INTERPRETING LOGICS OF KNOWLEDGE IN PROPOSITIONAL DYNAMIC LOGIC WITH CONVERSE

Michael J. Fischer and Neil Immerman

YALEU/DCS/TR 460
March, 1986
<table>
<thead>
<tr>
<th>4. TITLE (and Subtitle)</th>
<th>Interpreting Logics of Knowledge in Propositional Dynamic Logic with Converse</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. AUTHOR(s)</td>
<td>Michael J. Fischer and Neil Immerman</td>
</tr>
</tbody>
</table>
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS | Department of Computer Science
Yale University
10 Hillhouse Avenue
New Haven, CT 06520 |
| 11. CONTROLLING OFFICE NAME AND ADDRESS | NSF, 1800 G Street
Washington, DC 20550
ONR, 800 N Quincy
Arlington, VA 22217 |
| 14. MONITORING AGENCY NAME & ADDRESS (If different from Controlling Office) | Office of Naval Research
800 N Quincy
Arlington, VA 22217 |
| 16. DISTRIBUTION STATEMENT (of this Report) | Approved for public release; distributed unlimited |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) | Logic of Knowledge
distributed system
modal logic
propositional dynamic logic |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) | A natural propositional logic of knowledge, common knowledge, and branching time appropriate for reasoning about distributed systems is presented. This logic may be interpreted in Propositional Dynamic Logic with Converse (PDLC), making the relationship between protocol models and general Kripke models precise and showing that PDLC already suffices for a certain amount of reasoning about knowledge in distributed systems. It follows that satisfiability for propositional logic of branching time remains EMPTIME complete with the addition of any combination of knowledge and common knowledge operators. Finally, the validity or satisfiability of a formula (over
Interpreting Logics of Knowledge in
Propositional Dynamic Logic with Converse

Michael J. Fischer* and Neil Immerman†

Computer Science Department
Yale University
New Haven, CT 06520

March 5, 1986

Keywords: Logic of Knowledge, distributed system, modal logic, propositional dynamic logic.

1 Introduction

In this note we consider a natural propositional logic of knowledge, common knowledge, and branching time which is appropriate for distributed systems. We show that this language may be interpreted in Propositional Dynamic Logic with Converse (PDLC) [St81,Pr81]. This result makes the relationship between our protocol model and general Kripke models precise (cf. [FI85]) as well as showing that PDLC already suffices for a certain amount of reasoning about knowledge in distributed systems. It was already known that the satisfiability problem for propositional logic of branching time is EXPTIME complete, cf. [EH85]. As a corollary of our result we show that satisfiability for propositional logic of branching time remains EXPTIME complete with the addition of any combination of knowledge and common knowledge operators. (This last result has been independently obtained in [HV86].)

*Research supported in part by the National Science Foundation under Grant Number DCR-8405478 and by the Office of Naval Research under Contract Number N00014-82-K-0154.

†Research supported by an NSF postdoctoral fellowship and by the Mathematical Sciences Research Institute, Berkeley, CA.
2 Definitions

We define Propositional Temporal Knowledge Logic (PTKL) as follows. Let $\text{PROP} = \{S_1, S_2, \ldots\}$ be a set of propositional symbols. Let $\text{PART} = \{1, 2, \ldots, n\}$, $n \geq 2$ be a finite set of participants. Let $\Phi = \Phi(\text{PART}, \text{PROP})$, the formulas of PTKL, be the smallest set of strings containing PROP and closed under the following rules:

1. If $\alpha, \beta \in \Phi$ then so are $\neg \alpha$ and $\alpha \land \beta$.
2. If $\alpha, \beta \in \Phi$ then so are $\forall \alpha$, $G \alpha$ and $(\alpha U \beta)$.
3. If $\alpha \in \Phi$ and $H \subseteq \text{PART}$ then $C_H \alpha \in \Phi$.

The intuitive meaning of the temporal operators is as follows: $\forall \alpha$ means that α holds at every next step. $G \alpha$ means that α holds at all points in the future. $(\alpha U \beta)$ means that α is true and remains true until β becomes true.

We adopt abbreviations for the dual operators: $X \alpha \equiv \neg Y \neg \alpha$ meaning that α holds at some next step, and $F \alpha \equiv \neg G \neg \alpha$ meaning that α holds at some future step.

For H a singleton, $H = \{i\}$, we adopt the abbreviation $K_i \alpha$, read "i knows α," for $C_H \alpha$. The intuitive meaning is that α is true in all conceivable situations that are consistent with i's local view. In the more general case $C_H \alpha$ is read, "It is common knowledge among the members of H that $\alpha."$ This is precisely defined below. See also Fact 2.1 for an equivalent formulation.

The semantics of PTKL are defined using a kind of Kripke model called a distributed protocol. See [Fl85] for a detailed discussion of this model. Let PROP be fixed. Define a protocol to be a tuple $P = (n, Q, I, r, \pi)$. $\text{PART} = \{1, \ldots, n\}$ is a set of participants, Q is a set of local states, and Q^n is the set of n-tuples called global states. $I \subseteq Q^n$ is a set of initial global states. $I \subseteq Q^n$ is a set of initial global states, the function $\pi : Q^n \times \text{PROP} \rightarrow \{0, 1\}$ evaluates the propositional letters at each global state, and $r \subseteq Q^n \times Q^n$ is the next move relation on global states. Let r^* be the reflexive transitive closure of r and define the reachable global states in P to be

$$R_p = \{q \in Q^n \mid \text{for some } s \in I, (s, q) \in r^*\}.$$

Intuitively, a global state q is reachable if there is a r-path $s, p_1, \ldots, p_{r-1}, q$ starting in an initial global state s and ending in q.

2
Given a protocol $P = (n, Q, I, \tau, \pi)$, a global state $q \in R_P$, and a PTKL formula $\alpha \in \Phi$, we define the satisfaction relation $(P, q) \models \alpha$ in the usual way by induction on the complexity of α:

1. For $S \in \text{PROP}$, $(P, q) \models S \iff \pi(q, S) = 1$.
2. $(P, q) \models Y \beta \iff (\text{for all } p)(\text{if } (q, p) \in \tau \text{ then } (P, p) \models \beta)$.
3. $(P, q) \models G \beta \iff (\text{for all } p)(\text{if } (q, p) \in \tau^* \text{ then } (P, p) \models \beta)$.
4. $(P, q) \models BU \gamma \iff (\text{for all } n \geq 0)(\text{for all } p_0, p_1, \ldots, p_n)(\text{if } q = p_0 \text{ and for } i = 1, \ldots, n, (p_{i-1}, p_i) \in \tau \text{ and } (P, p_i) \models \neg \gamma) \text{ then } (P, p_n) \models \beta)$.

The only unusual case occurs when $\alpha = C_H \beta$. For $i \leq n$, let $(q)_i$ denote the i^{th} component of q. Define the equivalence relation \sim on R_P by

$$p \sim q \iff (p)_i = (q)_i.$$

For $H = \{i_1, \ldots, i_r\}$, let the equivalence relation H be the transitive closure of $(\sim_{i_1} \cup \sim_{i_2} \cup \ldots \cup \sim_{i_r})$. Finally we define:

5. $(P, q) \models C_H \beta \iff (\text{for all } p)(\text{if } p \equiv_H q \text{ then } (P, p) \models \beta)$.

From this definition it is straightforward to prove:

Fact 2.1 [FI85] The following two statements are equivalent for any set $G \subseteq \text{PART}$:

1. $(P, p) \models C_G \alpha$.
2. $(\forall r \geq 0)(\forall i_1, \ldots, i_r \in G)((P, p) \models K_{i_1} K_{i_2} \ldots K_{i_r} \alpha)$.

3 Main Results

In Theorem 3.1 below, we give an interpretation of PTKL in Propositional Dynamic Logic with Converse (PDLc) [St81]. It then follows using Pratt's EXPTIME decision procedure for PDLc [Pr81] that the satisfiability problem for PTKL is solvable in EXPTIME. This is Corollary 3.7. We then observe in Theorem 3.8 that if a PTKL formula is satisfied by some protocol in which at least two participants are mentioned, then it is satisfied by a protocol in which the only participants are those explicitly mentioned in
the formula. Thus, allowing extra participants with "hidden" state does not increase the power of the system.

We assume that the reader is familiar with Propositional Dynamic Logic (PDL), see e.g. [FL79]. PDL is PDL plus the converse operator: for each program a we let a^c denote its converse.

Theorem 3.1 There is a simultaneously logspace and time $O(n^2)$ computable mapping f from formulas of PTKL to formulas in PDLC such that for all $\alpha \in \mathfrak{P}$, α is satisfiable if and only if $f(\alpha)$ is satisfiable.

The proof is contained in three lemmas. First we define the mapping f and show that it is easily computable. Next we show that if α is satisfiable, then so is $f(\alpha)$, and finally we show the converse, that if $f(\alpha)$ is satisfiable, then so is α.

Let $\text{PART} = \{1, \ldots, n\}$. The atomic program symbols we will need are $\{t, e_1, \ldots, e_n\}$. Symbol t will correspond to a τ step and the e_i's together with their converses will correspond to \sim links. The function f is defined inductively as follows:

1. For $S \in \text{PROP}$, $f(S) = S$.
2. $f(\neg \alpha) = \neg f(\alpha)$; $f(\alpha \land \beta) = f(\alpha) \land f(\beta)$.
3. $f(Y \alpha) = [t]f(\alpha)$; $f(G\alpha) = [t^*]f(\alpha)$;
 $f(\alpha U \beta) = [\langle t; \neg f(\beta) \rangle^*]f(\alpha)$.
4. For $H = \{i_1, \ldots, i_r\}$, $f(C_H \alpha) = [(e_{i_1} \cup e_{i_1}^c \cup \ldots \cup e_{i_r} \cup e_{i_r}^c)^*]f(\alpha)$.

Lemma 3.2 f is simultaneously logspace and time $O(n^2)$ computable.

Proof Straightforward using standard techniques.

Lemma 3.3 Given a protocol $P = \langle n, Q, I, \tau, \pi \rangle$, there is a PDL structure $h(P)$, whose worlds are the reachable global states of P, such that for any PTKL formula α and reachable global state p, $(P, p) \models \alpha$ iff $(h(P), p) \models f(\alpha)$.

Proof We define the PDL structure $h(P)$ as follows: the set of worlds W of $h(P)$ is R_P, and the mapping $\pi' : \text{PROP} \rightarrow 2^W$ is given by $\pi'(S) = \{p \in R_P \mid \pi(p, S) = 1\}$. For each participant i, the meaning of e_i is given by

$$\rho(e_i) = \{(p, q) \in R_P \times R_P \mid p \sim q\},$$

4
and finally
\[\rho(t) = \{(p, q) \in R_p \times R_p \mid \langle p, q \rangle \in \tau \}. \]

It is easy to show by induction on the complexity of \(\alpha \) that for \(p \in R_p \),
\[\langle P, p \rangle \models \alpha \iff \langle h(P), p \rangle \models f(\alpha). \]

We leave the details to the reader.

Lemma 3.4 Given a PDL structure \(K = \langle W, \rho, \pi \rangle \) with atomic program symbols \(t, e_1, \ldots, e_s \), there is a protocol \(g(K) \) with \(n = \max(s, 2) \) participants and a surjection \(\eta \) from global states of \(g(K) \) to worlds of \(K \) such that for any PTKL formula \(\alpha \) and global state \(q, \langle g(K), q \rangle \models \alpha \iff \langle K, \eta(q) \rangle \models f(\alpha) \).

Proof For \(1 \leq i \leq n \), let \(\equiv_i \) be the reflexive, symmetric, and transitive closure of \(\rho(e_i) \) on \(W \) if \(i \leq s \), and let \(\equiv_i \) be the equality relation if \(i > s \). Let \([w]_i \) denote the \(\equiv_i \) equivalence class which contains \(w \). Let \(M = |W| \), and let \(\omega : \{0, \ldots, M - 1\} \to W \) be a bijection.

We define the protocol \(g(K) = \langle n, Q, I, \tau, \pi' \rangle \) as follows. Let
\[Q = \{([w]_i, m) \mid w \in W, 1 \leq i \leq n, 0 \leq m < M \}. \]

Define the map \(\eta : Q^n \to W \) by
\[\eta(([w]_1, m_1), ([w]_2, m_2), \ldots, ([w]_n, m_n)) = \omega(\sum m_i \text{ mod } M), \]
and let
\[I = \{q \in Q^n \mid \text{for some } w \in W, m_1, \ldots, m_n \in \{0, \ldots, M - 1\}, q = (([w]_1, m_1), ([w]_2, m_2), \ldots, ([w]_n, m_n)) \text{ and } \eta(q) = w \}. \]

The idea here is that in \(I \), each local state ([w]_i, m_i) has as first component the \(\equiv_i \) equivalence class we are in and the second component gives no further information except when added to all the other \(m_j \)'s, in which case it tells us exactly which world we are in and thus what the allowable next moves are.

To complete the definition of \(g(K) \) let
\[\tau = \{\langle q, q' \rangle \in I \times I \mid \eta(q), \eta(q') \in \rho(t)\}, \]
and let
\[\pi'(q, S) = \begin{cases} 1 & \text{if } \eta(q) \in \pi(S) \\ 0 & \text{otherwise.} \end{cases} \]

Note that by definition, \(\tau \subseteq I \times I \) and thus \(R_{g(K)} = I \).

For any \(H \subseteq \text{PART} \), let \(\equiv_H = (\bigcup_{e \in H} \equiv_i)^* \).
Fact 3.5 Let \(p, p' \in I \) with \(p \sim_H p' \). Then \(\eta(p) \equiv_H \eta(p') \).

Proof First assume \(H = \{ i \} \). Let \(p, p' \in I \) and let \(w = \eta(p) \) and \(w' = \eta(p') \). If \(p \sim p' \), then the \(i \)th components of \(p \) and \(p' \) are the same, so \([w]_i = [w']_i \). Hence, \(\eta(p) = w \equiv_i w' = \eta(p') \). The extension to arbitrary \(H \) follows easily by induction on the minimal \(r \) such that \(\langle p, p' \rangle \in \left(\bigcup_{i \in H} \equiv_i \right)^r \).

Fact 3.6 Let \(p \in I \), let \(\eta(p) = w \) and let \(w \equiv_H w' \). Then there exists \(p' \in I \) such that \(\eta(p') = w' \) and \(p \sim_H p' \).

Proof First assume \(H = \{ i \} \), and let \(p, w, \) and \(w' \) be as above. We may write \(p = \langle [w]_1, m_1 \rangle, \ldots, [w]_n, m_n \rangle \). Choose \(k \neq i \), possible since \(n \geq 2 \). Let \(p' = \langle [w']_1, m'_1 \rangle, \ldots, [w']_n, m'_n \rangle \), where \(m'_j = m_j \) for all \(j \neq k \), and choose \(m'_k \) such that \(\eta(p') = w' \). Thus, \(p' \in I \), and since \([w']_i = [w]_i \) and \(m'_i = m_i \), we have \(p \sim p' \) as desired. The extension to arbitrary \(H \) follows easily by induction on the minimal \(r \) such that \(\langle w, w' \rangle \in \left(\bigcup_{i \in H} \equiv_i \right)^r \).

Returning to the proof of Lemma 3.4, we show by induction on the complexity of \(\alpha \in \Phi \) that for \(q \in R_q(K) \),
\[
\langle g(K), q \rangle \models \alpha \iff \langle K, \eta(q) \rangle \models f(\alpha).
\]
The only interesting case is when \(\alpha = C_H \beta \). Let \(H = \{ i_1, \ldots, i_r \} \) and \(q \in R_q(K) \). Then
\[
\langle g(K), q \rangle \models C_H \beta
\]

\[\iff\]
for all \(p \in R_q(K) \), if \(q \sim p \) then \(\langle g(K), p \rangle \models \beta \)
(by definition of \(C_H \))

\[\iff\]
for all \(p \in R_q(K) \), if \(\eta(q) \equiv_H \eta(p) \) then \(\langle K, \eta(p) \rangle \models f(\beta) \)
(by Facts 3.5 and 3.6 and the induction hypothesis)

\[\iff\]
for all \(w' \in W \), if \(\eta(q) \equiv_H w' \) then \(\langle K, w' \rangle \models f(\beta) \)
(since \(\eta \) is surjective)

\[\iff\]
\(\langle K, \eta(q) \rangle \models [\bigcup e_{i_1} \cup e_{i_2} \cup \ldots \cup e_{i_r}] \models f(\beta) \)
(by definition of \(\equiv_i \) and PDLC).

This completes the proof of Lemma 3.4 and of Theorem 3.1. \(\blacksquare \)
Corollary 3.7 The satisfiability problem for PTKL is decidable in EXP-TIME.

Given a PTKL formula α, let $H(\alpha)$ be the set of participants that appear in α. More precisely, if C_{H_1}, \ldots, C_{H_r} are the knowledge operators that appear in α, then $H(\alpha) = H_1 \cup \ldots \cup H_r$. The following theorem shows that if there are at least two participants mentioned in a formula then adding extra participants not mentioned in the formula cannot affect its satisfiability. Note that this is nontrivial because the truth of a knowledge formula in a particular structure can be affected by participants not mentioned in the formula.

Theorem 3.8 Let α be a satisfiable formula of PTKL. Then α is satisfiable in a protocol $P = (n, Q, I, \tau, \pi)$ in which $n = \max(|H(\alpha)|, 2)$.

Proof Let α be satisfiable in a protocol P, and let $n = \max(|H(\alpha)|, 2)$. We will show that α is satisfiable in a protocol with n participants. By Lemma 3.3, $f(\alpha)$ is satisfiable in the PDL structure $h(P)$. But $f(\alpha)$ only contains program letters t and e_i for $i \in H(\alpha)$. Hence, $f(\alpha)$ is also satisfiable in a PDL structure K containing only the relations $\rho(t)$ and $\rho(e_i)$ for $i \in H(\alpha)$. By Lemma 3.4, α is satisfiable in the protocol $g(K)$, which has only n participants.

4 Hardness

The following theorem is very similar to the corresponding lower bound in [FL79]. Emerson and Halpern [EH85] already point out that this theorem can be proved in this way. We include the details for the sake of completeness.

Theorem 4.1 Let M be an ASPACE(n) Turing machine. Then there is a logspace and $n \log n$ time computable function $d : \{0, 1\}^* \rightarrow \Phi$ such that M accepts x iff $d(x)$ is satisfiable. Furthermore the operator C does not occur in $d(x)$.

Proof An instantaneous description (ID) of M for an input of length n will consists of $n + 3$ symbols as follows: a left end-marker $<$, n tape cells, a state
symbol $q \in Q_M$ located immediately to the left of the cell being examined by M's head, and a right end-marker \triangleright. Let $\forall M \subseteq Q_M$ be the set of M's universal states and let A_M be M's tape alphabet. Let $\Sigma = Q_M \cup A_M \cup \{\triangleright, \triangleleft\}$ be the alphabet of all possible symbols in an ID of M. We will assume without loss of generality that M has a clock which causes each computation branch to enter the unique rejecting state, q^{reject}, after c^n steps. We will also assume that there is a unique accepting state, q^{accept}.

Given an input $x \in \{0, 1\}^n$, we let $\text{PROP} = \{\sigma_i \mid \sigma \in \Sigma \text{ and } -1 \leq i \leq n + 1\}$. We will let $d(x)$ be the conjunction of the following PTKL formulas. Intuitively $d(x)$ will assert that each reachable global state determines an ID of M, that in particular the current global state determines M's initial ID on input x, that every global state leads to a next move ID on input x, that every global state corresponding to a universal ID leads to a non-accepting state. It thus follows that $d(x)$ is satisfiable if and only if M accepts x.

- $G(\bigvee_{i=-1}^{n+1} \bigwedge_{\sigma \in \Sigma} (\sigma_i \land \bigwedge_{r \neq \sigma} \neg r_i)) \land G(\sigma_{-1} \land r_{n+1})$, i.e. each cell i always contains exactly one symbol of Σ, and the end-markers are fixed.

- $q_0^{\text{start}} \land (\bigwedge_{i:x_i=0} \sigma_i) \land (\bigwedge_{i:x_i=1} 1_i)$, i.e. the initial ID is q^{start} followed by x.

- $G(\bigwedge_{\alpha, \beta, \gamma \in Q_M} \bigwedge_{i=0}^{n} (\alpha_{i-1} \land \beta_i \land \gamma_{i+1} \rightarrow Y \beta_i))$, i.e. a cell not bordered by a state symbol is always preserved.

- $G(\bigwedge_{\beta \in Q_M} \bigwedge_{i=0}^{n} (\alpha_{i-1} \land \beta_{i} \land \gamma_{i+1} \rightarrow X (\alpha'_{i-1} \land \beta'_i \land \gamma'_i) \lor \alpha''_{i-1} \land \beta''_i \land \gamma''_{i+1}))$, i.e. there is a next step that reflects at least one of the possible next moves of M.

- $G(\bigwedge_{\beta \in Q_M} \bigwedge_{i=0}^{n} (\alpha_{i-1} \land \beta_i \land \gamma_{i+1} \rightarrow X (\alpha'_{i-1} \land \beta'_i \land \gamma'_i) \land X (\alpha''_{i-1} \land \beta''_i \land \gamma''_{i+1})))$, i.e. when we're in a universal state there are next steps reflecting each of the two possible next moves.

- $G(\bigwedge_{i=0}^{n} q^{\text{reject}}_i)$, i.e. we never enter the rejecting state.

It is not hard to verify that $d(x)$ meets the required conditions.

Corollary 4.2 The satisfiability problem for PTKL is EXPTIME complete even with only one participant and no occurrences of C_H.

8
References

DISTRIBUTION LIST

Office of Naval Research Contract N00014-82-K-0154
Michael J. Fischer, Principal Investigator

Defense Technical Information Center
Building 5, Cameron Station
Alexandria, VA 22314
(12 copies)

Naval Ocean Systems Center
Advanced Software Technology Division
Code 5200
San Diego, CA 92152
(1 copy)

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217

Mr. E.H. Gleissner
Naval Ship Research and Development Center
Computation and Mathematics Department
Bethesda, MD 20084
(1 copy)

Dr. R.B. Grafton, Scientific Officer (1 copy)
Information Systems Program (437)
(2 copies)
Code 200 (1 copy)
Code 455 (1 copy)
Code 458 (1 copy)

Captain Grace H. Hopper
Naval Data Automation Command
Washington Navy Yard
Building 166
Washington, D.C. 20374
(1 copy)

Office of Naval Research
Branch Office, Pasadena
1030 East Green Street
Pasadena, CA 91106
(1 copy)

Defense Advance Research Projects Agency
ATTN: Program Management/MIS
1400 Wilson Boulevard
Arlington, VA 22209
(3 copies)

Naval Research Laboratory
Technical Information Division
Code 2627
Washington, D.C. 20375
(6 copies)

Office of Naval Research
Resident Representative
715 Broadway, 5th Floor
New York, NY 10003
(1 copy)

Dr. A.L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
Code RD-1
Washington, D.C. 20380
(1 copy)