ITER INTEGER
governs how many iterations are performed
ITER = 0 : continue iterating until PSI and PHI converge
on accurate values. If M is nearly singular
this usually occurs with 2 or 3 iterations.
ITER > 0 : do up to ITER many iterations.

on exit:
PSI,PHI REAL(N)

80



10

O

on output, contain the null vector of the matrix A.

resol = resolution of convergence
REAL RESOL
PARAMETER (RESOL = .0001)
INTEGER N, P(1),IP(1),IA(1),JA(1),NSP,ISP(1),ESP, JOB,ITER
INTEGER FLAG
REAL A(1), RSP(1), PSI(1), SV
REAL OLDLEN, NEWLEN

IF (JOB .EQ. 0) THEN

no initial guess; fill PSI with 1’s

DO10I=1,N
PSI(D) = 1.
CONTINUE
ENDIF

PSI now contains initial guess; normalize it
psi’ = psi’ / |lpsi’l]

NEWLEN = SNRM2(N,PSI,1)

CALL SSCAL (N,1/NEWLEN,PSI,1)

......................................... main loop of routine

IINC=0
IF (ITER .NE. 0) IINC =1
I =1IINC

repeat until convergence
CONTINUE

Apsi’ = psi
CALL SDRV (N, P,IP, IA,JA,A, PSI,PSI, NSP,ISP,RSP,ESP, 3,FLAG)

psi’ = psi’ / llpsi’ll

OLDLEN = NEWLEN

HEWLEN = SNRM2(N,PSI,1)

CALL SSCAL (N,1/NEWLEN,PSI,1)

]

increment counter
I =1+ TIINC

end .
IF (I .LE. ITER .AND. ABS(1/0LDLEN - 1/NEWLEN) .GT. RESOL)
* GOTO 50

do psi’ once more
CALL SDRV (N, P,IP, IA,JA,A, PSI,PSI, NSP,ISP,RSP,ESP, 3,FLAG)
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C delta = 1/|lpsi’ll

DELTA = 1/SNRM2(N,PSI,1)
CALL SSCAL (N, DELTA,PSI,1)

END

CINININININININININININININININININININININININININININININININININNA
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C

SUBROUTINE SYSBE

* (N,M, P,IP, IA,JA,A, NSP,ISP,RSP,ESP, B,LDB,

* CT, LDC, D,LDD, F,G, X,Y, WORK1,LDW1, WORK2,LDW2, JOB)

C
C the ordinary (undefiated) biock elimination algorithm.
C
C (All arguments are the same as in SYSDBE.)
C
INTEGER N,M, LDB,LDC,LDD,LDW1,LDW2, AJOB, LRATIO
INTEGER P(N) ,IP(N), IA(N),JA(*), NSP,ISP(NSP), ESP
REAL A(*) ,RSP(NSP)
REAL B(LDB,M),CT(LDC,N),D(LDD,M), F(N),G(M), X(N),Y(M)
REAL WORKI(LDW1,M),WORK2(LDW2,M), DELTA
CHARACTER*6 JOB
LOGICAL NEWA,NEWB,NEWC,KNEWD,NEWF,NEWG
C
INTEGER MP1,IPVT
MP1 =M + 1
IPVT = MP1 + 1
C
AJOB = 0

IF (INDEX(JOB,'A') .NE. 0) AJOB = 2
IF (INDEX(JOB,’a’) .NE. 0) AJOB =1

NEWA = (AJOB .NE. 2)

NEWB = (INDEX(JOB,’B’) .EQ. 0)
NEWC = (INDEX(JOB,'C’) .EQ. 0)
NEWD = (INDEX(J0B,’'D’) .EQ. 0)
NEWF = (INDEX(JOB,'F’) .EQ. 0)
NEWG = (INDEX(JOB,’G’) .EQ. 0)

C solve AV =B for V
IF (AJOB .EQ. O)
*  CALL SDRV (N, P,IP, IA,JA,A, X,X, NSP,ISP,RSP,ESP, 1, FLAG)

IF (NEWA .OR. NEWB) THEN
DO10I=1,M
CALL SDRV (N, P,IP, IA,JA,A, B(1,I),WORK1(1,I),
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NSP,ISP,RSP,ESP, 1, FLAG)
CONTINUE
ENDIF

solve A w=1f forw
IF (NEWA .OR. NEWF)
CALL SDRV (N, P,IP, IA,JA,A, F,WORK1(1,MP1),
NSP,ISP,RSP,ESP, 1, FLAG)

compute E (=D ~ ¢cT V)
IF (NEWA .OR. NEWB .OR. NEWC .OR. NEWD) THEN
DO30I=1,M
D0 20 4 = 1,M
WORK2(I,J) = D(I,J) - SDOT(N, CT(I,1),LDC, WORK1(1,J),1)
CONTINUE
CONTINUE
CALL SGEFA (WORK2,LDW2,M,WORK2(1,IPVT),INFQ)
ENDIF

compute g’ (=g - cT w)
IF (NEWA .OR. NEWC .OR. NEWF .OR. NEWG) THEN
D0 40 I = 1,M
WORK2(I,MP1) = G(I) - SDOT(N, CT(I,1),LDC, WORK1(1,MP1),1)
CONTINUE '
ENDIF

solve for y
CALL SCOPY (M, WORK2(1,MP1),1, Y,1)
CALL SGESL (WORK2,LDW2,M,WORK2(1,IPVT),Y,0)

compute x
DOSOI=1,N
X(I) = WORK1(I,MP1) - SDOT(M, WORK1(I,1),LDWl, Y,1)
CONTINUE '
END
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