Yale University
Department of Computer Science

Matrix Multiplication on Boolean Cubes
Using Generic Communication Primitives

S. Lennart Johnsson and Ching-Tien Ho

YALEU/DCS/TR-530
September 1987

This work has been supported in part by the Office of Naval Research under
Contracts N00014-84-K-0043 and N00014-86-K-0564. Approved for public re-
lease: distribution is unlimited.

T A revised edition of TR-530, March 1987. To appear in Proceedings of ARO workshop
on Parallel Processing and Medium-Scale Multiprocessors, 1986.

Matrix Multiplication on Boolean Cubes
Using Generic Communication Primitives

S. Lennart Johnsson and Ching-Tien Ho
Department of Computer Science
Yale University
New Haven, CT 06520

Abstract. Generic primitives for matrix operations as defined by the level one, two and
three of the BLAS are of great value in that they make user programs much simpler, and hide
most of the architectural detail of importance for performance in the primitives. We describe
generic shared memory primitives such as one-to-all and all-to-all broadcasting, and one-to-
all and all-to-all personalized communication, and implementations thereof that are within a
factor of two of the best known lower bounds. We describe algorithms for the multiplication of
arbitrarily shaped matrices using these primitives. Of the three loops required for a standard
matrix multiplication algorithm expressed in Fortran all three can be parallelized. We show
that if one loop is parallelized, then the processors shall be aligned with the loop with the
maximum number of matrix elements for the minimum arithmetic and communication time.
In parallelizing two loops the processing plane shall be aligned with the loops having the most
elements. Depending on the initial matrix allocation data permutations may be required to
accomplish the processor/loop alignment. This permutation is included in our analysis. We
show that in parallelizing two loops the optimum aspect ratio of the processing plane is equal
to the ratio of the number of matrix elements in the two loops being parallelized.

1 Introduction

One of the most frequent operations in scientific and engineering computations is multiplication
of matrices. We analyze this problem for arbitrary matrix shapes and Boolean n-cube configured
ensemble architectures [22] and express the algorithms in generic communication primitives.

It is well known that for the classical multiplication algorithms requiring P R(2Q — 1) arith-
metic operations for the multiplication of a P x @ matrix by a @ X R matrix, the access scheme
has a significant influence on the actual running time for most architectures. Performance vari-
ations of up to one order of magnitude have been observed. Some access schemes make effective
use of pipelining, while others do not. Some have locality of access, making good use of cache
based architectures, others not. Some also result in accesses to the same storage bank at a
rate causing the performance to be determined by storage bank bandwidth instead of the total
storage or processor bandwidths.

In the Boolean n-cube architectures we consider, storage is uniformly distributed among
nodes of identical architecture. The global architecture can be considered homogeneous. We also
assume that the matrices to be multiplied are uniformly distributed throughout the machine. For
a multiprocessor with few nodes relative to the total number of matrix elements, the time for the
arithmetic operations, and local storage operations, are likely to dominate over the interprocessor
communication times. If each processor holds a square block matrix of M elements of each of
the operands, then 2M V/M arithmetic operations are required per communication of two blocks,
i.e., 2M elements. The number of arithmetic operations per element communication is VM.
The ratio between elementary arithmetic operations and element communications approaches 1
as the aspect ratio of the blocks increases. As the number of processors increases relative to the
matrix size, the importance of efficient communication increases.

The granularity is said to be fine if there are only a few elements per processor. Different
data allocations and data movements may in such cases result in significantly different proces-
sor utilization and communication time. The emphasis of this paper is on the communication
efficiency. The problem of efficient communication can be studied in the context of embedding
one graph, the guest graph, in another, the host graph. The first graph captures the communi-
cation needs, or data dependencies, of the algorithm, the other models the processor ensemble.
The communication needs of the classical matrix multiplication algorithms imply some form of
broadcast operation. For instance, in computing A «+ C X D + E, every element of a column
of C multiplies every element of the corresponding row of D. The guest graphs that implement
some generic communication patterns that we consider are linear and multidimensional arrays,
and a variety of spanning graphs that yield lower bound communication for different kinds of
communication operations, or different capabilities of the hardware. The topological properties
of the hardware is captured by the host graph.

The main feature of Boolean cube configured architectures, and other architectures designed
to be scalable to a large number of processors, is that a high storage and communication band-
width can be achieved at a relatively low cost. Similarly, the processing capability is obtained
through replication, which, in VLSI technology, is cheap. The ensemble architecture can be op-
erated with a single instruction stream, SIMD (Single Instruction Multiple Data) [18], or each
node, or a subset thereof, may have their own instruction stream, resulting in a MIMD (Multi-
ple Instruction Multiple Data). We present algorithms suitable for both kinds of architectures.
In the Boolean cube configured architectures there is a nonuniformity in the distance from a
processor to other processors, or storage modules. This nonuniformity offers the potential for
performance enhancements through the exploitation of locality.

The outline of this paper is as follows. In the next section the notation and definitions
used throughout the paper are introduced. Linear arrays and two-dimensional meshes can be
simulated on Boolean cubes without a slow down. The embedding of such graphs are discussed in
Section 3. Section 4 presents some spanning graphs and the complexity of one-to-all broadcasting
and all-to-all broadcasting under various conditions. This section also contains a discussion
of one-to-all personalized communication and all-to-all personalized communication. Section 5
presents matrix multiplication algorithms based on a few generic communication primitives both
for one- and two-dimensional partitioning of the matrices, and a complexity analysis. Section
6 gives a summary and conclusions. Some of the estimated communication complexities have
been verified through measurements on the Intel iPSC [13].

0100 0101 1100 1101

0
0000 001 1000 10

0110 0111 1110 1111

1010 1011
0010 0011 ——*

Figure 1: A recursive construction of Boolean cubes.

2 Notation and Definitions

Throughout the paper N denotes the number of processors. For a two-dimensional mesh N =
Ny X Ny and for a Boolean n-cube N = 2™. We consider the multiplication of a dense matrix
of size P X @ by a matrix of size Q X R. The diameter of an Ny X Nz mesh is Ny + Nz — 2,
if there is no wrap-around, and is | 2| + | %2 | otherwise. There are 4 paths between any pair
of “internal nodes” in a mesh. For ¢ and 7 in different rows and columns, the length of two of
these paths is |z — 7]y for nodes ¢z and j. |- |; denotes the 1-norm. The other two paths are of

length |2 — 7|1 + 4.

A Boolean n-cube has diameter n = log N, (?) nodes at distance ¢ from a given node, and
n disjoint paths between any pair of nodes. The paths are either of the same length as the
Hamming distance between the end points of the paths, or the Hammaing distance plus two
[21]. The fanout of every node is n, and the total number of communication links is 2N log N.
The average distance between nodes is %n A Boolean n-cube can be constructed recursively by
joining corresponding nodes of two {n — 1)-cubes. It follows that nodes can be given addresses
such that adjacent nodes differ in precisely one bit, Figure 1. The distance between a pair of
nodes s and 7 is equal to the Hamming distance between the nodes, where Hamming(z, j) = [¢@j],
and @ is the bit-wise exclusive-or operator, and |i| denotes the number of bits of ¢ that is equal
to one. -

For the embedding of a guest graph in a host graph, an edge of the guest graph is, in general,
mapped onto a path in the host graph. Let p(,7) be the path length between nodes 2 and j.
Define the edge dilation of an edge (7, 7) in the guest graph with respect to the mapping function
¢ to be p(¢(2), #(7)). Hence, if the edge dilation is one for every edge in the guest graph, then
the communication time for an algorithm on the host graph is the same as on the guest graph,
assuming that ¢(z) # ¢(7), if © % 7. In many cases there is a trade-off between the maximum
edge dilation, or average edge dilation, and the expansion = (number of nodes in the host graph)
/ (the number of nodes in the guest graph).

Different Boolean cube configured architectures are capable of supporting concurrent com-
munication on a different number of ports. In one-port communication, communication can
only take place on one port at a time for each processor. In n-port communication all ports on
each processor can be used concurrently. The communication time is denoted T'(-, -), where the
first argument refers to the number of ports used concurrently, and the second to the number

of spanning graphs used concurrently, i.e., the number of source nodes for the broadcasting
or personalized communication. The routing schemes are indexed similarly. T}, denotes lower
bound estimates.

In the following we also use the notions of one-to-all broadcasting, and all-to-all broadcasting.
In one-to-all broadcasting a single node communicates the same information to every other node.
In the all-to-all case every node performs one-to-all broadcasting. In one-to-all personalized
communication a node sends a unique piece of information to every other node. In all-to-all
personalized communication every node performs one-to-all personalized communication. When
there is a need to distinguish between routing for broadcasting and routing for personalized
communication, we do that by affixing -b, or -p to the name of the routing scheme.

The Yale version of the Intel iPSC is a 64 node multiprocessor usually configured as two 5-
dimensional Boolean cubes. It has a message passing programming model. Up to 16k bytes can
be passed in each communication, but the operating system subdivides messages of a size greater
than 1k byte into 1k byte packets. We refer to the user defined packets as ezternal packets and
the operating system defined packets as internal packets. The size of the internal packets is
denoted B,,. We denote the time for an arithmetic operation by t,, the time for communication
of a floating-point number (4 bytes) by t., and the start-up time for a communication by 7.
With the initial operating system we recorded a start-up time of 7 ~ 8 msec for each external
packet, and a start-up time of 7 &~ 6 msec for each internal packet. In a second version of
the operating system the start-up time for external packets was reduced to 7 ~ 5 msec, and
with the current operating systems, NX, the start-up time for external packets is reduced to
7 ~ 1.5 msec. Although there are n ports per processor in an n-cube, the storage bandwidth
is only sufficient to support concurrent communication on 2 — 3 ports. However, we have been
unable to realize this potential effectively with any of the available operating systems. The
concurrency in communication on different ports of the same processor amounts to an overlap
of about 20%. The computational rate realized from FORTRAN is approximately 30 kflops.

3 Embedding of Arrays in Boolean Cubes

We assume that successive nodes of a path are labeled with successive integers with the least
label being 0. Mapping the array nodes to processors according to the binary encoding of the
integers does not preserve proximity. The binary encodings of % and % — 1 differ in all bits
and are assigned to processors at distance n. However, it is well known that the Boolean cube
is Hamiltonian. The Gray code has the property that the binary codes of successive integers
differ in precisely one bit. The binary-reflected Gray code can be defined recursively as shown
below [19]. Let G} be the j-bit Gray code of 7, and G(n) be the entire (cyclic) sequence of n-bit

Gray code numbers (of length 2™). Then, G(n) can be represented in matrix form as

Gt

Gt

Gn)=|
Gonz
Gy

0G?

0G? G20
.1 ar1)
: ar1
0GZn_, aro
n

Then G(n+1) = (l)gZL::i , or alternatively, G(n + 1) = gg(l)
1G3_, ?
: Gyl
1G} GZ._ .0
1G7 \ G50/

Moreover, it is cyclic in that Hamming(GE, G’gﬁ_i) = 1. The cyclic property means that loops
with 2” nodes can be embedded in an n-cube with edge dilation one and ezpansion one. More-
over, any loop of even length can be embedded with dilation one. Any odd length loop must
have at least one edge of dilation two, when embedded in the cube [14]. The expansion for a
loop with Ny, nodes embedded in an n-cube is Nﬂtf’ which is at most 2 — F4+—2‘

A multidimensional array N3 X Nz X ... N, can be embedded in a Boolean cube preserving
adjacency by simply partitioning the address space of the cube node addresses such that [log, N;]
bits are assigned to the embedding of the nodes in dimension z of the array. The nodes in each
dimension are embedded using a Gray code. With this simple embedding the expansion is 1 if
N; =2%, Vie {1,2,...,r}, but can be as high as []]_,(2 — J—V-:l-?§) Reduced expansion can
be obtained at the expense of increased dilation [2,14,11].

4 Spanning Graphs, Broadcasting, and
Personalized Communication

Matrix multiplication, as many other linear algebra algorithms, implies a broadcasting of el-
ements from one location to all other locations, or a subset of other locations. A degenerate
form of spanning tree is a Hamiltonian path. Such a tree has a maximum height. The path can
be generated by a binary-reflected Gray code. The minimum time for broadcasting is clearly
bounded from below by the length of the longest path. To reduce the time for broadcasting
compared to that given by a Hamiltonian path, it is necessary to use a spanning tree with a
shorter longest path; for instance, a tree of minimum height. A Spanning Binomial Tree [7,1,14]
is such a tree. However, broadcasting based on such a spanning tree does not necessarily mini-
mize the time [17] for broadcasting. We will now briefly describe the embedding of Hamiltonian
paths, Spanning Binomial Trees, n Edge-Disjoint Spanning Binomial Trees, Spanning Balanced
n-Trees, and n Rotated Spanning Binomial Trees. The communication complexities for routing
according to these different spanning graphs are given. For details of the derivations see [17].
The different graphs are all optimal for at least one of the algorithms considered here. The data
set to be communicated to a node from the source is M. Hence, in broadcasting the data set in
the source is M, but in personalized communication it is (N — 1) M.

4.1 One-to-All Broadcasting

The matrix multiplication algorithms we will describe all require some form of broadcasting,
in most cases all-to-all broadcasting, but since the all-to-all broadcasting is a composition of
one-to-all broadcasting we first describe the simpler case. The communication complexities are
summarized in Table 1.

4.1.1 Hamiltonian Paths

A Hamiltonian path is the simplest form of broadcasting tree. With one-port communication,
the time for broadcasting is proportional to the time for the first packet to propagate to the
furthest node, and the number of subsequent packets arriving during every other cycle. With
a Hamiltonian path generated by a binary-reflected Gray code the distribution of edges over
the different dimensions is %N , iN y <y 1. We denote the Hamiltonian path routing based on a
binary-reflected Gray code by GC. The estimated routing time is given in Table 1.

If n-port communication is possible, n different paths can be generated by rotating the
dimensions used in the Gray code such that for path 7 dimension k of the initial path is translated
into dimension (¢ + k) mod n. For instance, let sequence O be the original sequence, then the
three rotated sequences for a 3-cube are as follows: sequence 0 = (0,1,0,2,0,1,0), sequence 1 =
(1,2,1,0,1,2,1), and sequence 2 = (2,0,2,1,2,0,2). For n-port communication the data set
M is partitioned into n sets, and each set broadcasted along a separate path. However, the
n paths are not edge-disjoint, and several messages along the same path cannot be pipelined
with messages along all other paths. For instance, it can be shown that there does not exist
3 (directed) edge-disjoint Hamiltonian circuits in a 3-cube, but there exist 4 (directed) edge-
disjoint Hamiltonian circuits in a 4-cube.

4.1.2 Spanning Binomial Trees

The most commonly used spanning tree for broadcasting in a Boolean cube, or the reverse
operation, reduction, as in inner product computations, is a Spanning Binomial Tree (SBT). An
n-level binomial tree can be constructed recursively by adding one edge between the roots of
two (n — 1)-level binomial trees, and making either root the new root. A O-level binomial tree
has one node. It follows that:

e An n-level binomial tree has (':) nodes at level 7, i.e., the same as the number of nodes at
distance ¢ form a node in a Boolean cube.

e The n-level binomial tree is composed of n subtrees each of which is a binomial tree of
0,1,...,n — 1 levels respectively. The k-level subtree has 2% nodes.

Figure 2 shows a 5-level binomial tree, which is also a spanning tree of the 5-cube.

For one-port communication the source node first sends a packet to the largest subtree, then
the broadcasting task is effectively reduced to broadcasting in two same-sized binomial trees,
each having half the number of nodes of the original tree. The number of routing steps is
minimal for a maximum packet size B,, > M. However, the bandwidth is not used effectively.
A lower bound for the broadcasting time is 7;,(1,1) = max(Mt,, nr). The minimum time for
SBT(1,1) routing is higher than the lower bound by a factor of n for the data transmission time.

With n-port communication, pipelining can be employed. The routing time is reduced ap-
proximately by a factor of n, Table 1.

4.1.3 Edge-Disjoint Spanning Binomial Trees

A spanning binomial tree uses N — 1 of a total of Né’ log N or Nlog N communication channels
in the cube. Increased use of the bandwidth of the cube can be accomplished by dividing the
data set up into n pieces, sending each such piece to a distinct neighbor of the source, and then

\

1 2
4 3 16
3 5 9 17 6 10 18 12 20 24
7/ 11 9 13 21 \25 14 22 26 28
7
15 23 \2 29 30

31

Figure 2: A 5-level binomial tree.

performing a concurrent broadcast from these n secondary sources. Each such broadcast can
be done using SBT routing. If these n SBTs are distinct rotations of each other, then it can
be shown that they are edge-disjoint [9]. We refer to this spanning graph as an nESBT graph
for n Edge-disjoint Spanning Binomial Trees. It uses (N — 1)log N (directed) edges, i.e., all
cube edges except those directed towards the source with bidirectional internode communication.
Furthermore, it is possible to devise scheduling disciplines for one-port communication such that
no contention for communication channels occurs [9]. The speed-up of the nESBT(1,1) routing
over the SBT(1,1) routing is n for —5]\'{"— > n.

Note that the nESBT routing requires less temporary storage than SBT routing. The opti—
mum packet size for SBT routing is larger by a factor of 4/ M—a Note that if M < == then
the optimum packet size, Bopy, is M. So, if M < - and B, > M then the SBT is superlor to

the nESBT by one routing step. Note further that ‘the routings SBT(n 1) and nESBT(1,1) are
approximately equal in complexity, as are the corresponding optimal packet sizes.

The Intel iPSC effectively is restricted to communication on one port at a time. Figure
3 shows the measured times for SBT and nESBT routing as well as the relative speed-up as
functions of cube dimensions.

A lower bound for n-port one-to-all broadcasting is Tip(n,1) = max(%!-tc, nr). The
nESBT(n, 1) routing is higher than this lower bound by at most a factor of 2 (as in the one-port
case). The nESBT(n, 1) routing is faster than the SBT(n 1) routing by a factor of n, if 2L > n.
The optimum packet size for the SBT(n, 1) routing is larger than that of the nESBT(n,) routmg
by a factor of approximately /7.

4.1.4 Rotated Spanning Binomial Trees

A higher edge utilization than in the SBT graph is obtained by superimposing n distinctly
rotated spanning binomial trees. The data set is divided into n sets, and the load on the edges

SBT and nESBT (Broadcasting) Speed—up of nESBT over SBT
T T T T ' T T | T T T T | T T
2000 SBT _|
o
@ | . a5 |- _
E 7
E A :
v1ooo 2
(] — —]
£ 20 |
[
R==%--5--x---x nESBT - .
0 1 1 1 L ' L 1 0 1 1 1 1 l 1 1
0 5 0 g 5
Cube dimension Cube dimension

Figure 3: Measured broadcast times of the SBT and nESBT routings on the Intel iPSC for a
60k bytes message with packet size 1k bytes. On the right, the dashed line means speed-up
= log N.

from the source is perfectly balanced if M mod n = 0. We call this form of spanning graph
nRSBT for n Rotated Spanning Binomial Trees [17]. The different instances of the SBTs are
clearly not edge-disjoint. The maximum edge-load, i.e., the maximum number of elements that
traverse an edge is the same as for the SBT graph, and a factor of n higher than for the nESBT
graph. Concurrent communication on n ports reduces the data transfer time by a factor of n, and
the number of start-ups by a factor of approximately 2 compared to one-port communication.
Though the nRSBT(*,1) routing is not competitive with the nESBT(#,1) routing, it is an
effective routing scheme for all-to-all broadcasting as described in the next section.

4.1.5 Spanning Balanced n-Trees

Yet another tree that can be used for lower bound routing algorithms in the case of all-to-all
broadcasting is a Spanning Balanced n-Tree (SBnT) [9,17,12]. In such a tree the node set of the
cube is divided into n approximately equal sets, with each such set forming a subtree of the

source node.

Let M(7,7) be the maximum set of consecutive indices containing all the O-bit positions
immediately to the right of bit 7 in the binary encoding of 7, cyclically. Bit O is the least
significant bit. We also make use of the base of 7 defined as the number of right rotation of s
that minimizes the rotated value. Let R(i) = (aoan—1an-2...a1), where 1 = (@p—1an—2... ag).
Furthermore, let J = {jo,71,...,Jm}, Jo < J1 < ...Jm, where R/(¢) < R*(3), for all j € J,
k & J. Then base(i) = jo. We use j to denote base(z) in the following. For the definition of
the parent and children functions we first find the position k of the first bit cyclically to the
right of bit 5 (7 = base(s)) that is equal to 1, ie., ax = 1, and ap, = 0,Ym € M(3,7). k=7 if

00000

00001 00010 00100 01000 10000
00011 00110 01100/ 11000 10001
00101 01010 10100 01001 10010

00111 01110 11100 11001 10011

01011 10110 01101 11010 10101
01111
11110 11101 11011 10111
11111
Base 0 1 2 3 4

Figure 4: A Spanning Balanced n-tree in a 5-cube.

= (0...01,0...0), and k = —1if ¢ = 0. Then
J
{(an-1@n-2...Gm-..a0)},Ym € {0,1,...,n— 1}, ifz=0;

childrenSBnT(i, 0) = {qm = (an_lan_z...&'m...ao)},
Vm € M(%,7) and base(gm) = base(), if 2 #0.
. _ @, if 2 = 0;
parentspnr(:,0) = { (an—1@n—2...0k...a0), otherwise.

Figure 4 shows a SBnT for a 5-cube. For one-to-all broadcasting the SBnT routing is of
higher complexity than the nESBT routing, but it is superior for all-to-all broadcasting.

4.1.6 Summary and Discussion

A complete binary tree cannot be embedded in a Boolean cube of the same size preserving
adjacency [21,3,6,23], but it can be embedded such that only one tree edge is mapped into a
path of length two, and the intermediate node is the “extra” node of the cube. Such a tree is
referred to as a Two-rooted Complete Binary Tree. (A complete binary tree of 2™ — 1 nodes can
be embedded in an (n + 1)-cube preserving adjacency [14,3]).

Note that routing according to a Hamiltonian path yields a lower complexity than the SBT
routing if £~ M o~ N3 [17] One-to-all broadcasting based on the two-rooted complete binary tree
is inferior to the nESBT routing, but may be superior to the SBT routing and the Hamiltonian
path routing. Routing based on the nRSBT graph is inferior to the SBT routing for one-to-all
broadcasting for one-port communication, and is superior for n-port communication.

The nESBT(1,1) routing is of lowest complexity, except if B,, > M and M < ;5- in which
case the SBT(1,1) requires one less cycle. Similarly, the nESBT(n,1) routing is superlor to

10

[Algorithm [Element transfers | start-ups | Bopt | min start-ups]

GC(1,1) M+ (N -2)B M1+ N -2 wenn | N -2+ 2/(N-2)Mi
SBT-b(1,1) Mn [551n M n
nESBT-b(1,1) M +nBn [2-1+n = n+2¢/nM
nRSBT-b(1,1) Mn 2> [T 4 [M 2n—1
GC(n, 1) M(N - 1) I - 1) X N-1
SBT-b(n,1) | M+ (n—1)B M) 4n-1 \/W n—1+2/(n-)ME
nESBT-b(n, 1) M 4+ nB Mltn 1, /M n+2¢/ M
nRSBT-b(n, 1) M (B 1n H n

Table 1: Estimated one-to-all broadcasting times for various spanning graphs. The upper part
is for one-port communication and the lower part is for n-port communication.

the other routings, except if By, > _1\7/% and M < {: in which case the nRSBT(n, 1) routing is
superior.

The one-to-all broadcasting complexity estimates are summarized in Table 1.

4.2 All-to-All Broadcasting

For matrix multiplication, A «— C X D + FE every element of a row of D has to interact with
every element of the corresponding column of C. All elements of a subset of elements are
broadcasted to all elements of another subset. In the case of matrix multiplication the elements
of the subsets can be aligned such that the elements in a subset have contiguous addresses. We
assume this form of alignment in all of the algorithms we present. For each source, one of the
spanning graphs described previously can be used. The instances can be pure translations of
each other, or translations combined with some other operation such as rotation, reflection, or
other permutation.

4.2.1 N Hamiltonian Paths

One possibility is to embed a single Hamiltonian path by a binary-reflected Gray code, and
use this path for broadcasting all the elements. The path is used as a conveyor belt. Another
alternative is to let the path for the elements of node ¢ be a translation of the path for elements
of say node 0. In the latter case the first edge of every path is in the same dimension, so is the
second, etc. Figure 5 shows the paths for nodes 0 - 3 in a 3-cube.

We refer to the first routing as a Cyclic Rotation Algorithm (CRA), and the latter as a Gray
Code Ezchange Algorithm (GCEA), because the sequence of exchange dimensions is exactly the
sequence of dimensions encountered in traversing the cube in the binary-reflected Gray code
order. For a 3-cube, the sequence of dimensions is (0,1,0,2,0,1,0). In the cyclic rotation
algorithm, a node always sends to and receives from the same neighbors for all routing steps,
whereas in the latter all the nodes have the same exchange sequence.

The cyclic rotation algorithm can be expressed as follows in pseudo code. In the following,

11

Figure 5: Four translated binary reflected Gray-code paths in a 3-cube.

G and IQ represent the Gray code function and the inverse Gray code function respectively.

/* The Cyclic Rotation Algorithm, one-port communication: */
/* Let port [j] connect to the neighbor of dimension j. */
/* pid is the processor address in binary repr.*/

SUBROUTINE INIT_CRA

COMMON /CRA/ outport, inport

gid = IG (pid)

outport = port [j|] where j is the rightmost 0-bit of gid.

inport = port [j] where j is the rightmost O-bit of (gid+1) mod N
END

SUBROUTINE CRA (buf, length)

COMMON /CRA/ outport, inport
CALL SEND (outport, buf, length)
CALL RECV (inport, buf, length)

END

and the Gray Code Ezchange Algorithm as

/* The Gray Code Exchange Algorithm, one-port communication: */
SUBROUTINE GCEA (i, buf, length)

j = the position of the rightmost 0-bit of i-1 /* 1sb = position 0. */
CALL SEND (port [j], buf, length)

12

CALL RECV (port [j], buf, length)
END

With one-port communication both algorithms yield the same communication time. With
n-port communication the generalization of the cyclic rotation algorithm leads to n (directed)
Hamiltonian circuits. The Gray code ezchange algorithm is generalized by using n distinctly
rotated Gray code sequences. The paths of the CRA(n, N) algorithm are not edge-disjoint, and
the load non-uniform. However, in the GCEA(n, N) algorithm, even though the paths are not
edge-disjoint the load is even, and minimal.

The Gray Code Ezchange Algorithm for n-port communication can be written as

/* The Gray Code Exchange Algorithm, n-port communication: */

SUBROUTINE GCEA n (i, buf, length)

Split buf into n parts.

bufl [k] = k** part of buf, k = 0, 1, ..., n-1.

j = the position of the rightmost 0-bit of i-1

FOR k =0, 1, ..., n-1 DO concurrently
CALL SEND (port [(j+k) mod n], bufl [k], length/n)
CALL RECV (port [(j+k) mod n], bufl [k], length/n)

ENDFOR

END

4.2.2 Spanning Binomial Trees

In the Gray code ezchange algorithm the data volume is the same in each exchange operation.
An alternative exchange algorithm is obtained by noticing that after the first exchange each of
the two subcubes can contain the entire data set, with each node containing its original data and
the data of its neighbor in the exchange dimension. The process can be repeated recursively.
Hence, n steps are needed instead of N — 1 steps for the Gray code ezchange algorithm. The
penalty is a requirement for larger memory. In the final exchange half of the entire data set is
involved, i.e., LN M. This alternate exchange algorithm [17,20] is equivalent to the embedding
of N spanning binomial trees. The different trees are translations of each other. We refer to
it as the SBT-b(*, N) (-b for broadcasting). The maximum number of tree edges mapped to a
cube edge is %N. In the 2" step of the one-port version 2°~*M data elements are exchanged.

TSBT(1,N) is in fact proportional to the lower bound for one-port communication, since
each processor needs to send/receive (N — 1)M elements. Note also that if B, < M, then
TSBT(1,N) = TS°Z4(1, N). In the GCEA(1, N) algorithm, EM,,T packets are exchanged along
all interprocessor connections in a given dimension for each routing step. One dimension is used
%N times, another iN times, etc. In the SBT-b(1, N) algorithm each dimension is only routed

once, but the number of packets are %, 23‘“—%, ey %EI\{: for B, < M.

For n-port communication the lower bound for the data transfer time is KN—_nl)—Mtc. Pipelining
the communications in the SBT ezchange algorithm reduces the data transfer time only by a
factor of 2. No further reduction is possible due to the fact that %N tree edges are mapped onto
some cube edges. However, all-to-all broadcasting in a time proportional to the lower bound is
possible by using N nRSBT graphs, or N SBnT graphs for the routing [17].

13

4.2.3 Spanning Balanced n-Trees and n Rotated Spanning Binomial Trees

The nRSBT and SBnT routings can also be used. The time for data transmission in the case
of one-port communication is the same as for the SBT-b(1, N) routing, but n — 1 additional
start-ups are required for the optimum case. However, the required buffer space is lower. For
buffer spaces lower than the optimum for nRSBT-b(1, N) and SBnT-b(1, N) the communication
complexities are comparable.

The nRSBT and SBnT routings offer a potential for lower bound routing in the case of
n-port communication. TMESBT=b(n N) = TSBrT=b(y N) = M;nl-&!tc + nr < 2T34(n, N).
The main difference between nRSBT-b(n, N) routing and SBnT-b(n, N) routing is that in the
SBnT-b(n, N) routing the node set is divided into n parts, whereas in the nRSBT-b(n, N) the

data set is divided into n parts.

The SBnT-b(n, N) and nRSBT-b(n, N) routing algorithms for n-port communication in
pseudo codes are as follows:

/* The SBnT Algorithm for n-port all-to-all broadcasting: */

SUBROUTINE SBnT (init_data, length, final_data)
final data [pid] = init_-data
msg = pid || init_data
M = (length of pid) + length
DOi=0,n-1
outbuf [i] = msg
ENDDO
DO step=1,n
CALL SEND (port [i], outbuf [i}), for i = 0, 1, ..., n-1 concurrently.
CALL RECV (port [i], inbuf [i}), for i = 0, 1, ..., n-1 concurrently.
FORi=0ton-1DO
FOR each msg of length M in inbuf [i] DO
/* Let msg = src || curr-data. */
{c [1], ¢ [2], ..., ¢ [k]} = children (pid, src)
/* At the last step, children will be empty. */
/* Let p [j] be the output port connecting to c [j]. */

DO =1, k
append msg of length M to outbuf [p [j]]-
ENDDO
final_data [src|] = curr.data
ENDFOR
ENDFOR
ENDDO

/* The nRSBT Algorithm for n-port all-to-all broadcasting: */

SUBROUTINE nRSBT (init-data, length, final_data)

EQUIVALENCE (A, final_data)

Split init_data into n parts.

curr_length = length / n /* initial length of SEND and RECV */

DO i =1, length

A [(pid * currlength) + (i mod curr.length), i / curr.length] = init.data [i]
ENDDO ‘

14

| Model | Algorithm | Element transfers | start-ups | Bopt | min start-ups |
CRA(L, N) (N-1)M SO M N-1
GCEA(TL, N) (N-1)M [N -1)° M N—-1
one-port | SBT-b(1,N) (N -1)M T aEM oM n
SBnT-b(1,N) (N -1)M max(2n — 1, FZUM) [(V=DM 2n — 1
nRSBT-b(1, N) (N-1)M max(2n -1, EL 3224 (F=1M 2n — 1
GCEA(n, N) L(N-1)M [=](N-1) M N-1
SBT-b(n, N) INM .'-‘_’o‘ 20 | Zres n
n-port | SBnT-b(n,N) LN-1)M ()2 2 n
| nRSBT-b(n, N) L(N-1)M r (7)) 2] NEE n

Table 2: The communication complexity of all-to-all broadcasting.

send_ptr = pid * curr.length + 1 /* initial index of row in A for send */

DOi=0,n-1
CALL SEND (port [(i + k) mod n], A [send_ptr, k|, curr_length),
for k = 0, 1, ..., n-1 concurrently. :
IF («** bit of pid .EQ. 0) THEN
recv_ptr = send_ptr + curr_length

ELSE
recv.ptr = send_ptr - curr-length

send._ptr = recv.ptr

ENDIF

CALL RECV (port [(i + k) mod n], A [recv_ptr, k], curr_length),
for k =0, 1, ..., n-1 concurrently.

curr-length = curr_length * 2

ENDDO

4.2.4 Summary and Comparison

The times for all-to-all broadcasting using one-port and n-port communications are summarized
in Table 2.

For one-port communication the SBT-b(1, N) algorithm is optimal within a factor of 2 for
sufficiently large maximum packet size, B,, > ¥4, For B,, < I—)—— the routing complexity

of SBT-b(1, N), SBnT-b(1, N), and nRSBT- b(1, N) are approxunately equal. For B,, < M the
routing complexity of all algorithms presented here are approximately equal, i.e., no better than

a Hamiltonian path based routing.

For n-port communication the nRSBT-b(n, N) and SBnT-b(n, N) routings are optimal within
a factor of 2 for B,, > \/—f:Na% For B, M these two routings are no better than the
GCEA(n, N) routing. The SBT-b(n, N) routmg is inferior.

15

4.3 One-to-All Personalized Communication

In broadcasting the data set M is replicated N — 1 times, such that every node gets a copy of
the same data set. In one-to-all personalized communication there are N — 1 distinct sets M
to be sent from the source node. The root is the bottleneck. In personalized communication
each internal node of the spanning graphs sends out data for all the nodes in the subgraph for
which it is the root. In one-to-all broadcasting the data volume across an edge is the same for
all edges of the routing graph, but in personalized communication the data volume decreases
with increased distance from the source.

One-to-all personalized communication is the same as transposing a vector stored entirely
in one node. The transpose of the vector is stored across all processors. All-to-all personalized
communication is the operation performed in transposing a matrix stored by one-dimensional
partitioning.

The lower bound for one-port, one-to-all personalized communication is Tjp = max((N —
1)Mt.,nr). The SBT-p(1,1) is optimal within a factor of 2 for sufficiently large maximum packet
size, B, > %NM.

The spanning binomial tree is very unbalanced. Half of the nodes are in one subtree, a
quarter in another, etc. With n-port communication the transmission time can be reduced by at
most a factor of 2, since %N M data elements have to be passed over the same communication
channel. The SBT-p(n, 1) routing is not optimal. The lower bound for n-port communication

is max(LN—_nlLMtc, nr).

The nRSBT-p(n,1) and SBnT-p(n,1) routings is optimal within a factor of 2 if B,, >

2NM
T n3/2 .

4.4 - All-to-All Personalized Communication

All-to-all personalized communication can be performed by N SBTs. This algorithm amounts
to a sequence of exchange operations in the different dimensions with one-port communication.
Unlike the case in all-to-all broadcasting, the data volume being exchanged remains constant
through all steps, and equal to the maximum in the broadcasting case, i.e., %NM. The SBT-
p(1, N) routing is optimal within a factor of 2.

With n-port communication the lower bound for the transmission time is reduced by a factor
of n. Hence, T} = ma,x(ﬂ—zM—tc,nT). The SBT-p(n, N) routing cannot attain the lower bound
[17]. But, the nRSBT-p(n, N) and the SBnT-p(n, N) routings can route in a time proportional

to the lower bound if B,, > % (or > (N—_nlil for the latter) [17].

4.5 Summary and Comparison

Tables 3 and 4 summarize the communication complexities for personalized communications.

On the Intel iPSC the communication start-up time is significant, so it is desirable to reduce
the number of start-ups by sending long messages. In the SBT-p(*, N) algorithm blocks to be
exchanged between processors are not necessarily contiguous, and vary throughout the algo-
rithm. Hence, minimizing the communication time requires internal data movement. However,
the copy time is also significant on the iPSC. We have not included the time for data movement
internal to a node in the expressions above for reasons of clarity. There exists a block size

16

(Model I Algorithm ' Element transfers I start-ups | Bope | min start-ups l

one-port | SBT-p(1,1) (N-1)M " M M n
[sBT-p(n,1) INM S5 | A= n
nport | SBaT-p(n,1) | L(N-1)M il (3) o 250 n
[nRSBTp(n,1) | i(N-1)M (Dl | V2ES n

Table 3: The communication complexity of one-to-all personalized communication.

[Model | Algorithm [Element transfers | start-ups | Bopt | min start-ups |
one-port SBT-p(1,N) inNM [252|n o4 n
n-port SBnT-p(n, N) sNM e[(7) A | s n
| nRSBT-p(n, N) iNM e | Ay n

Table 4: The communication complexity of all-to-all personalized communication.

Beopy < B above which it is better to minimize copy time than start-up time. For details see
[10].

Ignoring copy time the SBT-p(1, N) algorithm is of the same order as the lower bound perfor-
mance for one-port communication: T = (EZMtc-I— T)nif B > -21-NM. For n-port communication

SBnT(n, N) and nRSBT(n, N) routings are optimum within a factor of 2, if B, 2 Q!_‘;‘HM and
B, > %’I—, respectively.

5 Dense Matrix Multiplication

For multiprocessors configured as one-, two- or multidimensional arrays both one- and two-
dimensional partitionings of matrices are common. The partitioning can be done either by
rows or columns, or both, or by diagonals. One-dimensional partitionings are natural for linear
arrays and two-dimensional partitionings for meshes. In addition, the partitioning can be made
either cyclically, or consecutively [15]. In the two-dimensional cyclic storage, matrix element
(4,7) is stored in processors PID(:)||PID(;) where PID(:) = i mod Ny, PID(j) = jmod
Nz, Ny x No = N. In the consecutive storage, matrix element (3,7) is stored in processor

PID(:)||PID(j), where PID(i) = Lf}ﬂj’ and PID(j) = [T—_%_—TJ for a P X @ matrix. In the
Ny Noy

consecutive partitioning matrix elements with the same high order bits are allocated to the same
processor, i.e., the high order bits are used to assign an element to a processor, if P (or Q) is a
power of 2. In the cyclic partitioning, elements in the same processor have the same low order
bits.

A Boolean cube can simulate both one- and two-dimensional arrays without any commu-
nications overhead, and has additional communication capabilities. For the multiplication of
a P x Q matrix by a Q@ x R matrix on N processors, one- and two-dimensional partitionings
yield a linear speed-up of the arithmetic operations if at least P, or R, is a multiple of N. For
P,R < N < PR, the two-dimensional partitioning yields a linear speed-up of the arithmetic op-
erations. However, the communication complexity for the different algorithms and partitionings

17

is not the same.

5.1 One-Dimensional Partitioning

In a one-dimensional partitioning with columns or rows divided evenly among the processors,
cyclically or consecutively, a linear array algorithm is an obvious choice. Assume that the
computation is A «+ C X D + E and that all matrices are stored in the same manner. With the
matrices partitioned columnwise all-to-all broadcasting can be performed on C. A is computed
in-place, ie., the products forming an element of A are accumulated in a fixed location (the
same as the location of the corresponding element of D). Alternatively, C can be transposed and
either followed by an all-to-all broadcasting for an in-place algorithm, or an all-to-all broadcasting
performed on D, which yields AT. A transpose of AT yields A. A fourth alternative is to
transpose D, which implies a computation of inner products throughout space, and the elements
of A computed by a reduction over the number of processors for each element. The reduction
is an all-to-all reduction on A. Several variations for each of the basic algorithms are also
considered. The basic algorithms are:

o Algorithm 1. Compute A in-place by all-to-all broadcasting of C. Processor k = PID(j)
computes CD(x, I_[_Ji_‘lj) for all 7 mapped to k.
N

e Algorithm 2. Compute A by a transpose of C and an all-to-all broadcasting of CT.

Processor k = PID(j) computes CD(*, LT%‘“_]J) for all § mapped to k.
N
e Algorithm 8. Compute A by a transpose of C, all-to-all broadcasting of D, and transpose
of AT. Processor k = PID(j) computes C('.TgL]Jx*)D°
N

e Algorithm 4. Compute A in-space by a transpose of D, and all-to-all reduction of partial
inner products of A.

The second alternative is clearly inferior to the first, so we only consider the other three in the
following. However, for the two-dimensional partitioning, the corresponding one of algorithm 2
may perform better than any other corresponding algorithm for certain aspect ratios.

For row partitioning the roles of C' and D are interchanged. Figure 6 characterizes the basic
algorithms. The two subscripts in sequence are used to denote the ordinal numbers of block rows
and block columns among the N partitioned blocks rows (or columns). The superscript denotes
the ordinal number of the partial inner product result. The number in the square brackets (eg.
[R] in algorithm 1) is the minimum maximum number of processors to minimize the arithmetic
time for each algorithm.

The total number of arithmetic operations is the same in all cases. We only consider the
classical algorithm with PR(2Q — 1) arithmetic operations. The parallel arithmetic complexity
is 2PQ[£ for algorithm 1, 2QR[] for algorithm 3, and PR(2[1-1)+P([E1+ X&)
for algorithm 4. The second term of the last expression is bounded from below by P(n + 1)
and from above by P[%]N . If all dimensions are multiples of N there is no difference in the
arithmetic complexity, but if for instance P = ¢y N, @ = coN and R = 1, then the arithmetic
complexities are 2c;co N2, 2cicoN, and 2¢iceN + cynlN, respectively. Distributing D in space
(algorithms 3 and 4) is clearly more effective than distributing C. Similarly, if P =1 and @ and
R are multiples of N, then distributing C is preferable with respect to the parallel arithmetic
complexity (algorithms 1 and 4).

18

Column Partitioning:
brd. C, . [R
Al: Cig, Dijp =5 C.., Du upy., [R] Ak
txp. C, brd. D, « o [P txp. A,
A3: Cup, D 22°ZL o D, 2250, p,, 2, oAb,

. D, " A o
A4 C*k)D*k .tx—-p———-———!} C*k;Dk* mpy., [Q] AI:* red. A 24

*k

Row Partitioning:
brd. D, L [P
Al: Gy Dpe 2221 0, D, 2L 4
. D, brd. C, . [R . A,
A3 Clc*aDk:* ECB_'"'————/; Ck:*’ D*k a C**s D*k mpy., |] A*k txp & 4 Ak*

txp. C, / L (Q d. A,
Ad: Ck*;Dk* w_________» C*k::ch* ey, 19 Af* = L A

Figure 6: Notation summary of algorithms for one-dimensional partitioning.

P, P, P, P P, P P; Py

01 % 314|5(6|7
7101 % 3|14|5|6
L d - == = 17 I D S
67|01 % 31415
AN IS I A .%_ -
51617 »_1_ % 3|4

0
I B N vzl |-
41516710 1%3
R e e e R R L
IR
5 0

3/4|5
Zpa R RARANE R N
1 3|4|5(6]7|0

Figure 7: Computing A + C X D + E by rotation of C.

The matrix transpose operation implies all-to-all personalized communication. Hence, the
three types of algorithms considered comnsist of different combinations of ali-to-all broadcast-
ing/reduction and all-to-all personalized communication on matrices of different shapes, in ad-
dition to the arithmetic operations. The communication complexity of the different operations
are given in the previous sections. Tables 5, 6, and 7 give the communication complexity for the
different multiplication algorithms (assuming column partitioning).

For one-port communication the CRA(1, N), GCEA(1, N), and SBT(1, N) algorithms are
of interest. The first two are included only because they yield the same complexity as the
SBT(1, N) algorithm if B, < M.

With the CRA(1, N) algorithm and either cyclic or consecutive storage, the number of com-
munication steps is N — 1 and the number of arithmetic steps is N. In the ¢n-place algorithm
C is rotated N — 1 times to the right (or left), and in the in-space algorithm D and the partial
accumulation of A are rotated left (or right). In the in-place algorithm products are formed
on the shaded parts of D during step ¢, 2 = {0,1,..., N — 1}, Figure 7. Sample codes for col-
umn partitioning, consecutive storage, and an in-place algorithm based on the CRA(1, N) and
GCEA(1, N) all-to-all broadcasting algorithms are given below.

/* Matrix multiplication using the Cyclic Rotation Algorithm: */

19

/* Gray code encoding. */

gid = IG (pid)
/* Let C and D and A be the gid® (or pid® for binary code encoding) */
/* block columns of matrices C, D and A respectively. */

CALL INIT_.CRA

A = C * gid** block rows of D /* block matrix multiplication */
/* For binary code encoding: A = C * pid*”® block rows of D. */
DOi=1, N-1

CALL CRA (C, P[£])
A = A + C * ((g¢d + 1) mod N)** block rows of D
/* For binary code encoding:
A = A + C* G((pid +1) mod N)t» block rows of D. */
ENDDO

/* Matrix multiplication using the Gray Code Exchange Algorithm: */
/* Binary code encoding. */

gid = IG (pid)
/* Let C and D and A be the pid** block columns. */
/¥ of matrices C, D and A respectively. */
A = C * pid*® block rows of D
/* For Gray code encoding: A = C * (gid)*® block rows of D. */
DOi=1,N-1
CALL GCEA (i, C, P[2])
A=A+ C* (pid ® G(:))*" block rows of D
/* For Gray code encoding: A = A + C * (gid @ 1)*" block rows of D. */
ENDDO

The SBT(1, N) algorithm takes advantage of the topology of the Boolean cube, in that
the spanning tree is of minimum height. The SBT-b(1, N) and SBT-p(1, N) algorithms are
optimal for one-port communication and unlimited buffer size, i.e., B,, = %PQ for all-to-all
broadcasting or all-to-all personalized communication of a P X Q matrix partitioned evenly by
rows or columns. Figure 8 displays the steps during which a % X % block of D is multiplied by

a Px ?-L;V—I—Q block column of C for partitioning by columns and the in-place algorithm.

Figure 9 (left) shows the measured times of the GCEA and the SBT algorithms on the iPSC
with fixed matrices, P = Q@ = R = 32, and varying cube dimensions. The communication times
of the SBT algorithm are less than 10% for cubes with 4 or fewer dimensions. For the GCEA, the
communication times are greater than the arithmetic times for cubes with 4 or more dimensions.
For the GCEA communication routine the total time for a matrix multiplication has a minimum
for a 4-cube. The arithmetic times of an algorithm based on the GCEA communication are
higher than that of the SBT communication due to the larger loop overhead. With the GCEA
communication N multiplication steps are required, whereas in the SBT communication one or
two steps are sufficient. The measured multiplication time for the GCEA based multiplication
routine is 10% - 100% higher than that of the SBT based routine as shown on the right of
Figure 9.

While the number of start-ups of the SBT algorithm grows linearly with the number of
cube dimensions, the maximum required temporary storage and the optimum buffer size grow
exponentially, if the size of the partitioned matrices is fixed. If the maximum buffer size is

20

(jb (71 (72 (73 (jb (71 (72 C’3
cle|cs| o
Initially Step 1

Colc|c:| cs
aleles| e,
o o Nl Ko Sl o)
o W Kol Wo S
Step 2

Figure 8: Computing A < C x D + E by an in-place SBT-b(1, N) algorithm applied to C.

The SBT and the GCEA
T l T I T

1000

Time (in msec)

Cube dimension

Percentage of difference

100

50

Relative difference of arith. times

T

2

Cube dimension

4

Figure 9: Measured times for matrix multiplication using the GCEA and the SBT algorithms
on the iPSC. P = @ = R = 32. On the left, the solid lines are total times and the dashed lines
are communication times. On the right, the relative difference of the arithmetic time is shown

as a function of cube dimensions.

21

n
(=]

Hybrid of the SBT and the GCEA Temp. storage requirement
I T l T T

I T] T

o
]
|

Amount of storage (in PQ/N)

@ total time]
£
£ 100 . L .
SV arit?_xtime_
¢
1 I 1 I 1 1 1 1 I 1
% 2 4 8 s 2 4 8
The number of steps in the SBT The number of steps in the SBT

Figure 10: Measured times for matrix multiplication using the hybrid method of the GCEA and
- the SBT algorithms on a 5-dimensional cube of the iPSC. P = Q = R = 32.

less than half the matrix size, additional start-ups are needed. If the buffer size is less than
the matrix partition residing in a processor, then the time complexities of the SBT and GCEA
algorithms are the same. But, the SBT algorithm needs additional temporary storage. For the
case of limited temporary storage a hybrid of the SBT and the GCEA (or the CRA) algorithms
can be used. The hybrid method will perform k steps of the SBT algorithm during which data
is cumulated, followed by 2"~ — 1 steps of the GCEA or the CRA. The maximum temporary
storage and the optimum buffer size is ﬁﬁﬁ. Figure 10 (left) shows the total time on a 5-cube -
of the iPSC with P = Q = R = 32. The optimum buffer sizes required for the 4- and the
5-cubes exceed the 1k bytes internal packet size of the iPSC, so the total time decreases only
up to the 3-dimensional cube. The total times of the 4- and 5-cubes are greater than that of
the 3-cube due to different overheads involved. The temporary storages required with respect
to the number of steps in the SBT are shown on the right. Note that the algorithm with k = n
is the same as that of k =n — 1.

The above algorithms are all in-place algorithms. The in-space algorithms use one instance
of broadcasting and one instance of personalized communication. Algorithm 3 uses two instances
of personalized communication. For the in-space algorithm and one-port communication we use
the SBT-p(1, N) algorithm for the transpose operation and the SBT-b(1, N) algorithm for the
gathering of inner products. The following is a sample code.

/* Matrix multiplication in-space by matrix transposition: */

CALL TRANSPOSE (D)

DOi=1,P
DOj=1R
A(j)=CEL1)*D(1
ENDDO
ENDDO
DOk =2, [£]

22

DOi=1,P

DOj=1R
AGj)=A@0)+C@ELK)*D(3K
ENDDO
ENDDO
ENDDO
curr.A = A /* Ais a P X R matrix */
DOi=0,n-1

IF (the 1t" bit of pid .EQ. 0) THEN
outbuf = right half block columns of curr_A
curr_A = left half block columns of curr_A

ELSE
outbuf = left half block columns of curr-A
curr_A = right half block columns of curr_A
ENDIF

CALL SEND (port [i], outbuf, P[)

CALL RECV (port [i], inbuf, P[z 1])

curr-A = curr-A + inbuf /* Matrix addition */
ENDDO

For the transposition of D each block column is divided into % X —f—, blocks, and each such
block sent to a distinct processor. After this communication and the associated arithmetic
operations there are N partial inner products, one per processor, for each element of A. The
accumulation of the partial sums amounts to sending a P X | N] block from every processor
to the processor storing the corresponding block column of A. The total temporary storage
required per processor is P X R.

With n-port communication the GCEA(n, N) algorithm can be employed instead of the
GCEA(1, N) algorithm. The data transfer time is thereby reduced by a factor of n, and the
total start-up time too, if B,, < [4£]. It is also possible to use the SBT(n, N) algorithm. The
latter algorithm does not fully utilize the bandwidth of the cube. While the former algorithm
does fully utilize the bandwidth of the cube, it requires many more start-ups, in general. The
SBnT(n, N) and nRSBT(n, N) algorithms yield a lower time for data transfer regardless of
the maximum packet size, and offers the potential for lower bound all-to-all broadcasting and
all-to-all personalized communication.

An in-place matrix multiplication algorithm for column partitioning and consecutive stor-
age using all-to-all broadcasting based on SBnT-b(n, N) (or nRSBT-b(n, N)) routing can be
expressed as follows:

/* Matrix multiplication using the SBnT (or nRSBT) Algorithm: */

CALL SBuT (C, P[], C2)
/* or CALL nRSBT (C, P[£], C2) */
A = C2 [0] * 0" block rows of D
DOi=1,N-1

A = A + C2[i] *4*" block rows of D
ENDDO

For an in-space algorithm and n-port communication we choose the SBnT-p(n, N) and SBnT-

b(n, N) (or nRSBT-p(n, N) and nRSBT-b(n, N)) algorithms.

23

| Communication model | Algorithm | Communication operations |

[A1'(1) CRA(1,N)[C] or GCEA(1, N)[C]

one-port Al(1) SBT-b(1,N)[C
A3(1) SBT-p(1, N)[C]+SBT-b(1, N)[D]+SBT-p(1, N)[A4]
A4(1) SBT-p(1, N)[D|+SBT-b(1, N)[A4]
All(n) GCEA(n, N)[C

n-port Al(n) SBnT-b(n, N)[C] or nRSBT-b(n, N)[C]

A3(n) SBnT-p(n, N)[C]+SBnT-b(n, N)[D]+SBnT-p(n, N)[A]
Ad(n) SBnT-p(n, N)[D]+SBnT-b(n, N)[A]

Table 5: Algorithm classification.

[Algorithm | Element transfers start-ups
A1'(1) (N-1)P[%] fNBmT(N -1
AlL(1) (N-1)P[R] Y (5521
A301) | (N-1)Q+5P)§]+5P[R] (Taaz] + (g Dn + iy [F5n
A4(1) (N-1)P+30)[F] [awagln+ Xty [fbn
All(n) %(N_ 1)Pl-%] anB 1V -1)
AL(n) = (N -1)P[F] | 2iny [(5) v
A3(n) | A((N-1)Q+5P)[FI+5P[R]} | ~ (fznﬁ%ﬂ + [sanem In+ Z.__l (),.NB,,,
Ad(n) (N-1)P+32Q)[§] N [mapmn+ 2, () aher |

Table 6: The communication complexity of matrix multiplication using one-dimensional column
partitioning.

5.1.1 Summary and Comparison

We summarize the communication complexities of the multiplication algorithms in Tables 5, 6,
and 7. Table 5 defines the algorithms in terms of communication operations. All the algorithms
use the Boolean cube topology unless superscripted by [, which denotes a linear array algorithm.
The argument denotes the number of ports for concurrent communication. Note that in A3(n),
the SBnT-p(n, N)[C] and the SBnT-b(n, N)[D] can in fact be combined into one complicated

routing so that n start-ups results if B, > ;[%] + \/g%
For row partitioning a corresponding set of algorithms can be devised. The roles of C' and
D are interchanged. If it is possible to choose the partitioning form, column partitioning should
be used for P < R for a given type of algorithm.

For the column partitioning scheme and one-port communication, the A4 algorithm yields
lower complexity than the Al algorithm if (VN — 1)P|'J%] > ((N—1)P + 2Q)[£], or with
o=[£]and B = [%], if P> %E%% approximately. Hence, if D is a vector, then in many
instances @ > R, and the above condition yields P > Za.

The matrix shapes for which the different algorithms yield the lowest total estimated running
times for a few combinations of machine parameters are given in Figures 11 to 14. All these
Figures consist of four plots. Plot (a), the upper left plot, shows the two boundary planes which

24

Algorithm B,y min start-ups Arithmetic
P

A1'(1) P[2] N-1 . 2PQ[E]
A1(1) £ n 2PQ[£]
A3(1) 2 1QR LB 3n 2QR[£]
A4(1) 3Q[%1,3PR 2n PR(2[#] - 1) + P([R1+ 20, [3H])
Al'(n) b N-1 . 2PQ[%]
Al(n) 25k n 2PQ[%1
4s(n) | L9, V/ZS% 2R an 2QR %]
A4(n) 2RV 2n PRC[F] - 1) + P(I§1+ T, [8])

Table 7: The optimum communication complexity of matrix multiplication using one-
dimensional column partitioning. For the amount of element transfers, see Table 6.

partition the 16 X 16 X 16 parameter cube into 3 disjoint regions. The region for the A1l is below
the lower plane (and above the % = 0 plane). The region for the A4 is between these two
planes. The region for the A3 is above the upper plane (and below the -1% = 16 plane). Plot
(b), the upper right plot, shows the lower plane. Plot (c), the lower left plot, shows the upper
plane. Plot (d), the lower right plot, shows the contour of the upper plane. As the aspect ratio
of {—c- increases as from Figure 11 to Figure 12, the regions of the A3 and the A4 are gradually
taken over by the Al. As the number of processors increase, part of the Al region is taken over
by the A3 and the A4. For sufficiently large number of processors (such as N = 1024) the cube
is partitioned into three symmetric regions of approximately equal size according to the three
axes, Figure 13. Note that for % = % = %, the communication complexity of the Al is less
than that of the A4, which in turn is less than the A3 as shown in Table 7, and Figures 11 to
13. The special case where 1 < P,Q, R < N is shown in Figure 14.

With n-port communication the SBnT(n, N) or nRSBT(n, N) based algorithms offer a re-
duction in the data transfer time by a factor of n. The reduction in the number of start-ups is
a factor of n for B, < £& for the algorithm Al. The SBnT(n, N)-based (or the nRSBT(n, N)-
based) algorithm has the same communication complexity as the GCEA(n, N) algorithm if
B, < I;—ﬁ*. The reduction in the number of start-ups for the SBnT(n, N) and nRSBT(n, N)

algorithms is —A—%'-l for By, > (g) 1—;% (and larger temporary storage).

The criterion for choosing between the Al or A4 algorithms is the same in the n-port and
one-port cases. The plot which shows the region of the lowest complexity algorithm with {: =7
and one-port communication is the same as that of é = I and n-port communication.

If Q < N and R < N and the linear array is embedded in a Boolean cube, then the number
of steps can be reduced to k, where 2°7! < max(Q, R) < 2.

All the algorithms described work for both binary code and Gray code encodings due to the
fact that summing the inner product can be done in an arbitrary order. While the local data
are accessed differently, the communication patterns are the same.

5.2 Two-Dimensional Partitioning

For the two-dimensional partitioning we assume a binary-reflected Gray code embedding of the
N1 X Ny grid in the Boolean cube. However, it can be shown that with a binary code embedding

25

(a) (b)

Contour of the upper plane

Illlllll[lllll

15 —
T AL(L) & A4(1)

ORI W A VY W S S B W AT ST T |

() | (@

(a) The region for the Al is below the lower plane (in the lower right part). The region for the
A4 is between the two planes (in the lower left part). The region for the A3 is above the upper
plane (in the upper central part). Note that these two boundary planes coalesce on the right
side. (b) The lower plane. (c) The upper plane. Note that (a), (b) and (c) are shown from
different views. (d) The contour of the upper plane.

Figure 11: Lowest complexity algorithm as a function of matrix shape; N = 16, r = t,, B,, = oo,
column partitioning, one-port communication.

26

15

e B — T T T T _ T T T T — T T T |
gl]
al i
2 -]
< 53 e F
> s NNy
5 [3 ,Myxwwxﬂa.h
: sz EaF
5 - =G
4 s- o y\ C i _ 1 1 1 1 _ 1 1 1 1 _ 1 1 1 i
ot hu>\k < Q 2 0
N/Y4
))
(0)
(00 L A0
A0 o A0
SR SR
= 00 2 N0
2 ALK X000
QOOORCK? OO0
OO (OO0
QOO0 QOO0
INRE0099999 MO
QOROAOOUXX X R GOOCISININ
hnv%»’/»#vﬁ.b.b‘w’P’bQ}OP /\ o 0000‘0%00’0‘§0‘0
XSSAEEOO - OO
e, N OO
KRR OB
KON QOO0
EEXO000 KR
QOO0 KR
Q000 AR
00000 AKX
QOO0 OO0
e (000
§ ¢

16, 7 = 1000¢,,

N
(d)

A3(1)

(b) The lower plane. (c) The upper plane. (d) The contour
27

(c)
00, column partitioning, one-port communication.

(a) The region for the Al is below the lower plane (in the lower right part). The region for the
A4 is between the two planes (in the lower left part). The region for the A3 is above the upper

Figure 12: Lowest complexity algorithm as a function of matrix shape; N

Bm

plane (in the upper central part).

of the upper plane.

(a) (b)

Contour of the upper plane
\(! T T I T T T T T T T T .,
AT

15

10 |—10——10—10——10—10— \

(c) (d)

%

15

° |—10——10—-10—10—10—"

(a) The region for the A1l is below the lower plane (in the lower right part). The region for the
A4 is between the two planes (in the lower left part). The region for the A3 is above the upper
plane (in the upper central part). (b) The lower plane. (c) The upper plane. (d) The contour
" of the upper plane.

Figure 13: Lowest complexity algorithm as a function of matrix shape; N = 1024, r = {,,
B,, = o0, column partitioning, one-port communication.

28

(a) (b)

Contour of the upper plane
T T T l T T T T ' T T T T I

(c) , (d)

(a) The region for the A1 is below the lower plane (in the lower right part). The region for the
A4 is between the two planes (in the lower left part). The region for the A3 is above the upper
plane (in the upper central part). (b) The lower plane. (c) The upper plane. (d) The contour
of the upper plane.

Figure 14: Lowest complexity algorithm as a function of matrix shape; N = 16, 7 = ¢, B,, = oo,
column partitioning, one-port communication. Note that 1 < P, @, R < N.

29

of the N; X N; grid in the Boolean cube, the communication pattern remains the same. The
algorithms described for the one-dimensional case have analogues in the two-dimensional case.
The in-place algorithm that in the one-dimensional case implies broadcasting of C in the row
direction for column partitioning, in the two-dimensional case also implies broadcasting of D
in the column direction. The two broadcasting operations need to be synchronized in order to
conserve storage. We will describe the initialization and synchronization requirements below.
The algorithms corresponding to the four one-dimensional algorithms (A4 has two variations)
are

e Algorithm 1. Compute A in-place by broadcasting of C in the row direction and D in the
column direction such that each processor receives all elements of the rows of C mapped
into that processor row and all elements of D mapped into the corresponding column of
processors. Processor k,! then computes C(| [_ﬁg_.lj, *) D (*, Lfilj) for all ¢ mapped to &k

1

and all 5 mapped to I. The communication operations are all- to all broadcasting within
rows and columns.

e Algorithm 2. Transpose C, perform an all-to-all broadcast along processor rows for the
elements of CT in that processor row, and accumulate inner products for A through all-to-
all reduction in the column direction (of the processors). The accumulation can be made
such that —1—3— elements for each column of D are accumulated in each processor by all-to-all

M5]
computes the product C(x, I'f-g-l 1D(l f-é“l 1, [I._fL]]). The summation over index 4 is the
Ny Ng

reduction. A processor k, | receives C(*,| —%—=|) during the broadcasting operation, then

reduction operation along columns.

e Algorithm 8. Transpose C, perform all-to-all broadcasting of the elements of D within
processor rows, accumulate inner products in the column direction. The all-to-all reduction

is performed such that each processor receives all elements of N distinct columns of
D, such that AT is computed. (Alternatively, the accumulatuon can be made such that
m elements for each column are accumulated in a processor selected such that
the proper allocation of A is obtained through a some-to-all personalized communication

within rows.) Processor k,! computes C’(|_[5]_I l‘f—q-l 1)D(| l"g'l'l *) for all 4, 5 such that
[[%1_} ! and LlilJ = k.

e Algorithm 4. Transpose D, perform an all-to-all broadcasting of the elements of DT
within processor columns, accumulate the partial inner products for elements of A by
all-to-all reduction along processor rows such that the elements of at most [—B—;] columns
are accumulated within a processor column. After the transposition and broadcasting
processor k, [has the elements C’([[£]J lfﬁ‘l 1)D(r—NQJ_—.I_I %) for all ¢ such that l-l-z-l-l

2

k and j such that [rgzjj = 1.
Na
e Algorithm 5. Transpose D, perform an all-to-all broadcasting of the elements of C within

processor columns, accumulate inner products for elements of A by all-to-all reductzon
along processor rows, such that each processor receives 3 N elements of AT for each of & A

columns of D. Processor k,! computes C(x, [l. 5]J) ([(L]J, [[L]J) for all such that
Ny No Ny
]J =1

[[L]J—kand]such that |3
Vi [

Sfof-

Figure 15 characterizes the 5 algorithms. The two subscripts in sequence are used to denote
the ordinal numbers of block rows and block columns among the N7 X Ny partitioned blocks.

30

Al H Okl, -Dkl Ok*, Dkl % Ck*, D*z SRR [PR]

C, / brd. C, « mpy., [QR red. A,
A2: Chi, Dt 222X Oy, Dy 22522 Cuk, Dii []Alfg L Api
txp. C, brd. D, « ., [PQ d. A, txp. A,
A3: Chpy Dy 222 Cix, Dyt ===5 Cly, Dy == [ilAﬁ = L Ay 222l 4

t D, / brd. D, mpy., PQ d. A, «
A4: Cyty Dy =2==5% Cy, Dy 2xd D1 Cui, D [‘]Aic = > At

t D, / brd. C, mpy., [QR d. A, — txp. A, /
A5 Chi, Dy ===5% Cy;, Dy, 2 61 Cuty Dy == {]Aik = S Ay == > Ak

Figure 15: Notation summary of the algorithms for two-dimensional partitioning.

The “#” sign means union of all the block rows (or columns). The superscript denotes the
ordinal number of the partial inner product result. The number in the square brackets (eg.
[PR] in A1) is the minimum maximum number of processors to minimize the arithmetic time
for each algorithm. Algorithm A2 has a matrix transpose in addition to the communication of
C as in algorithm A1l. But, unlike in the one-dimensional case algorithm A2 may have a higher
processor utilization than algorithm A1l.

5.2.1 Algorithm 1

Algorithm 1 if carried out as a sequence of one-to-all broadcasts with a multiplication phase
between each such operation constitutes an outer-product algorithm, but becomes an inner-
product algorithm, if it is implemented by all-to-all broadcasting followed by the multiplication
operations. If storage is to be conserved, then a linear array type algorithm, such as the CRA or
GCEA algorithms, needs to be used. In order to avoid O(NZ, N2) start-ups, and correspondingly
high data transfer times, it is of interest to pipeline the computations for successive outer
products. This effectively leads to all-to-all broadcasting with constant storage. Alignment of
the two matrices C and D may be explicit or implicit. We describe one algorithm of the latter
type suitable for MIMD architectures, and two algorithms of the first type. For a few variations
see [14].

With the mapping of the matrices defined previously, only the diagonal blocks have the proper
index sets for the multiplication operation assuming Ny = N = v/N. The outer products can
all be initiated at the same time. The computations proceeds as triangle shaped wave fronts
emanating from the main diagonal towards the bottom and right for each outer product. It
can be shown that for v/N being odd, 2v/N — 1 steps suffice to complete the algorithm with
constant size buffer. Each step consists of communications of two block matrices, one block
matrix multiplication and one block matrix addition. For /N being even, we can put one more
buffer at the boundary processors and delay sending the message to the opposite side of the
boundary processors. 2¢/N + 1 steps are sufficient to complete the algorithm.

Figure 16 illustrates some of the steps. A total of 24/N + 1 steps are needed. Each step
requires only nearest neighbor communication. For a MIMD mode of operation the coding of
the algorithm is straightforward. In a SIMD mode masking is required to define the set of active
processors in each step. Notice that if more than one matrix multiplication are performed, the
subsequent matrix multiplications can be initiated every v/N cycles from the main diagonal
without any communication and computation conflict. Hence, a total of K matrix multiplica-
tions only require (K + l)ﬁ + 1 steps compared to approximately %\/N steps by Cannon’s
algorithm as described next.

Cannon [4,5] describes a matrix multiplication algorithm suitable for SIMD architectures

31

€00 & { €00 { { ycoo l
d L] [] e [——— . . §
00| Cc10 ‘Flm } Y c10 ‘;02
b [S——— — b -
/

. . . }. -r——-»o — -
. I l Y foo y Y
® ® ® — []] L L !
; I I 1 ¥ Y

Step 1 Step 2 Step 3

Q
(Y]
(=)

=

Figure 16: Computing A — Cx D+ E by a pipelined outer product algorithm.

A v

Coo Coy Coz Cos
Doo| Dii| Daa| Dss
Cu Ci2<C13=<C1o
Dio| Dai| Dszl Dos
Ca2<{{Cas<[{Cao<|—|Ca1 T_
Doo| Dsif Doyl Dys
Css Cso | Cs; Csa
Dss| Dso| Dsy| Ds,
e

Figure 17: Matrix multiplication on a mesh according to [4,5].

configured as two-dimensional arrays. The algorithm consists of two phases; an alignment phase
and a multiplication phase including 2Q (or max(Ny, N2) for both Ny, N; being powers of 2)
communication steps for one-port communication. During the alignment phase the matrix C is
- rotated left and the matrix D rotated up. The alignment of the matrices allows all processors
to participate in each step of the multiplication phase. After the alignment phase the matrix C
is stored such that diagonals are aligned with columns of the array, and diagonals of D aligned
with rows of the array. During the multiplication phase the matrix C is rotated left one step at a
time, and the matrix D rotated up one step at a time. Figure 17 shows the data structures after
the alignment phase. The alignment defines a particular permutation and any suitable routing
algorithm for the Boolean cube can be used. If the permutation is carried out as a sequence
of shifts, and the CRA algorithm is used, then for one-port communication the row shifts use
CRA(1, N2) and require | %2 steps, and the column shifts require | &] steps by CRA(1, N;).

The total data volume communicated across an edge for the alignment of C is [—J%] [%] [&2].
For the alignment of D, replace P, N; and N, by R, N, and N; respectively. There are

max(Ny, N2) — 1 steps of the algorithm, and each such step requires communication of [-1%] I'N-Q;]

elements for the rotation of C and | TVQI] [NR;] elements for the rotation of D.

/* Matrix multiplication according to Cannon’s Algorithm: * /

32

/* Gray code encoding. Assume N; > N, and %; =k. */

rid = 1G (| %4))
cid = IG (pid mod N3)
gid = rid || cid
/* Let C, D and A be the (rid, cid) block of the matrices C, D and A, respectively. */
/* Partition the local matrix C into k column blocks denoted Cl[i], i = {1, ..., k}. */
/* Similarly for the local matrices D and A. */
/* Alignment phase: */
DOi=1,rid

/* C is rotated left. */

CALL CRArow (C, [£1+:1)

/* CRA within the subcube of the least n, dimensions */

ENDDO
DOi=1,cid

/* D is rotated up. */

CALL CRA column (D, [#][£]1)

N
ENDDO
/* Multiplication phase: */ .
DOi=1,k
Alil=Cli]*DIi
ENDDO

DOj = 1, N]_ -1
CALL CRArow (C[1], [#1[#1)
Left rotate C[i] locally.
CALL CRA-column (D, [2=][£]1)
DOi=1,k

A=A+ Cli|*DI[i

ENDDO

ENDDO

In a Boolean cube the number of communication steps for the alignment of C and D can be
reduced to at most 2log Ny and 2log N steps, respectively [14].

It is also possible to base a matrix multiplication algorithm on the GCEA algorithm. As
was the case with the CRA algorithm an alignment is required between C' and D, and the
movement synchronized. The use of the GCEA(1, N) algorithm is equivalent to the following
recursive procedure. Let C be partitioned into 4 blocks: Coo, Co1, Cio, and Cy;. Similarly,
let D be partitioned into Dgo, Doy, D1o and Dj; of appropriate sizes. Then, an exchange of
blocks C10 and Cy; and of blocks Doy and Dy respectively brings block matrices into positions
such that four independent matrix multiplications can be performed on matrices of half the
number of rows and columns of the original problem. To complete the matrix multiplication
an exchange of blocks in the same row is made for C' and in the same column for D followed
by a new multiplication of half sized matrices. For the multiplication phase there are Ny — 1

communication steps for C in the z-direction, each step communicating f%] I-N'Q';] elements. For

D there are N;—1 steps of f%] [—1%] each. The communications are between adjacent processors,

if the matrices are embedded in the Boolean cube by a binary encoding of partitions.

Dekel [5] describes the above algorithm in detail for P = Q = R =+/N. For P =2*1N;, Q =
2%2N; = 2*3 N3 and R = 2% N, the algorithm is directly portable. A certain number of the low
order bits are mapped to the same processor for consecutive partitioning, and communications
corresponding to those bits are internal to a processor. The set-up phase requires log No and

33

log Ni communications respectively.

/* Matrix multiplication according to Dekel’s Algorithm: */
/* Binary code encoding. One-port communication, Ny > Ny and —%—: =k */

rid = | 24|
cid = ptd mod N,
/* Alignment phase:
SWAP C|[j] with C[7 & rid] locally for j € {1,2,...,k}.
DOi=1, n,
IF ((s** bit of rid) .EQ. 1) THEN
CALL SEND (port[i], C, £2)
CALL RECV (portli], C, £2)

*/

ENDIF
ENDDO
DOi= 1, ni
IF ((i*" bit of cid) .EQ. 1) THEN
CALL SEND (port[ng +1], D, %)
CALL REGV (port[n, +1], D, 4E)
ENDIF
ENDDO
/* Multiplication phase: */
DOi=1,k
Ali]=C[i] * D [j
ENDDO

DOi=1, N, -1
IF (i mod k .EQ. 0) THEN
CALL GCEA (i, ¢, £2)
ELSE
u = the position of the rightmost 0-bit of i-1
SWAP Clj] with C[j @ 2%] locally for 5 € {1,2,...,k}.
ENDIF
CALL GCEA (i, D, £&)
DOi=1k
Alil]=A[]+ Cl[i] * D i
ENDDO
ENDDO

It is also possible to design a matrix multiplication algorithm based on the SBT-b(1, N)
algorithm. With this algorithm the number of communication steps for the multiplication
phase is reduced to log N; and log Ny respectively. The need for temporary storage is equal
to 3Q([#-1+ [#51). The alignment described for Dekel’s algorithm is applicable. With a
temporary storage of Q(!—ﬁﬂl-'[+ |'N%]), the alignment step can be eliminated. In this case, the
computation is performed only after all necessary communications are done.

/* Matrix multiplication using the SBT-b(1, N) Algorithm: */

CC [cid] = C

DD [rid] =D

CALL sub_SBT (0, ny — 1, CC, £2) /* within subcube of dimensions 0 to ny — 1 */
CALL sub_SBT (ng, n— 1, DD, $E)

A =CC [0] * DD [0]

34

DOi=1N -1
A=A+ CC[i*DD [j
ENDDO

For n-port communication we only consider all-to-all broadcasting and the SBnT-b(n,N)
and nRSBT-b(n, N) algorithms. The maximum edge load is reduced compared to the one-port
case. The communication time is

min (M52][] £10) R 8] i)
S RS0] =)

The reduction in the element transfer time is by a factor of . The number of start-ups is also
reduced by the same factor if B < %[—BNQ]

5.2.2 Algorithm 2

For the transposition of C we use a transpose algorithm as described in [10,8]. The all-to-all
broadcasting of C* can be made with algorithm CRA(1, N2), GCEA(1, N;), or SBT-b(1, Ny) for
one-port communication. The reduction can be carried out by the same algorithms, but in the
other direction.

Let Nypaz and Nppin be max(Ny, N2) and min(Ny, Nz), respectively. The transposition of the
P X @ matrix partitioned by a Ny X N, processor hypercube can be viewed as 2log, Nyip, steps
of matrix transposition exchanging [%”T\%] elements between processors, log, 32 steps in

which %[7\%] f}%] elements are exchanged between processors, and the transposition of —%ﬁﬁf

local matrices of size —2— —2—.
wam Nmu.z

Tiop1—port(N1, No; P,Q) = 2log N, ([7\%] . E
cone (3| 3]+ ([F %] a5])

(%-+nﬁn0n,nﬂ) ([5

(28] me2118]

With n-port communication, pipelining can be used. The communication time becomes

(][] 5] +n- 2w

IA

Tta:p,n—port(Nl; NZ; P) Q)

5.2.3 Algorithm 3

For version 1 of algorithm 3 two matrix transpose operations are needed, one on the matrix C,
and one on the matrix A. For these operations we use the transpose algorithms in [10]. For

35

| Model [Algorithm | Communication operations

A1(1) SBT-b(1, N,)[C] + SBT-b(1, N1)[D]
A2(1) TXP(1, N)[C] + SBT-b(1, N2)[C] + SBT-b(1, N1)[A]

one-port | A3(1) TXP(L, N)[C] + SBT-b(1, N3)[D] + SBT-b(1, NJJ[A] + TXP(L, N)[4]
A4(1) TXP(L, N)[D] + SBT-b(L, N1)[D] + SBT-b(1, N3)[4]
A5(1) TXP(L, N)[D] + SBT-b(1, N1)[C] + SBT-b(1, Nz)[A] -+ TXP(L, N)[4]
A1(n) SBnT-b(n, N2)[C] + SBuT-b(ny, N1)|D]
A2(n) TXP(n, N)[C] + SBnT-b(ns, N3)[C] + SBuT-b(ns, N2)[4]

n-port A3(n) TXP(n, N)[C] + SBnT-b(nz, N2)[D] + SBnT-b(n1, N1)[A] + TXP(n, N)[A4]

Ad(n) TXP(n, N)[D] + SBnT-b(n1, N1)[D] + SBnT-b(n2, N2)[A]
A5(n) | TXP(n, N)[D] + SBnT-b(n1, N1)[C] + SBuT-b(na, N2)[A] + TXP(n, N)[4]

Table 8: Algorithm classification of two-dimensional partitioning.

the all-to-all broadcasting of D within rows algorithm SBT-b(1, N;) can be used. For the all-to-
all reduction SBT-b(1, Ny) is a possible choice. Recall that the complexity of the SBT-b(1, %)
is the same as that of the CRA(1,%) or GCEA(1,*) if the buffer size B,, < [NQ—I][I—VE;'[, and

B,, < [—fvil [-NE;], respectively. With n-port communication the SBnT-b(n, *) or the nRSBT-

b(n, *) routings are used instead.

For version 2 of algorithm 3 the all-to-all reduction is carried out such that the inner products
for the set of NLZ rows of A allocated to a column of processors are accumulated with contiguous

sets of 7\% inner products per processor in the same column, and in the processor row in which the

inner product shall finally reside. The divide and conquer strategy is applied to N—% (if Ny > N2),
and repeated R times, since every processor column contains every column of D. After this
reduction operation the elements of A are in the proper processor row, but all elements of a
row are confined to one or a few processors in that row. The desired distribution is obtained by
one-to-all personalized communication, or some-to-all personalized communication if Ny < Na.
For one-port communication we choose the SBT-p(1, *) algorithm, and for n-port communication
either the SBnT-p(n, *) or nRSBT-p(n,) algorithm.

5.2.4 Summary and Comparison

Tables 8 to 11 summarize the communication and arithmetic complexities. The optimum
values of N1 and N, depend on the algorithm we choose and the values of P, Q and R. In
deriving the optimum values of Ny and N, we assume that P is a multiple of N1, Q a multiple
of N1 and N; and R a multiple of N,. Table 12 lists the optimum values of N; and N3 for the
five algorithms we consider. Figure 18 shows the optimum values of N; for the A1 algorithm as
a function of }\%’ Aif—z- and N. The choice of N; does not depend on Q. The circle symbol denotes
the boundary location, which has two minimum values of N;. Note that the ratio of the slopes
of the successive boundary lines is 4. The same Figure also applies to other algorithms by the
appropriate relabeling of the axis. Figure 19 shows the measured and communication times of
the A1(1) algorithm on the iPSC as a function of %;- for different values of % = {2,8,32}. The

measured minima are the same as the predicted.

Figures 20 to 23 show the best algorithm of the above five algorithms with respected to th,
—]1;—, 1%’ -11\27 and N. The comparison is made based on the times of each algorithm with its own
optimum Ny and N,. The plot does not depend on the arithmetic rate by assuming that P, Q,

R are all multiples of N. All Figures contains four plots. Plot (a), the upper left plot, shows the

36

l Algorithm I

Element transfers start-ups
Al1(1) (Nz—l)fN,H] Y a1 13,,.]
+(N -1 H:?J Z?_‘EIH Hp’ﬂ
A2(1) f§11f§;1n+f§;”,@1(m—l) Mol es1n+ 20200 Hy?;HN, =]
o [(N~ 1) +Ef'_‘§l”NH Bl
A3(1) R n+ [HN,l(Nz—l) M % e n+ 20020 H;\%HN, ,',,1
+f HNJ(N1—1)+fN,H ZIn +E?.‘EIH£H§,1§1+”§1HN, B ln
A4(1) [T w o+ (A1 1 N =1) | [[5 1f~,131,,,1n+2:'=‘ AL]B,,,]
+fN1H§,,1(N2—1) :'-3;1”15,”1\1,]3:]
A5(1) [+ 11 =1) | (T34 1n+27_‘§lffzv,1f &
Ha T 1V = 1) + [1 %5 1n E"_’ol” HN, r-rd b HN,]n

Table 9: The communication complexity of matrix multiplication using two-dimensional parti-
tioning.

| Algorithm | Bopt | min start-ups | Arithmetic |
A1) | BPIEEL B IF ”N,] n 2Q[x-1 l'rvﬂ

A2(1) fﬁP-HNJ,‘aszl” eal 2n (ng-1—1)f]P
yill-N%”TvE;] +2i N,”]+|— ” ol

O | LR n I - DIEIR
BRI [+3ia fN;lfz]'l'fN—,” -1)

A4(1) FRlFARIEAIE Al 2n (ﬂ“‘q - 1)f7HR
sabolin E,—lfm]fz 5|+ fN—J FA

A5(1) (11 Ng‘ffv%] %15 3n (Zfi-l - %]P
IR LI#& ”21+f 11

Table 10:

The optimum communication complexity of matrix multiplication using two-

dimensional partitioning with one-port communication. For the amount of element transfers,
see Table 9.

37

| Algorithm | Bopt Trnin— arith. time |

e Vil R max(B=L L[Lt + na,
\/—"13/2 l-}%.l I_AT,] "’;Lf UN%]tc +n17)

A2(n) \/er”Nﬂ [CESyTA 1)tc nr -+ (\/I'NI—"H' =t +4/(n — 1)7)?
["2“/2 I-T\%] I—ITz-I \/—n1°/2 '-Nl] rf\%] +(|-1%] TNJ—P—I + l—Nl]l-Ng-I —’:—l)tc
VIF) oo nr+ (/TE1 & + /(= Dr)?

A3(n) VIFE& o +o/ TRt + /= D7)
VAT 2 TR | 1T + TR T4] 2amt e,
44(n) VIR o nr+ (TR lte + /= D7y

[“13’” inllbn \/—"23/2 ERlFA +H([T]""i+ ['1\,1'||'N2'|—3‘—1)tc
VIR e nr+ (JTEN Tt + n = Dry?

A5(n) VIEE o +(/TEN e + /= Dr)?

En TR 2l) | ORI %5 + IR S

Table 11: The optimum communication complexity of matrix multiplication using two-
dimensional partitioning with n-port communication. The arithmetic time is the same as in
the one-port case and is omitted from the last column.

[Algorithm | Ny | N, | Tminy B > Bopt |
A1(1) Ey |, /BN e+ L (2VPR - E£B)t, + nr
A2(1) ey | /BN 20 + T (2V/QR + 298 4 onr
A3(1) PV | e+ Zo(2yPQ 4+ EUERLEEHQY, g,
A4(1) TVE | R+ L (2yPQ + 2= EEQ), o g,
A5(1) B V| B+ B (2VQR + 2RO R-@ER), L o,

Table 12: The optimum values of Ny and N for P, Q and R being multiples of N and one-port
communication.

38

R/N

R/N

Optimal values of N;, N = 8
T I T |] T

P/N

Optimal values of N;, N = 32
T ! T 1 T

R/N

R/N

Optimal values of N;, N = 16
! I ! I ! f

N; = 8 area

N, = 18

0 10 20 30

P/N

_ Optimal values of N;, N = 64
e T I T I T

N, = 16 area

D
. | | N, =| 32 arfa(

0 10 20 30
P/N

Figure 18: Optimal values of N; for the A1l algorithm with one-port communication.

Measured comm. times Predicted comm. times

T T T T ‘ T T T T T T T T I T T T T
8600 —
™ - \P/R = 32 .
O
wn
£ 400 —
£ \
~ I 4
) AN
E |
B 200 P /R -8 —
X-.. LN
L M oo ___,»»_
P/R =2 T N R y
0 1 1 1 1 l ~"-.>|<'-“ L 1 ‘I 5 o
-5 -5

~ 0 0
log (N;/Np) log (N;/N,)
Figure 19: Measured and predicted communication times for the A1(1) algorithm on an iPSC
as a function of %;- with N = Q@ = 32 and PR = 1024N.

boundary between A2(1) (above the boundary) and A1(1) + A4(1). Plot (b), the upper right
plot, shows the boundary between A4(1) (above the boundary) and A1(1)+ A2(1). Plot (c), the
lower left plot, shows the boundary between A1(1) (below the boundary) and A2(1) + A4(1).
Plot (d), the lower right plot, shows the contour of the plot ()-

For N = 16 and r = t,, the volume within the considered domain is mostly in the region
of the A1l algorithm, Figure 20. With the increasing aspect ratio of {:, the region of the Al
algorithm also increases. As the number of processors increases, such as from Figure 20 to 23,
the region in which algorithms A2(1) or A4(1) is optimum increases. Increasing the ratio of
é for large N has less effect than that for small N. In fact, when N = 1024, the Figure for
T T

= lis the same as that for = = 1000, Figure 23. For % = % = 1%, the communication

complexity of algorithm A1(1) is less than that of algorithms A2(1) and A4(1); the complexities
of A2(1) and A4(1) are the same. The volume for which A1(1) is optimum is always at least 3
of the whole volume. The volumes for A2(1) and A4(1) are the same and symmetrical to P = R
1

plane. They are at most 3 of the whole volume. As N increases, the volume for each of the 3

algorithms approaches % of the whole volume. For A1(1), the shape of its optimum volume is a
pyramid with a square base at %— = 0 plane.

With n-port communication, the optimum value of N; for the A2(n) algorithm has to min-
imize RLN;_I) +Q (Nfb_l) if P, @, R are multiples of N. Figure 24 shows the optimum values

1 2

of Ny for the A2(n) algorithm. For algorithms A3(n), A4(n) and A5(n), (Q, R) are replaced by
(@, P), (P,Q) and (R, Q) respectively. For algorithm Al(n), Q is replaced by P, approximately.

Figures 25 and 26 show the partitioning of the P, Q, R space according to the algorithm of
minimum complexity with n-port communication. The four plots of each Figure are organized
the same way as in the one-port case. For P, @, and R multiples of N, algorithm Al(n) is
preferable with respect to execution time for most values of P, Q, and R. Algorithm Al(n)
shall be chosen if P, R > Q. Algorithm A2(n) shall be chosen only if Q, R > P, and A4(n)
only if @, P > R. The volume for A2(n) (A4(n)) is significantly smaller than that for A2 1)

40

of §§§§:§\“‘w
== ‘é::«\\“\\ |

ﬁlo’ 43’ Al(1) & PP AL s ‘\\\ “\\\“

7 l L A4(D) z \\ ‘\ \

N

—7
A
e

)
\y
L~
>

(a) (b)

Contour of the left plane
15 = | -:..l-| 1 T T T I T L T T l—
L ell] s
i
A2(1)H27] T% I a
{w II_/‘J]
&]
.;l‘g:/ IO—-IO——!D—N—-
5 /\‘u & ::_—“\/u—u—u—w:
e
______ ot ——]
5 1 1 L lo 1 1 llllls
AL
(d)

(a) The boundary between A2(1) and A1(1) + A4(1). (b) The boundary between A4(1) and
A1(1) + A2(1). (c) The boundary between A1(1) and A2(1) + A4(1). (d) Contour plot of (c).

Figure 20: Lowest complexity algorithm as a function of matrix shape; N = 16, r = t., B,, = oo,
two-dimensional partitioning, one-port communication.

41

)
é&»
3
it

S
—=———
XN
o
Y0
X0

)

S

Q
Q

Q
Q

RAATY

i

g
00
%

<SISISISI2S
S
S

RRESiN| a4
R

K N\

K] N\
Wiy

(c)

(a) The boundary between A2(1) and A1(1) + A4(1). (b) The boundary between A4(1) and
- A1(1) + A2(1). (c) The boundary between A1(1) and A2(1) + A4(1). (d) Contour plot of (c).

Figure 21: Lowest complexity algorithm as a function of matrix shape; N = 128, r = ¢,
B,, = oo, two-dimensional partitioning, one-port communication.

42

(a) (b)

: Contour of the left plane
T T o T T T T T
15 |- | sr l ' .

A2(1) -

LIRS
SN
';111%551'2%%3}&&.{\

A

10

R/N

/]

U
.!4',‘('f:\

24/

(c)

(a) The boundary between A2(1) and A1(1) + A4(1). (b) The boundary between A4(1) and
A1(1) + A2(1). (c) The boundary between A1(1) and A2(1) + A4(1). (d) Contour plot of (c).

Figure 22: Lowest complexity algorithm as a function of matrix shape; N = 128, r = 1000t,,
B,,, = oo, two-dimensional partitioning, one-port communication.

43

e

7
N

X
3
B
o
5

X
0

W
5
W
()

00
Q
0’:

:
\
AN
X0
X
e
W
o0

()

(b)

15
9

A2(1)]

(2) The boundary between A2(1) and A1(1) + A4(1). (b) The boundary between A4(1) and
A1(1) + A2(1). (c) The boundary between A1(1) and A2(1) + A4(1). (d) Contour plot of (c).

Figure 23: Lowest complexity algorithm as a function of matrix shape; N = 1024, ;’1&- =1 to
1000, two-dimensional partitioning, one-port communication.

44

R/N

R/N

30

20

10

Optimal values of N;,, N = 8
T ‘ T ‘ T

)]
o N; = 1 area B
- N, = 8 area —
I | 1 | 1 |
0 10 20 30
Q/N
Optimal values of N;, N = 32
T T l T

]

N; = 32 area

20
/N

30

30

20

R/N

10

R/N

Optimal

values of N;, N = 64
T ' T

Optimal values of N;, N = 16
T ' T | T I
N; = 1 area
N; = 4 area
R N, = 18 area
! | 1 | | |
0 10 20 30
/N

I

N; = 16 area |

Q/N

Figure 24: Optimal values of NV, for algorithm A2(n) with n-port communication.

45

(A4(1)) of the corresponding one-port case.

6 Conclusions

A two-dimensional partitioning yields a complexity that is at most the same as that of a one-
dimensional partitioning. In the one-dimensional partitioning the processors shall be aligned
with the axis with the largest number of elements. In the two dimensional partitioning the
processing plane shall be aligned with the matrix plane with the maximum number of elements.
The aspect ratio of the processing array shall be the same as that of the matrix plane.

For the Boolean cube a reduction in the number of start-ups is possible in exchange for an
increase in buffer sizes, and temporary storage. With a temporary storage that is equal to the
size of the partitioned matrices, O(/N) communication steps are required for the one-dimensional
partitioning while only O(N1, N2) communication steps are required for the two-dimensional
partitioning. The two-dimensional partitioning offers a reduction in element transfer time and
number of start-ups by a factor of approximately % in the case of one-port communication

and optimum aspect ratio for the partitioning (%:) The number of start-ups is also reduced
by a factor of approximately -\—}—I—V— for the optimum aspect ratio if B,, < %—?. For sufficiently
large values of B,, the number of start-ups is the same in both the one- and two-dimensional

partitioning, but the value of B, at which the minimum number of start-ups is achieved is lower
by a factor of approximately v/ N in the two-dimensional case.

The CRA and the GCEA algorithms in one and two dimensions preserves storage require-
ments. The Spanning Binomial Tree algorithm only requires log N communication steps at the
expense of larger temporary storage and optimum buffer size. With limited temporary storage
(and maximum buffer size), a hybrid method can be used by performing k steps of the SBT
algorithm and 2"~* — 1 steps of a linear time algorithm. The number of communication steps
can be halved, approximately, by doubling the temporary storage and the optimum buffer size.
With n-port communication, the edge load is reduced by a factor of n.

We have also devised algorithms with three-dimensional partitioning of the matrices as de-
scribed in [16]. It shows that if the initial matrices are properly located, or if the maximum
packet size is small relative to the matrix size, or if the communication start-up times are small
relative to the data transmission times, three-dimensional partitioning is always preferable.

Throughout the paper it is implicitly assumed that the matrices are stored in the processors
local storage by a consecutive strategy [14]. The complexity results also hold for cyclic storage.
All the algorithms described work for binary code and Gray code encodings. The communication
patterns are the same; only the local data accessing schemes differ.

Acknowledgement

This work has been supported in part by the Office of Naval Research under Contracts
N00014-84-K-0043 and N00014-86-K-0564.

46

B/N
(

C
M va Al A
’44'/' v !_...._....__._5
A< o Ja
R =N Hs ;
SN ——=—7 2
A= fa)
QOO >~ > el ~ SN
A F - 5t . /
COUOOOOOOOOOA—== 0 = N 2
e & of = 2 £
OGNS 2r <]
OO)
QL0000 5[[3/
QOO - i 317
OO0 5 5 J b
XY~ Z 50 AT
WY 2 S 2f S
’0’00000’ W.n\ < ﬁm r u\¢ /-'ﬂ”ﬂﬂl\«\/&(ﬂ%MH
..“. S BT
- ot E e N ow
= = ve 8
>
A -~
OOOK) o4
AR = S X
AN E 2
SO =
..“.“.“.“."."."““"““.“.. i RN
QU ~ AN =
RAXAROKONI £ C N
i e S R
N = R S
N S——— N — C
RN —— e
= K
N2 MNSSZF"
NS N XNSZF
. W o R $
R ooo ot = 00. S « =?
™y = e = = e

= 00,

A4 (n)
16,7 =t¢., By,

d)
47

(c)

(a) The boundary between A2(1) and A1(1) + A4(1). (b) The boundary between A4(1) and
A1(1) + A2(1). (c) The boundary between A1(1) and A2(1) + A4(1). (d) Contour plot of (c).

Figure 25: Lowest complexity algorithm as a function of matrix shape; N

two-dimensional partitioning, n-port communication.

A2(n)

(XK

§
4

I
A4 (n)

e — T T T T _ T T T T b M%_ =T
£ IS
M‘A' WW.«W]
g S = 111
=l < <«
ot LT
st g
2 “_I/ss/ru.olﬁlz aI.T/ts(o =\ ¥
frm
1 1 1 _ 1 1 1 1 1 1
- o ® /m RV
P
9
() .
OO 3
..“"“““..“““““.. - i\) R — '
RS0 = =22
00000000, OO0 L >
COO000N) DO =/ >S< e/
OUOOO0OO . XXXXXXIOT T A
9900000409, 3 XXX >
$900909499, — N OOV AA’A
OOURE ———— SI00000 00 S Sy
OO L QOO L
OO T N N OO0 ><N)
S99 . Sy I A QROOX A
OO R 900000 Sl i
NN A —— 00— — Ny
e A IEESSS
D /o RS
A A o oh.s A A - 0&.\
= = w/e = = w/e

Al(n)

(d)

(c)

. (c) The boundary between A1(1) and A2(1) + A4(1). (d) Contour plot of (c).

(a) The boundary between A2(1) and A1(1) + A4(1). (b) The boundary between A4(1) and

A1(1) + A2(1)

1024, 7 = ¢,

Figure 26: Lowest complexity algorithm as a function of matrix shape; N

B

oo, two-dimensional partitioning, n-port communication.

48

References

(1]
(2]
(3]

(4]

(€]

[7]

[8]

[°]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

Romas Aleliunas and Arnold L. Rosenberg. On embedding rectangular grids in square
grids. IEEE Trans. Computers, C-31(9):907-913, September 1982.

Sandeep N. Bhatt and Ilse LF. Ipsen. How to Embed Trees in Hypercubes. Technical
Report YALEU/CSD/RR-443, Yale University, Dept. of Computer Science, December 1985.

L.E. Cannon. A Cellular Computer to Implement the Kalman Filter Algorithm. PhD thesis,
Montana State University, 1969.

Eliezer Dekel, David Nassimi, and Sartaj Sahni. Parallel matrix and graph algorithms.
SIAM J. Computing, 10:657-673, 1981.

Sanjay R. Deshpande and Roy M. Jenevin. Scaleability of a binary tree on a hypercube. In
International Conference on Parallel Processing, pages 661-668, IEEE Computer Society,
1986. TR-86-01, Univ. Texas at Austin.

Michael J. Fischer. Efficiency of Equivalence Algorithms, pages 153—-167. Plenum Press,
1972.

Ching-Tien Ho and S. Lennart Johnsson. Algorithms for matrix transposition on Boolean
n-cube configured ensemble architectures. In Int. Conf. on Parallel Processing, pages 621-
629, IEEE Computer Society, 1987.

Ching-Tien Ho and S. Lennart Johnsson. Distributed routing algorithms for broadcasting
and personalized communication in hypercubes. In 1986 Int. Conf. Parallel Processing,
pages 640-648, IEEE Computer Society, 1986. Tech. report YALEU/CSD/RR-483.

Ching-Tien Ho and S. Lennart Johnsson. Matriz Transposition on Boolean n-cube Con-
figured Ensemble Architectures. Technical Report YALEU/CSD/RR-494, Yale University,
Dept. of Computer Science, September 1986.

Ching-Tien Ho and S. Lennart Johnsson. On the embedding of arbitrary meshes in Boolean
cubes with expansion two dilation two. In Int. Conf. on Parallel Processing, pages 188-191,
IEEE Computer Society, 1987.

Ching-Tien Ho and S. Lennart Johnsson. Spanning Balanced Trees in Boolean cubes. Tech-
nical Report YALEU/CSD/RR-508, Yale University, Dept. of Computer Science, January
1987.

Intel 1PSC System Owverview. Intel Corp., January 1986.

S. Lennart Johnsson. Communication efficient basic linear algebra computations on hy-
percube architectures. Journal of Parallel and Distributed Computing, 4(2):133-172, April
1987. (Report YALEU/CSD/RR-361, January 1985).

S. Lennart Johnsson. Data Permutations and Basic Linear Algebra Computations on En-
semble Architectures. Technical Report YALEU/CSD/RR-367, Yale University, Dept. of
Computer Science, February 1985.

S. Lennart Johnsson and Ching-Tien Ho. Algorithms for Multiplying Matrices of Ar-
bitrary Shapes Using Shared Memory Primitives on a Boolean Cube. Technical Re-
port YALEU/CSD/RR-, Department of Computer Science, Yale University, October 1987.

49

[17] S. Lennart Johnsson and Ching-Tien Ho. Spanning Graphs for Optimum Broadcasting and
Personalized Commaunication in Hypercubes. Technical Report Report YALEU/CSD/RR-
500, Yale University, Dept. of Computer Science, November 1986. To appear in IEEE
Trans. Computers.

[18] Flynn M.J. Very high-speed computing systems. Proc. of the IEEE, 12:1901-1909, 1966.
[19] E M. Reingold, J Nievergelt, and N Deo. Combinatorial Algorithms. Prentice Hall, 1977.

[20] Yousef Saad and Martin H. Schultz. Data Communication tn Hypercubes. Technical Re-
port YALEU/DCS/RR-428, Dept. of Computer Science, Yale University, October 1985.

[21] Yousef Saad and Martin H. Schultz. Topological properties of Hypercubes. Technical Re-
port YALEU/DCS/RR-389, Dept. of Computer Science, Yale University, June 1985.

[22] Charles L. Seitz. Ensemble architectures for VLSI - a survey and taxonomy. In P. Penfield
Jr., editor, 1982 Conf on Advanced Research in VLSI pages 130 — 135, Artech House,
January 1982. :

[23] Angela Y. Wu. Embedding of tree networks in hypercubes. Journal of Parallel and Dis-
tributed Computing, 2(3):238-249, 1985.

50

