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Abstract

In this paper we investigate the complexity of concurrent algorithms for the solution
of multiple tridiagonal systems as they appear, for instance in fast Poisson solvers, or in
Alternating Direction Methods. We consider divide-and-conquer algorithms in the form of
several variations of odd-even cyclic reduction, and algorithms making use of data trans-
position and local elimination. The processors are assumed to be configured as a Boolean
cube. A simple performance model is established, and the validity of the model verified
on an Intel iPSC. Depending on machine characteristics, a divide-and-conquer algorithm
such as balanced cyclic reduction, or a transpose based algorithm, may be optimum. In
general, the former is preferable for sufficiently many processors. Indeed, a hybrid scheme in
which the last several steps of the divide-and-conquer algorithm is replaced by a transpose
based algorithm, is of lower complexity than either. The transition point depends on the
architectural parameters such as communication start-up time, data channel transfer rate,
maximum packet size, and the time for an arithmetic operation, but also the number of in-
dependent systems to be solved. For the Intel iPSC with its moderate number of processors
the transpose algorithms are in general preferable.

It is shown that the optimum partitioning of a set of independent tridiagonal systems
among a set of processors yields the embarrassingly parallel case. If the systems originates
from a lattice and solutions are computed in alternating directions, then to first order the
aspect ratio of a computational lattice shall be the same as that of the lattice forming the
base for the equations.

Some of the transpose based algorithms are novel variations of Gaussian elimination.
Our experiments demonstrate the importance of combining in the communication system
for architectures with a relatively high communications start-up time.

1 Introduction

Tridiagonal systems of equations occur in many methods used for the solution of partial
differential equations. The Alternating Direction Method (ADM) is one such method in
which the tridiagonal matrices arise from one-directional central difference approximations
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of partial derivatives. In the two-dimensional case there is one tridiagonal system for each
row, or column, of the lattice. Another example where multiple tridiagonal systems occur is
in fast Poisson solvers. After an FFT in one dimension the system decouples into a number
of independent tridiagonal systems.

The classical methods for solving tridiagonal systems on sequential architectures are
Gaussian elimination and odd-even cyclic reduction. The former treats the pivots sequen-
tially and offers very little concurrency. However, in the context of multiple tridiagonal
systems the different systems can be solved concurrently. Odd-even cyclic reduction re-
quires about twice as many arithmetic operations per unknown (17 compared to 8), but
can be parallelized (and vectorized). It requires 2(p — 1) steps for a system of 27 — 1 equa-
tions. A variation of odd-even cyclic reduction is parallel cyclic reduction [13], which can be
performed in p steps, but requires 12p arithmetic operations per unknown. In parallel ar-
chitectures, in particular, if the number of processors approaches the number of unknowns,
the communication is a critical issue with respect to performance [27,24,25,2,15,22]. Indeed,
data movement is a dominating factor in the cost of computing. It is necessary to include
the communication requirements in the analysis of the complexity of algorithms, and to
use simplified, but realistic, models of the communication cost in concurrent systems. The
communication cost (complexity) for a given computation on a given architecture depends
on the data mapping on to the architecture, the choice of numerical algorithm, and the com-
munication algorithms. These issues are the focal points of this work. We demonstrate the
effectiveness of message combining for architectures with a high communications overhead.
The target architectures have processors interconnected as a Boolean n-cube, a versatile
communications network that is used in several existing computers. We propose some novel
concurrent algorithms, and investigate the effects of the computational speed, the speed
of communication, and the overhead in communication, on the choice of algorithm with
respect to performance.

A tridiagonal system of equations has the following form:
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The nonzero matrix elements are denoted x, the right hand side(s) Y, and the solution
vector(s) X. For the analysis here we assume that pivoting on the diagonal elements is
numerically satisfactory. No other assumption is made on the matrix elements x. We
denote the number of equations by P, and the number of tridiagonal systems by Q. We
will make the additional assumption that P = 27 — 1 and @ = 29 — 1, whenever it simplifies
the analysis. The solution methods being considered are parallel versions of Gaussian
elimination, two-way elimination, and cyclic reduction, which can be viewed as Gaussian
elimination with a different pivoting order.




We have verified our analytical complexity models on a medium scale, parallel archi-
tecture, and the Intel iPSC. The processors are interconnected as a Boolean n-cube, which
has N = 2" processors, n > 1. For a two processor system two-way elimination is a good
choice. One- and multi-dimensional arrays can be embedded in Boolean cubes with one
array node per cube node preserving adjacency by a binary-reflected Gray code [23]. The
Boolean cube is a host graph for the arrays, guest graphs. For multi-dimensional arrays
the ezpansion, i.e., the number of nodes in the host graph relative to the number of nodes
in the guest graph, is one if the number of array nodes in each dimension is a power of
two. Hence, for a two-dimensional grid with P = 2P — 1 and Q = 2% — 1 the expansion is
close to one. For arbitrary P and Q it may be close to 4, and higher for multi-dimensional
arrays [11]. If p+ ¢ < n, then we map one equation to each processor for our analysis.
Here we do not investigate algorithms making use of multiple processors per equation. If
p+ ¢ > n then several equations are mapped into a processor by a substructuring tech-
nique [17,18,5], and the processor utilization is increased. The time for the communication
of one byte is denoted i, the time for the communication overhead (start-up) is denoted
7, the time for an arithmetic operation f4, and the maximum packet size imposed by the
operating system B,,. Because of the high copying time on the Intel iPSC there exists
a packet size Bgopy < Bm above which it is beneficial to send data directly rather than
combining several packets into one in order to minimize the number of start-ups [10]. With
the current software Beopy = 256 & 7/tcopy bytes. The time for copying one byte is tcopy-
Furthermore, the Intel iPSC effectively only supports one send or one receive operation per
processor at a time, and most of our complexity estimates are specialized to this case for
ease of verification of the model by comparison with measured data.

We first consider the solution of a single tridiagonal system of P equations on an n-
cube with N = 2" < P. The algorithms are most easily described for single systems. We
then generalize the algorithms and the results to multiple tridiagonal systems, which are of
greater interest. The basic idea for the parallelization of the solution process is to impose a
block structure on the tridiagonal matrix, such that each processor receives approximately
the same number of equations. For odd-even cyclic reduction (or elimination in the partial
order given by nested dissection [6]) interprocessor communication is needed for every step.
By applying Gaussian elimination within each block (also known as substructuring), thereby
forming a reduced tridiagonal system that has one row for each block in the partition [28],
one communication of a row (or part thereof [20]) between adjacent partitions suffices
[17,18]. The assignment of block rows to processors is made by a binary-reflected Gray
code [19] encoding. The rows of the reduced system inherit this allocation scheme. Having
the solution of the reduced system, we perform backsubstitution within the blocks. This
phase is also local, except for two nearest neighbor communications. Note that in the
substructured elimination 17 operations per unknown is required, compared to 8 for the
normal elimination process. The difference is due to fill-in during the substructuring.

The arithmetic complexity of substructured elimination is 17% + 8N and 8P of stan-
dard Gaussian elimination. With respect to arithmetic complexity substructuring shall be
applied for N > 2. It is also necessary to account for the difference in communication
requirements, since the system is initially distributed over the entire set of processors, ac-
cording to our assumptions. The equivalent of a vector transpose is required for a single
system (matrix transpose for multiple systems) before the conventional Gaussian elimina-
tion algorithm can be applied. Another transpose operation is required for the solution
vector. We refer to this algorithm as the Transpose - Gaussian Elimination - Transpose
(TGET) algorithm. Clearly, the same procedure can also be applied after a substructuring




phase. The substructuring reduces the amount of data that needs to be communicated, but
increases the total arithmetic complexity. We call this algorithm SS/TGET. We analyze
the complexities in detail below. Two-way Gaussian elimination [4,29] can always be used
without an increase in the total arithmetic complexity, which means that a recursive trans-
position [26,3,14,10] can be terminated one step before completion. Only a few elements
need to be communicated in the final step after elimination on the parts. Approximately
half of the total data transfer of the TGET algorithm is avoided in this T2GET algorithm.
Also, the number of parallel arithmetic steps becomes 4P, instead of 8P of the TGET
algorithm.

It is also possible to avoid the second transpose operation entirely by replacing the first
transpose operation with an all-to-all broadcasting operation [12]. After such a communica-
tion each processor can solve for one variable, independently and concurrently. We call this
algorithm BC2GE for Broadcasting and Concurrent 2-way Gaussian Elimination. As is the
case for the TGET algorithm the elimination can be initiated before the last broadcasting
step, and thereby reduce the number of element transfers by a factor of two. By perform-
ing a forward elimination on %N equations, as in two-way elimination, in each processor,
prior to the last exchange, and backsubstitution after the final exchange, the arithmetic
complexity can be reduced to the same as in two-way elimination (T2GET). We label this
algorithm BC2GER.

For a single tridiagonal system we consider:

e Substructuring followed by odd-even cyclic reduction, CR, [1] for the reduced system,
as described in [19,17)].

e Substructuring followed by parallel cyclic reduction, PCR [13].

e The collection of all equations in one processor that solves for all variables, followed
by a distribution of the results, Transpose, Gaussian Elimination, Transpose, TGET
[18].

e The collection of half of the equations in one processor and the other half in an
adjacent processor, elimination in the two halves concurrently, concurrent solution of
a 2 x 2 coupling system, and concurrent backsubstitution in the two halves followed
by distribution of the solution variables. This is algorithm T2GET.

e Substructuring followed by algorithm TGET for the reduced system, SS/TGET.
e Substructuring followed by algorithm T2GET for the reduced system, SS/T2GET.

o The broadcasting of equations from every node to every other node such that every
processor have all the equations and each solves for precisely one variable by lo-

cal Gaussian elimination, Broadcasting and Concurrent 2-way Gaussian Elimination,
BC2GE and BC2GER.

e Substructuring followed by broadcasting of the reduced set of equations from every
node to every other node such that every processor has all the reduced equations
and solves for precisely one variable by local Gaussian elimination, SS/BC2GE and
SS/BC2GER.

e A hybrid algorithm, SS/H, obtained by combining, substructuring, odd-even cyclic
reduction, and the T2GET algorithm.




The hybrid algorithm is motivated by the following observation. For the solution of
the reduced system, i.e., the system of equations after substructuring, cyclic reduction
algorithms have a lower arithmetic complexity than a sequential algorithm for N > 16
(shown later), but the lower bound for the number of start-ups for a vector transposition is
approximately half of the minimum number of start-ups for odd-even cyclic reduction with
communications restricted to one send or one receive operation at a time. A lower bound
of n start-ups for the transposition is shown in [10]. Since two equations are needed for the
elimination in the reduction phase, and these two equations reside in distinct processors,
at least two communications are needed per step. The data transfer time is lower for cyclic
reduction than for the transpose algorithm. These different characteristics give rise to some
interesting optimization problems that we investigate in the context of a hybrid algorithm.

Depending on the value of different parameters, one or another of the methods for single
systems yields the lowest execution time. No method is clearly inferior for all realistic
architectural parameters.

For the solution of multiple tridiagonal systems we consider:

e Substructuring followed by Balanced Cyclic Reduction [18], SS/BCR, for the reduced
system solver.

The T2GET algorithm.

e Substructuring followed by the T2GET algorithm, SS/T2GET, for the reduced system
solver.

Substructuring followed by a hybrid algorithm, SS/H, for the reduced system solver.

2 Solving a Single Tridiagonal System on an n-Cube

We assume that the equations are assigned to processors by dividing the system into blocks,
or by applying incomplete nested dissection and suitably associating separator nodes with
adjacent partitions. The partitioned tridiagonal system of equations has the following form:
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The horizontal lines indicate the partitioning/substructuring. For each partition we use
standard Gaussian elimination. The execution time for this substructuring phase is ap-




proximately
P .
Tss(P,1;n,tg,tc,7) = 17([W] —1)ts +2(16tc + 7) + 2(4t; +7), Bm > 16 (1)

where it is assumed that a processor can perform one send or one receive operation at a time,
that the system is real, and that floating-point numbers are represented by 4 bytes (single-
precision). In the substructuring phase there is one communication needed for the first and
the last equations in a partition, if the algorithm in [28,17] is used. The first equation in a
partition is sent to the processor holding the preceding partition, and correspondingly a row
is received from the succeeding partition for the last equation. By a suitable allocation of
matrix coefficients to processors it is not necessary to transfer an entire equation and save
some element transfers [20]. The form of the system after the substructured elimination is
shown below. Note that the elimination of the last block is done in the reversed order such
that the reduced system formed by the last equation of each block, but the last, is of order
2" — 1.
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The substructuring phase is independent of the method used for the solution of the
reduced tridiagonal system. This phase is also completely local, with the exception of the
elimination operation on the last equation in each partition.

2.1 Cyclic Reduction (CR)

Odd-even cyclic reduction requires 17 operations per unknown, the same as substructured
Gaussian elimination. Substructuring is always preferable with odd-even cyclic reduction,
since only four communications are needed for the substructuring with one send or one
receive at a time.

The solution of tridiagonal systems on Boolean cubes by cyclic reduction is discussed
extensively in [17,18]. Two algorithms are suggested for tridiagonal systems distributed
with one equation per processor: an ezchange algorithm, and an in-place algorithm. In
the ezchange algorithm the active set of equations are recursively moved into an easily
identified subcube of one less dimension for each step. In addition there is communication
needed for the communication of data for the reduction. One of the communications in
the exchange operation is unnecessary, since that communication is identical to one of the
communications for the reduction operation. Hence, with one send or receive operation at




a time 3(n — 1) communications instead of 4(n — 1) suffice for each of the factoring-forward
substitution and back substitution phases of odd-even cyclic reduction with one equation
per processor. We refer to this algorithm as SS/CR-1. The number of communications
can be reduced further to 2(n — 1) at the expense of O(n) memory instead of constant
memory. This further reduction in the number of communications is accomplished by
observing that in the exchange after a reduction step, the “exchanged” equation to be used
in the next reduction step is moved to the location where one of the equations used for
the elimination resides prior to the exchange. Hence, by performing a partial elimination,
then moving the equation subject to elimination to its location for the next reduction
step, and completing the elimination in this location, one communication is saved. A total
of 4(n — 1) communications are needed. However, some of the nodes keep accumulating
partially reduced equations. This algorithm is called SS/CR-2. For the in-place algorithm,
SS/CR-IR, we simply use the routing software of the Intel iPSC.

The time to solve a single tridiagonal system of P = 2" — 1 equations on an n-cube by
the SS/CR-2 algorithm [17,18] is given by

Tor-2(N = 1,1;n,te,t,7) = (n—2)(16ts + 2(16 + 4)t. + 2 x 27) (2)
+ (144 3)ta +2(16 + 4)t. + 2 X 27, By 2 16.

For P > N substructuring is applied and the estimated time is given by

TSS/CR—?(P’ l;ns ta,tc,T) = TSS(P, 1; nataatcaT) + TCR—?(N - la 1; nataatcaT)' (3)

The communication time for the SS/CR-1 algorithm is 50% higher than for the SS/CR-2
algorithm. The number of floating-point operations per unknown is 12 per equation and
reduction step of CR and 5 per backsubstitution equation and step. One of these operations
is a division in the backsubstitution with the diagonal element of the factored matrix. This
division can be performed concurrently for all equations after the forward/reduction phase.
With real coefficients, one right hand side, and one processor per equation, a time of 3¢, is
required between the forward and backward substitution. The number of arithmetic oper-
ations per reduction/backsubstitution step becomes 16 instead of 17. The last three terms
correspond to the solution of a tridiagonal system with 3 equations, and the three arithmetic
operations just mentioned. For the solution of a single tridiagonal system on a Boolean cube
architecture the arithmetic complexity can be reduced to 11 [18] sequential operations per
step instead of 16 operations by dividing the arithmetic operations for the reduction and
backsubstitution phases among pairs of processors. A further reduction to 9 operations is
possible at the expense of additional communication. For complex coefficients the number
of arithmetic operations per step is 82, 47, and 43, respectively [16]. For medium scale
concurrency and the solution of tridiagonal systems in the context of Poisson’s equation, or
an Alternating Direction Method, there will typically be multiple tridiagonal systems, or
pieces thereof, assigned to each processor. The techniques for increased processor utilization
and lower parallel arithmetic complexity are not applicable in this case. We use the higher
number of arithmetic operations (16) and lower communication complexity in this paper.

The execution times of the CR-2 and CR-IR algorithms on the Intel iPSC are shown
in Figure 1. The substructuring time is the same for both methods and is not included.
The execution times of the CR-2 and CR-IR algorithms are almost identical. The router
performs as well as the carefully coded communications algorithm. Moreover, the CR-IR
algorithm has constant storage requirements. Note that the number of reduction steps for
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Figure 1: Measured values of Tcr—2(N — 1,1;n,t4,tc,7) and Tor-1r(N = 1,1;n,t4,tc,7).

N =P+ 1is |logy(2? — 1)}, i.e., n — 1 for an n-cube. We attribute the difference between
the predicted and measured times for algorithm SS/CR-2 to the variability in measured
times on the Intel iPSC. Performance measurements are difficult due to non-reproducible
timings. Equation (3) also describes the execution times for algorithm CR-IR well.

2.2 Parallel Cyclic Reduction (PCR)

Parallel Cyclic Reduction [13] performs a reduction on every equation in the first step, not
only half of the equations. With one equation per processor all processors are active. After
this step the problem is reduced to two sets of equations, each with half the number of
equations of the original set. After repeating the procedure n times for 2" equations, each
set is reduced to a single equation.

X X X X X X
X X X X X X X
X X X X X X X
X X X = X = X
X X X X X X X X
X X X X X X X
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No backsubstitution is needed, unlike for odd-even cyclic reduction. The total arithmetic
complexity of the PCR algorithm is 12n2", the parallel complexity 12n. The total number
of messages in communication, ignoring the distance, is 2n2" — 2n + 1, and the number
of parallel communications in sequence 4n (two exchanges) with one send or one receive
at a time. Substructuring is always preferable. The parallel arithmetic complexity for the
reduced system is % of that of CR (with 16 operations per step and equation), and the



number of communications in sequence is -;— of that of CR-2. During step j, 0 < 7 < n, the
ith row of the reduced system exchanges its data with the (i — 27)** and the (¢ + 27)*" rows
(if i — 2/ >0, and i +2/ < P —1). With a binary-reflected Gray code encoding ¢ and 7 + 27
are at most a distance 2 apart in the cube [17]. In implementing the SS/PCR algorithm on
a Boolean cube, we can:

1. Perform an exchange operation after each step of PCR to move each subset of equa-
tions into the same subcube, such that communications for the next step remains
nearest-neighbor for each subset, with no interference between communication for dif-
ferent subsets. This is algorithm SS/PCR-1.

2. Combine exchange communications with communications for elimination, as in the
SS/CR-2 algorithm, and arrive at a SS/PCR-2 algorithm.

3. Decompose and combine the two distance 2 sends and receives into three exchanges,
i.e., six “nearest-neighbor” sends or receives. This is algorithm SS/PCR-3.

4. Use a static allocation and the hypercube routing logic, SS/PCR-IR.

In SS/PCR-1, 6n — 2 start-ups are required. In the SS/PCR-2 algorithm the number
of start-ups is reduced to 4n by splitting the elimination on the row into two parts; one
equation is received and the associated reduction performed, then the partially modified
row is sent to the “after-exchanged” processor, and the elimination completed using the
row in the new processor. The exchange algorithm changes the allocation of equations
to processors such that the solution variables are encoded in binary code. To move the
solution of the reduced system back to the corresponding partition a binary code to Gray
code conversion is required. Such a conversion requires 2n — 2 start-ups [14]. The total
number of start-ups is 8n — 4 for SS/PCR-1 and 6n — 2 for SS/PCR-2. In the SS/PCR-
3 algorithm, the distance 2 sends or receives are decomposed into two “nearest-neighbor”
communications performed concurrently for all nodes such that there is no edge conflict[14].
Moreover, since the data sent to both distance 2 neighbors in each SS/PCR step are the
same, and the two paths to the distance 2 neighbors can be arranged such that they share
the first edge, the number of start-ups can be reduced from 8n —4 to 6n— 2, i.e., the same as
for the SS/PCR-2 algorithm. Note that the SS/PCR-3 algorithm is an in-place algorithm
and therefore does not require the binary code to Gray code conversion at the end. In the
SS/PCR-IR algorithm the communication time depends entirely on the routing logic. A
naive routing discipline like the one used in the Intel iPSC, routes the dimensions that need
to be routed in increasing order. Such a routing order is conflict-free for the routing needed
in SS/PCR-IR [17].

For the analysis we use the following estimated time for PCR-2 (and PCR-3)
Tpor-23(N, 11, ta, te, 7) = n(12t4 + 6 X 16t + 67) — 2(16tc +7), Bm 216, (4)
and for the substructured version

TSS/PCR—2,3(Ps L;n,ta,te,7) = Tss(Py1in, ta, te,7) + Tpcr-2.3(N, Lim, taste,T)- (5)

The arithmetic complexity is lower than that of the SS/CR-1 and SS/CR-2 algorithms,
the number of start-ups is 50% higher despite the fact that only n instead of 2(n — 1) steps
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Figure 2: Measured values of Tpor-3(N,1;n,ta,t,7) and Tpcr-1r(N, 1;n,ta,tc, 7).

are carried out. The number of element transfers for the PCR algorithm is a factor of
2.4 higher than that of the CR-2 algorithm, and a factor of 1.6 higher than that of the
CR-1 algorithm. Hence, if the communication dominates the CR algorithms are expected
to execute faster than the PCR algorithms.

The measured times on the Intel iPSC for algorithms PCR-3 and PCR-IR are shown
in Figure 2. As was the case for the CR implementations the PCR-IR algorithm is slightly
more efficient than the “hand coded” algorithm. The advantage varies between 5% and 30%
in our experiments. The measured times do not agree well with the predictions of equation
(5). We attribute the difference to synchronization delays. The measured times for any
PCR algorithm is higher than for our CR algorithms. The estimated execution times yields
the same relative ordering of the methods as the measurements.

The PCR algorithm is not of interest for multiple systems per processor due to its higher
arithmetic complexity compared to odd-even cyclic reduction.

2.3 Equation Transposition, Gaussian Elimination, Solution Transpo-
sition (TGET)

Conventional Gaussian elimination only requires 8 operations per unknown, but substruc-
tured elimination 17 operations per unknown. With respect to arithmetic operations sub-
structuring should be made for N > 1—87-. The communication prior to the solution is
all-to-one personalized communication for which lower bound algorithms are given in [9,12].
A spanning binomial tree routing is optimal with communication restricted to one port at
a time. In a multiprocessor system two-way elimination allows two processors to be used
for the same tridiagonal system without an increase in total arithmetic complexity, and

a speed-up of two is achieved with respect to the arithmetic complexity. Two-way elimi-
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nation yields lower communication complexity than one-way elimination. The break-even
point between substructured elimination or not is at N > 14—7, considering arithmetic opera-
tions alone. Half of the element transfers in the first transpose of the TGET method takes
place in its last step, if the spanning binomial tree routing is used.

We first give the complexity estimates for TGET and T2GET, then the estimates for
SS/TGET and SS/T2GET. The T2GET algorithm has lower arithmetic and communication
complexity than the TGET algorithm. The interesting comparison is between SS/T2GET
and T2GET.

The estimated time of the TGET and T2GET methods are

P
Treer (P, 1;n,tq,t.,7) = 20(N — 1)[“1\7]% (6)
nel . .
16P x 2 4P x 2}
-7t
1 P
TT?GET(Pa l;n,ta,tc,‘r) = (20(§N - 1)[N] +24)tc Bm 2 12 (7)

2, . .
16P x 2} 4P x 2!
+(_(

NE |t yp ) A7+ (4P - 2t

i=0

and for the substructured versions the times are
TSS/TGET(Py Iin,ta, 1, T) = TSS(P, Iin,ta, tc,T) + TTGET(]va Iin,t,, tc,T)3 (8)
TSS/T2GET(P3 1; n, ta’ tc’ T) = TSS (P’ 1; n, ta, tc, T) + TTZGET(N, 1; n, ta, tc, T)- (9)

It is assumed that in the two-way elimination both processors involved in the elimination
solve for one variable after an exchange of the coupling equations. It is possible to save two
element transfers at the expense of an increased arithmetic complexity of two operations
by having one processor send an equation to the other, which upon the solution of a 2 X 2
system returns one of the solution variables.

The all-to-one personalized communication can either be carried out as a send operation
using the router of the Intel iPSC, or by a user coded spanning binomial tree algorithm
with combining. The router also uses a binomial tree routing, but does not perform com-
bining of messages. For the reverse operation, one-to-all personalized communication the
same options apply. In addition, for a moderate number of processors it is possible to
carry out this operation as a one-to-all broadcasting, or copy-scan [7], of the entire solution
vector. More data than necessary is communicated, but many architectures have efficient
implementations of data broadcast. We implemented:

o All-to-one personalized communication using the router (no combining) followed by
router broadcast.

e All-to-one personalized communication with combining and one-to-all personalized
communication with splitting, both based on the spanning binomial tree routing [12].

e All-to-one personalized communication with combining followed by router broadcast.

11
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Figure 3: Measured values of Treer(N,1;n,tq,t,7) using routing with combining (-cc),
the routing logic of iPSC (no combining) and broadcasting (-sb), and combining and broad-
casting (-cb).

We refer to these three implementations with the postfix -sb, -cc, and -cb, respectively.
The measured times for the three alternatives for the SS/TGET algorithm compare as
shown in Figure 3. Again the substructuring part is the same for all alternatives and is not
included. The times for the SS/TGET-sb implementation increase exponentially due to the
lack of message combining. The implementation using combining and broadcasting is more
efficient than the implementation using combining for both phases of the transposition. The
latter is about 10% slower than the former. The arithmetic times are less than 50% of the
total times for cubes of less than 5 dimensions. Since the number of communications with
unlimited buffer size increases linearly in the dimensions of the cube, while the data volume
and arithmetic time increases exponentially, these two components of the total time will
eventually dominate the total time as the number of cube dimensions increases. With a
limited package size, the number of start-ups will eventually also increase exponentially in
the number of cube dimensions.

The data transfer time for the SS/T2GET algorithm is almost the same as for the
SS/TGET algorithm with one dimension less except the one exchange needed for the cou-
pling equations, and so is the total communication time, if the buffer size B, < N. If the
buffer size is unbounded, and the start-up times dominates, then the communication times
are approximately the same. The measurements for up to 5-cubes yields a communication
complexity of SS/T2GET, excluding the substructuring that is about half way between
SS/TGET of the same dimension and one dimension less, Figure 4.

The predicted times for T2GET is approximately 20% less than those for the TGET al-
gorithm with the parameters that apply for the Intel iPSC. The measurements confirm these
estimates. The predicted execution times are about 15% higher than the measured times
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Figure 4: A comparison of predicted and measured (Intel iPSC) execution times for
TGET-cc and T2GET-cc, P =2" - 1.

for both the TGET and T2GET algorithms. The T2GET algorithm is always preferable
with respect to execution time.

Though each step of cyclic reduction reduces the number of remaining arithmetic op-
erations by a factor of 2, the communications for each step is only higher than that of the
T2GET algorithm (or TGET) by a constant factor, a hybrid scheme in which some steps
of cyclic reduction is performed, followed by the T2GET algorithm suggests itself.

Before analyzing this hybrid scheme we notice that for a single tridiagonal system one
can also broadcast every equation to every node and have each processor solve for the
variable corresponding to the partition it stores. This algorithm is called BC2GE.

2.4 Broadcasting and Concurrent 2-way Gaussian Elimination (BC2GE)

It is possible to avoid distributing the results of the local Gaussian elimination in algorithm
TGET to the processors storing the equations, if all processors send their equation(s) to
every other processor, all-to-all broadcasting [12]. Then, each processor can solve for one
variable by two-way Gaussian elimination converging to different equations. Backsubstitu-
tion is unnecessary. The algorithm can be used with or without a substructuring phase,
called SS/BC2GE and BC2GE, respectively. With communication restricted to one port
at a time, as on the Intel iPSC, an algorithm performing exchanges in the different di-
mensions is optimal [12]. Such an algorithm generates N binomial trees. The data set
being exchanged doubles for each step of the algorithm, as in the all-to-one personalized
communication. But, with one send or one receive operation at a time, the communica-
tion complexity is twice that of the initial transpose of the TGET algorithm. The parallel
arithmetic complexity of this algorithm is 5P — 4 (the total (5P — 4)N) for BC2GE and
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17(£ = 1) + 5N — 4 (total 17P + 5N2 — 21N) for SS/BC2GE. The estimated execution
times are

16P x 2
Tecoce(P,1;n,tayte,7) =2 X 16(N — 1)[ = ]tc+22[ ] + (5P — 4)t,, (10)

TSS/BCZGE(P, 1; n,tq, tc’T) = TSS(Pa 17 n, ta,tm T) + TBCZGE(Na 17 n, ta, tc,T)' (11)

The communication time can be reduced by performing elimination operations before
the last step of the communication algorithm. In such a case all processors perform an
elimination towards the middle equation, as in the T2GET method. Similarly, there is an
exchange step for the computation of the middle variable. Then, each processor performs
backsubstitution until it has computed its assigned variable (SS/BC2GER) or variables, if
no substructuring is performed (BCGER). The communication complexity until elimination
starts is twice that of the T2GET algorithm. The parallel arithmetic complexity is 4P —2 for
BC2GER and 17(% — 1) +4N —2 for SS/BC2GER, the same as in T2GET and SS/T2GET.
Hence, BC2GER and SS/BC2GER have lower communication complexity as well as lower
arithmetic complexity than BC2GE and SS/BC2GE respectively.

TBCQGER(P,I;‘n,ta,tc,T) = 2X (lﬁ(lN - l)[—P—] + 12)tc B, > 12 (12)

n—-2
16P X 2'
Z[ 1+ 1)r + (4P — 2)t,.

TSS/BCZGER(P, 1;n,ta,te,7) = Tss(P,1;n,te, te,7) + TBo2cER(N, 1m0, ta, e, 7). (13)

The all-to-all broadcasting operation can be performed either by using the combining
inherent in the exchange algorithm, or by using the router of the Intel iPSC. The running
times for algorithm BC2GE are shown in Figure 5. The lack of combining in the router
has a serious effect on the performance. The router based implementation for a 5-cube has
an execution time that is approximately five times that of the algorithm with combining.
The exponential growth rate in the execution time for the algorithm without combining is

apparent. The time for arithmetic operations is less than 25% of the total time for cubes
of less than 5 dimensions.

The data transfer time of the BC2GER algorithm is a factor of 1.6 higher than for the
T2GET algorithm, and the number of start-ups the same or higher. Hence, the execution
time of the BC2GER algorithm is expected to be the same or higher than that of the
T2GET algorithm, and the execution time of the BC2GE algorithm higher than that of
both the T2GET and BC2GER algorithms. For the Intel iPSC the measured times of the
T2GET algorithm are about the same as those of the BC2GE algorithm for P = 2" — 1,
and real systems, Figure 6. The execution time for the BC2GER algorithm is lower than
that of the BC2GE algorithm, as expected, as well as that of the T2GET algorithm. With
a complex system, the T2GET algorithm is about 10% faster than the BC2GE algorithm.
We attribute the difference between the predicted and observed difference in execution
times between the T2GET and BC2GER algorithms to implementation details, difficulties
in generating reproducible timings, and an overly pessimistic communications model with
no overlapping between sends and receives.

The BC2GE and BC2GER algorithms are novel and interesting, but does not offer any
particular advantages over the T2GET algorithm according to our performance model, but
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Figure 5: Measured values of Tgc2¢e(N,1;n,t4,tc,7) using all-to-all broadcasting through
exchanges (combining), and the router of the Intel iPSC (non-combining).
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our implementation of the BC2GER algorithm executes approximately 20% faster than
our T2GET implementation on the Intel iPSC. If sends and receives could be performed
concurrently, then the BC2GER algorithm would be of lower complexity than the T2GET
algorithm. A 20% overlap between sends and receives for the Intel iPSC has been observed
also in other experiments. The BC2GE algorithm is of sequential complexity O(PN).
With multiple tridiagonal systems distributed with one equation per processor, and each
processor having one equation of every system, the higher arithmetic complexity of the
BC2GE method makes it clearly inferior to the T2GET algorithm.

2.5 A Hybrid Algorithm: Substructuring with CR and T2GET

Our previous analysis shows that the odd-even cyclic reduction algorithm is never inferior
to parallel cyclic reduction for the solution of a single system of equations, if the architec-
ture is constrained by one send or one receive at a time. Our measurements on the Intel
iPSC indeed shows that odd-even cyclic reduction is significantly faster. The estimated
complexities of T2GET and BC2GER are very close, with a slight advantage for T2GET
on an architecture that only supports one send or one receive at a time. Our measurements
show a slight advantage for the BC2GER algorithm. If concurrent sends and receives are
supported, then the BC2GER algorithm may have an advantage. But, for the following
discussion we only consider odd-even cyclic reduction and the T2GET algorithm. The
arithmetic complexity of the odd-even cyclic reduction algorithm is approximately 16n — 15
compared to 4N — 2 for the T2GET algorithm, P = 2" — 1. Hence, for N > 8 odd-even
cyclic reduction is of lower arithmetic complexity. But, it may require a greater communi-
cation time (4(n — 1) start-ups compared to at least 2n for T2GET). Architectures with a
large start-up time relative to the time for arithmetic operations, such as is the case for the
Intel iPSC, favors the T2GET algorithm over odd-even cyclic reduction for small n.

The data transfer time for odd-even cyclic reduction quickly becomes lower than that
of the T2GET algorithm as a function of N. The number of start-ups may also become
lower, if the buffer size, B,, is small. For each step of the cyclic reduction algorithm the
amount of remaining arithmetic work is reduced by a factor of 2. The number of start-
ups per reduction/ backsubstitution step totals 4 for a maximum packet size greater than 4
floating-point numbers for real systems and algorithm CR-2, and one for each step of the all-
to-one personalized communication and one-to-all personalized communication algorithms.
The two transpose operations requires a total of 2 start-ups for each step and unlimited
packet size. However, the communicated data volume in the cyclic reduction algorithm
remains constant throughout the algorithm, but it doubles for every step of the combining
all-to-one personalized communication algorithm. The observed behavior of the CR-IR
algorithm on the Intel iPSC is approximately the same as that of the CR-2 algorithm, and
for the Intel iPSC CR-IR should be implemented instead of the CR-2 algorithm due to its
simpler implementation. In the hybrid algorithm we first perform £ steps of cyclic reduction
then solve the reduced set of N /2e equations by the T2GET algorithm. The time of this
hybrid scheme of CR-2 plus T2GET is

Tss/a(P,1,6m,ta,te, T) (14)
= TSS(P7 l;na ta,tc77) + TCR--?(N - la l;ns ta’tt:?T)

N N
- TCR—?(E? - 1$ l;n - e, tastmT) + TT?GET(EZH 1; n- e, tavtC7T)'
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Figure 7: The predicted execution times for the hybrid method for a single tridiagonal
system, different cube sizes, and start-up times. The dashed lines join £,y for different
cube dimensions.

For the Intel iPSC ¢, ~ 33 usec and ¢, ~ 1 usec. Start-up times of 7 ~ 8 and 2 msec
correspond to measured start-up times for different versions of the Intel iPSC communica-
tion software. We also include a start-up time of 0.1 msec. The optimum values of £ are
approximately, n — 7, n — 6 and n — 3. Figure 7 shows the predicted execution times as a
function of £ for various cube sizes. The dashed line joins £op for different cube dimensions.

2.6 Comparison

Table 1 summarizes the complexities of the algorithms. The memory figures are in
units of 4 elements for real systems. The complexity estimates in the various equations
given previously are compiled into Figure 8 for P = 2" — 1. Three different start-up times
are considered: 0.1 msec, 2 msec and 8 msec. The curves for CR and PCR increase ap-
proximately linearly with n. The arithmetic component, data transfer component, and
start-up component are all proportional to n, even for a very limited buffer size for the
communication. The curves for T2GET-cc and BC2GER-c have at least two terms increas-
ing exponentially in n: the arithmetic component, and the data transfer component. The
start-up component eventually also increases exponentially in n for a limited buffer size
By,. Combining is critical to good performance on the Intel iPSC (for which the router
does not perform combining). Measured times are given in the upper plots of Figure 9 for
the solution of a single real system (upper left) and a single complex system (upper right).
The start-up time is measured to be approximately 2 msec. The corresponding predicted
times are shown in the second row of plots.

The predicted execution times agree within 20% with the measurements, except for
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Table 1: Complexity comparison of algorithms for single tridiagonal system.
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Figure 8: Predicted times of CR-2, PCR-3, T2GET-cc and BC2GER-c schemes with
start-up time = 0.1 msec, 2 msec, or 8 msec and P = 2" — 1. The times for CR-2, PCR-3,
T2GET-cc and BC2GER-c are marked by circle, x, diamond and plus symbols respectively.
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7=0.1 msec | 7T=2 msec | 7T =8 msec
real n—3 n—6 n—17
complex n—2 n—4 n—2>5

Table 2: The optimum number of reduction steps in the hybrid method.

the PCR algorithm. The measured PCR times are considerably higher than the predicted
times. The predicted, and by far the measured times for the PCR algorithm, are always
higher than those of any of our CR algorithms for the Intel iPSC. CR is always preferable
to PCR on the Intel iPSC. In the PCR algorithm, all processors are active throughout
the computation. The communication involves all processors throughout the n steps. Any
processor delay will tempt to delay all other processors.

The T2GET, BC2GE and BC2GER algorithms have qualitatively the same behavior,
and estimated execution times that are very close. The T2GET algorithm has a slight ad-
vantage over BC2GER for architectures that only support one send or one receive operation
at a time. With concurrent sends and receives the BC2GER algorithm is of lower complex-

ity. The difference is entirely due to differences in communication complexity. BC2GE is
inferior to BC2GER.

The choice of algorithm for solving the reduced system on an architecture that only
supports one send or one receive operation, is between the T2GET and CR-IR algorithms.
Since a decreasing start-up time favors the CR algorithms more than the T2GET algorithm,
the break-even point moves towards smaller cube dimensions for smaller start-up times. The
Hybrid algorithm combines the two algorithms such that the T2GET algorithm is used when
the reduction process has progressed sufficiently far. The optimum values for the number of
reduction steps in the hybrid method for real and complex systems are summarized in Table
2. The dependence of the optimum number of reduction steps on architectural parameters
is illustrated in Figure 10.

We have given complexity estimates only for real systems. In the case of complex
systems the number of real arithmetic operations increases faster than the data volume.
Hence, the communication contributes a smaller fraction to the total execution time for a
complex system than a real system. This property is reflected both in our measurements
for a complex system, and the predictions given in Figures 9 and 10.

What remains to be compared is the T2GET algorithm and the SS/Hybrid algorithm.
First we notice that for a real system and for the parameters of the Intel iPSC, a few steps
of the CR-IR algorithm shall be made for n > 6 and P = 2" — 1. T2GET shall be used
when the reduced system fits in a 6-cube. If P > N, and n > 6 substructuring shall always
be used. For n < 6 and P = 2" — 1 the algorithm of choice is T2GET, and for P > N
there is a choice between SS/T2GET or T2GET. The comparison between the SS/Hybrid,
SS/T2GET, and T2GET algorithms is made in Figure 11. The comparison is based on
the estimated complexities and for various values of {4, tc, 7, and By,. Recall that the
SS/Hybrid algorithm with £ = 0 is the SS/T2GET algorithm.

The comparison between SS/T2GET and T2GET for the particular parameters of the
Intel iPSC is made in Figure 12. For a 2-cube substructuring shall be used for P > 1023
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Figure 10: The optimum number of reduction steps, £op, of the hybrid method,

CR/T2GET, as a function of log £ and log 4.
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Figure 12: Regions of minimum complexity for T2GET and SS/T2GET on the Intel iPSC.

according to our predictions, and for P > 255 according to our measurements. For a 3-
cube the predictions and measurements both give substructuring for P > 63. For a 4-cube
predictions indicate P > 63 and measurements P > 31 for substructuring. The qualitative
behavior is the same, and the agreement good.

3 Multiple Tridiagonal Systems

We now turn to the solution of Q tridiagonal systems each of P equations, P > N. For
Q mod N = 0 and complete freedom of distributing the systems the obvious choice is to
allocate 1%— systems to each processor and solve the systems locally by Gaussian elimination.
No communication is required and the number of arithmetic operations is the minimum of
the methods considered here. The solution is trivially parallel.

If the tridiagonal systems arise in connection with the solution of some form of partial
differential equation, then other considerations may guide the allocation of lattice points to
processors. With a one-dimensional partitioning of the lattice all tridiagonal systems may
be allocated identically over the entire cube. This allocation of equations is assumed in this
section. We will consider two-dimensional partitionings in the next section.

If all the systems are identically distributed across the entire cube using the binary-
reflected Gray code, then a transpose operation on the data structure results in the trivially
parallel case. A transpose operation on the result of the solution to the equations may
be required. This procedure is the multiple systems version of algorithm TGET. With
substructuring we get a SS/TGET algorithm for multiple systems. The complexity of
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substructuring in the multiple systems case is

IGQ] n l.

Tss(P,Q;n,ta,tc,T) —17Q(f =] = 1)ta +2(16 + 4)Qtc + 2([ 1) (15)

With Q@ mod N = 0 systems of equations, all processors perform an equal amount
of work in the solution process. Two-way elimination does not offer any reduction in
arithmetic complexity, unlike in the single system case. The arithmetic complexity of TGET
is (8P— 7)% without substructuring and 17Q([ &1~ 1)+(8N—7)%— with substructuring. The
use of two-way elimination does reduce the data being communicated in the last transpose
step. The transposition is performed through a sequence of exchanges in the different
dimensions. With one send or one receive operation at a time, such a transpose algorithm
is optimal [10,8]. The transposition requires at least twice the number of start-ups of the
single system case. Additional start-ups may be required for a limited buffer size B,,, since
half of the data set being transposed takes part in every exchange.

It follows from our analysis and experiments on single systems that parallel cyclic reduc-
tion is not of interest with the data allocation we assume. Repeated application of odd-even
cyclic reduction for each system results in poor load balance, since the processor holding the
middle equation is active in all reduction stages. Balanced Cyclic Reduction (BCR) [18] bal-
ances the load by performing the reduction such that for a set of N equations the reduction
process converges to a unique processor for each equation. For @ mod N = 0 the arithmetic
complexity for real systems is 17Q([£]-1)+17Q(1— %). The arithmetic complexity of the
SS/BCR algorithm is always higher than that of the SS/TGET (or SS/T2GET) algorithm.
In the single system case the arithmetic complexity of odd-even cyclic reduction is lower
than that of T2GET for N > 8. Hence, cyclic reduction based methods for Q@ mod N =0
are only of interest if the communication complexity is lower than that of a transpose based
algorithm.

We will now compare the computational complexity of transpose and cyclic reduction
based methods in detail. We first assume that Q mod N = 0, then consider the case
1<@<N.

3.1 Balanced Cyclic Reduction

The arithmetic complexity of the substructured elimination is the same as that of cyclic
reduction, but it reduces the communication requirements. After the substructured elimi-
nation each processor has one equation of each of the @ systems. In the BCR algorithm,
the reduction process for each set of % systems “converges” to a distinct processor, thereby
keeping the load on the processors balanced. For each step of the reduction phase, the
Q systems are partitioned into successively smaller subsets by virtue of the equations on
which the reduction is performed. For instance, in the first step the set of equations is
partitioned in half: in one half elimination is performed on even equations, in the other on
odd equations. By numbering equations and systems from O and letting the elimination on
even equations be performed for even systems, the lowest order bit in the binary encoding
of the equation and system indices can be used to control the communication and elimi-
nation operations. Another obvious choice is to perform the elimination on even equations
for the first half of the systems, in which case the highest order bit in the system index
and the lowest order bit in the equation index are used for the control in the first step. By
performing the operation recursively, the control proceeds toward higher/lower order bits.
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The BCR algorithm can be implemented as an ezchange algorithm with exchanges
of equations between adjacent processors between elimination steps in order to keep all
equations subject to further elimination in easily identifiable subcubes for each system.
Such an exchange algorithm requires 3 exchanges for each step in the reduction phase,
and 3 in the backsubstitution phase. Hence, with one send or one receive at a time, a
total of approximately 12n start-ups is required, if the buffer size By, > 8Q bytes for real
systems. The scheme is then applied to both subcubes recursively. Notice that 4 of these
12 communications can be saved, if the computations at each step are split into two parts
— those depending on the preceding and succeeding row respectively (as described for the
CR-2 algorithm). The estimated times for the ezchange version of the BCR and SS/BCR
are

TBC’R(N,Q;nata’tCaT) } (16)
= 17Q(1 - -l—)t,, + {4(16 + 4)Q(1 — znl_l) +2(16 + 4)2Q—n}tc
{42( O 4 [ 1) 4 2] ] + [

‘Bm 2"Bn, 2"B,

TSS/BC’R(PaQ;n7 ta,tc,‘f) = TSS(PaQ;n,taatc,T) + TBCR(N’Q;nataatCaT)- (17)

An alternative to the exchange based BCR algorithm is to use an in-place algorithm. For
such an algorithm we choose to use the router of the Intel iPSC. The result of implementing
the two versions of BCR is shown in Figure 13. The algorithm using the router requires 50
— 100% higher time for the reduced systems on the Intel iPSC. The total time for the router
based in-place algorithm is about 30% higher than that of the algorithm using exchanges for
each step in the case of a 5-cube. The difference in total time becomes more significant for
increasing cube dimensions for a fixed size problem, since the substructuring part reduces
in significance.

The predicted times for the reduced systems is lower than the measured times by ap-
proximately 30 — 70 % for the 4- and 5-cubes mainly due to the synchronization delay. In
fact, for an algorithm with each communication step involving all the processors tempts
to have a more significant delay for a larger cube. This often explains why the difference
between the measured time and the predicted times increases as the cube size increases such
as the PCR in Figure 2 and the BCR in Figure 13.

3.2 Transpose, Gaussian Elimination, Transpose

We first consider the TGET algorithm with or without substructuring. With respect to
the arithmetic complexity substructuring shall not be used. The savings is 9Q(N -1)
operations with no substructuring. Substructuring reduces the communication volume, but
may require 4 additional start-ups.

The data movement in the data transposition is analogous to transposing a rectangular
matrix stored by a one-dimensional partitioning and @ columns (or rows) per processor.
Each element of a column corresponds to 4 data items before the solution and 1 thereafter.
An exchange algorithm similar to the one used in the single system case is optimum for
communication restricted to one port at a time [12]. The difference is that in the case of
Q mod N = 0 the data volume remains constant throughout the exchange sequence, which
is 2—% data elements without substructuring and 2Q elements with substructuring.
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Figure 13: Measured and predicted times of balanced cyclic reduction (BCR) using both
the ezchange and the in-place algorithms.

In the T2GET algorithm an elimination is performed on half systems one step before the
completion of the transpose operation. Only one equation for each of the TVQ systems needs
to be exchanged in the last transpose step of the T2GET algorithm. Each processor solves
half of the equations of —9— systems. The arithmetic complexities of the TGET and T2GET
algorithms are practlcally the same (3Q additional operations for the TZGET method as
implemented and described here) with Q mod N = 0. However, for Q <X 7, the arithmetic
complexity of the T2GET algorithm is half of the TGET algorithm.

In carrying out the transpose some copying is necessary. With an optimum copying
strategy the transpose expression is complicated [10]. The timing estimates for the TGET
and T2GET algorithms without substructuring are

TraEr(P, Qs 1y tay tor ) A f (8P — T)ta + 40n 2‘2’; (18)
16QP 16QP 4QP
+ {—=— max(0,n log[Bwp 2”]) + 2n max(O,n - log[m])}tcopy
. 16QP.. . 16QP . on 16QP . . 16QP
+ {mm(n’loger2"D[23m2"] min(2", Bcopy2") min(2 ,—-——Bmzn)
16QP 16QP
(2ol max(0,n - logl et )
. 4QP 4QP . 4QP . on 4QP
+m1n(n,log|'Bm2n])[ZBm2n] + min(2", > Brop 2n) in(2", Bm2")
QP . 4QP
+ [ZBmZ".I max(0,n 1og[Bcopy2n'|)}2T,
Q QP
Tracer(P,@imtortes7) ~ (8P = 4)a + (40(n — V20 + 480 (19)
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cube Algorithm

P, Q | dim. | optimum | router
1024 4 1.8 sec | 8.7 sec
1024 5 1.3 sec | 6.9 sec
128 4 0.058 sec | 4.4 sec
128 5 0.075 sec | 9.0 sec

Table 3: Matrix transposition on the Intel iPSC for one-dimensional partitioning.

+ {162?113 max(0,n — 1 — log[Blii‘;nD + 4?,,1) max(0,n — 1 — log[;LPZ';])}tcm
T

+ [y gy | max(0,n = 1 log o)

+ min(n - 1, log[B 2"] [;;QI;] + mi n(22n Bci;") — min (2; ;Q;)

+ f;BQ 2n] max(0,n — 1 — log[ ‘tQ:;n'l) + [234'? —1]}2r.

The first line is the local Gaussian elimination time (first term) and the data transfer time
for the transposition (second term). The second line is the time for copying the data from/to
the buffer. The following four lines are the number of start-ups in the forward and backward
transpositions respectively. In the T2GET algorithm, a processor sends -Nos elements and
receives the same number of elements in an exchange operation required for the concurrent
solution of the coupling 2 X 2 systems, compared to a total of 5P Q elements for the last step
of the forward and the first step of the backward transpose.

The estimated execution times for the substructured versions are
Tss/rcer(P,Q;n,taste, 7) = Tss(P,Q3n,tayte, 7) + TrgeT(N, Qi 0y tas tey 7). (20)
TSS/TQG’ET(PaQ; n,ta, tc’T) = TSS(Pa Q’ n,tq, tcaT) + TTZGET(N’ Qa n, ta’tc’T)' (21)

The reduction in the data transfer time offered by SS/T2GET compared to SS/TGET
is approximately ;11- The number of start-ups is reduced by a factor of O to 2 depending on

%, Beopy and By,. The factor of 2 applies when %VQ > min(Bcopy, Bm)-

As in all previous cases an alternative to the optimized transpose algorithm used for
the above estimate is to use the router. However, on the Intel iPSC matrix transposition
by the router software is inferior by approximately a factor of 5 for large (relative to the
packet size) matrices, and by two orders of magnitude for small matrices, Table 3.

For the arithmetic and communication parameters of the Intel iPSC, the complexity
estimates of the TGET, SS/TGET, T2GET and SS/T2GET algorithms (expressions (18),
(20), (19), and (21)) are compared in Figure 14 for up to 5-cubes. Measured times are
given in the same Figure. We conclude that substructuring is not advantageous for the
Intel iPSC. T2GET is always preferable over TGET (and SS/T2GET over SS/TGET).
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Figure 14: The measured and predicted times for the TGET, T2GET, SS/TGET and
SS/T2GET algorithms. TGET-cp and T2GET-cp also include copy time.

Note the importance of including the copy time for a good agreement between measured
and predicted times. A comparison for other parameters is made later.

In the substructured as well as the non-substructured estimates above we assume that
all the data for an equation are moved in the transposition. But, in some instances it is
possible to store the system matrix pre-transposed, and only transpose the right hand side
and the solution vector.

We now make a simplified comparison between the SS/BCR and the SS/T2GET algo-
rithms. The latter algorithm has about half the number of floating-point operations of the
SS/BCR algorithm for the reduced systems. We consider two extreme cases for the evalua-
tion of the communication complexity: 1) B,, > l%Q, Beopy 2 l‘iﬁ and 2) By, = Beopy < éﬁ.
In the first case the number of start-ups for SS/BCR is 8n and that of SS/T2GET 4n + 2.
The transpose algorithms have about half as many start-ups as the SS/BCR algorithm.
In the second case, the number of start-ups compares as 120-1%"-(1 — %) for SS/BCR and
20(n + 1)-3% for the SS/T2GET algorithm. In this case the SS/T2GET algorithm requires
a factor of %(n + 1) more start-ups than the SS/BCR algorithm. The complexity of the
data transmission term for the SS/T2GET algorithm is a factor of §(n + 1) larger than
that of the SS/BCR algorithm. For a large maximum packet size the S5 /T2GET algorithm
may be more efficient than the SS/BCR algorithm, but for a small maximum packet size
SS/BCR is of lower complexity for sufficiently large n. The total time for both cases are
given in equations (22) and (23) respectively.

g?;/e;?lGET(PaQ;n,taatcaT) ~ (22)
6 4
17Q([§ﬂ — 1)tq +2(16 + 4)Qtc + 2([%—31 + [B—i])r
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T 0.1 2 8 2 2 2
[ 1 |11 ]2]8 32
break-even dim. | 12.0 | 8.2 | 88 | 7.7 7.8 | 9.6

Table 4: The break-even points of SS/BCR and SS/TGET as a function of the number of
systems, @, and the number of processors, NV, or as a function of 7.

+ EQ;(S 2" — 4)t4 + (40(n — 1)— +485 )tc
-+ 20(71 - I)thopy + (4n - ) T.

§?98/e772GET(P Q;n,tayte,T) & (23)
17Q([ 21 - e +2(16 + QL + 2 Fo1 + [ 527
Q n Q Q
+2,,(8 2" — 4)t, + (4O(n—1)§+48_2_;;)tc

+ (10(n - 1) + 4)£2T

With the same machine parameters as we used before (7 = 8, 2 and 0.1 msec, t, = 33
psec, to = 1 psec) the predicted break-even point between the SS/BCR and the SS/T2GET
algorithms both based on exchanges are at approximately n = 8.8, 8.2 and 12.0, respectively
for Q = N. The break-even points are computed from equations (17) and (21), Figure 15.
As 7 increases, the break-even point first decreases and then increases again. For a small 7,
such as 0.1 msec, the arithmetic time dominates until the cube becomes sufficiently large
for the data transfer time for T2GET to offset its arithmetic advantage over BCR. When
7 is small, the copy time is relatively larger, and more direct sends and receives are made
than for a large 7. Hence, with an optimized transpose algorithm the total start-up time
may increase more slowly than the time for a single start-up for T2GET. The number of
start-ups for T2GET is larger than that of BCR, and as 7 increases the break-even point
moves towards lower values of n. However, for a large 7 such as 8 msec, the number of
start-ups of T2GET is reduced for the optimum algorithm compared to the naive transpose
by doing copying, so the effective number of start-ups for T2GET could be less than that
of BCR. T2GET is less sensitive to the increase of 7 than BCR.

The lower row of plots in Figure shows how the break-even point depends on 9}\'7 As
it increases the break-even point first moves towards lower values of n, then again towards
higher values of n as the required packet size of the SS/BCR exceeds the maximum packet

size. Table 4 gives the values of the break-even points of Figure 15.

The break-even dimension between SS/BCR and SS/T2GET for Q = N is mostly higher
than that between SS/CR and SS/T2GET for @ = 1 (the single system), Figures 8 and 15.
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Figure 15: The predicted execution times for the SS/BCR (solid line) and SS/T2GET
(dashed line) algorithms, 7 = 0.1, 2 and 8 msec for P =Q = N. The lower part shows the
predicted times for 7 = 2 msec, P = N, and ]9\,- = 2, 8 and 32, respectively.
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| System | % |7=0.1msec | 7=2msec|7=28 msec|
1 n—11 n-—=6 n—17
Real 8 n—16 n—=6 n—>5
32 n— 17 n-—8 n—>5
128 n— 17 n—9 n—>5
1 0,n<30 n—11 n—17
Complex | 8 0,n<30 n—15 n—7
32 0,n <30 n— 16 n—8
128 0,n<30 n—17 n-—8

Table 5: The optimum number of resuction steps, ¢, as a function of 7 and 1%—

3.3 A Hybrid Scheme

The hybrid scheme (14) for the single system case has an obvious analogue for multiple
systems. We perform £ steps of SS/BCR, then switch to the SS/T2GET algorithm. The
cost of this hybrid scheme is given by combining (17) and (21) as follows:

TSS/H(Pane;nata,tCaT) = TSS(P Qan ta’tc,T)+TBCR(N3Q;eataatc,T) (24)

+Trocer(= — Lytg,te, 7).

N Q
20 28"

In the context of the hybrid method a slight modification to the complexity expression for
BCR, equation (16) is necessary. The number of start-ups is increased by 2([271%%] + [;f%—])

and the coefficient of ¢, is increased by 2( 16+4)291 if £ < n. (There are fewer communications
in the last step of BCR if run to completion). The optimal £ predicted by (24) is shown in
Figure 16 and Table 5 for various —O'- and 7. Figure 17 shows the optimum ¢ as a function of
log % Q and log N with different values of 7 and the same values for ¢4, and ¢, used prevxously
for the Intel iPSC. Figure 18 shows the optimum £ as a function of log & and log ¢ # with
P Q@ = N = 32 (upper plots) and 1024 (lower plots) respectively. As expected increasing

ta favors the SS/T2GET method. Increasing ¢ first increases the competitive domain
of the SS/BCR algorithm, later reduces it again. The reason for this behavior is that for
small start-up times, the transpose algorithm [10] will choose direct communication for each
non-contiguous block, and the number of start-ups is higher than for SS/BCR. For large
start-up times, the SS/T2GET algorithm with the optimum transpose algorithm will copy

to a buffer to reduce the number of start-ups, and hence the total number of start-ups is
less than that of the SS/BCR.

Table 5 also lists the optimum values of £ for complex systems. The optimum number
of reduction steps, £, is decreased from real to complex systems for fixed cube sizes. The
difference is more significant for a smaller value of 7. ‘

31



P=Q=N,7=0.1ms P=Q=N 7=2ms
10* T T T - 10* g r T
:"' 3
— n=§ l\__‘:/__,__r-—"—'_'d n =g 10
f\lo‘ 3 EIPS 4"' —
) Lo © / ©
g g ' :
g /.__.__.-—*—4—4 n=26 B '." n=8 g
g £10° | {s
© /"’.—_‘—‘ o n=4 ®
10t //"’ n=4 1B (3
//‘ n=2 10’
n=2
100 / L L I L 101 / L 1 L L
[} 2 4 6 8 10 0 2 4 6 8 10
1, number of reduction steps 1, number of reduction steps
P=NQ=8N,7=2ms P=N,Q=232N, 7 =2 ms
T T r T T T T T
"." ,"' 108
7 10* _7 |
Mﬁ_“l n=28 .'L—o——-'i n=38
10° /'/ — 7 W
) . © CPW
9 0
E i_‘__,_*——o——."‘ n=6 E r’/*—*’—‘ n==86 gl
g g10 18
a / E r/'/’._.—‘ E
n=4
= 10® / | g / n=4 a
/ ] 10°
/ 10® // n=2 4
101 / 1 1 L 1 ’ I 1 i 1 10!
[} 2 4 8 8 10 0 2 4 8 8 10

1, number of reduction steps

1, number of reduction steps

P=Q=N,7v=8ms

\ri/n=3
/;'8
/‘4
/:2
0 2 4 6 8 10
1, number of reduction steps
P=N,Q=128N, 7 = 2 ms
e n=2§
//.__.——o—-'—-‘nn:s
/,/o—-‘n=4
//‘n=2
0 2 4 8 8 10

1, number of reduction steps

Figure 16: The predicted times for the Hybrid method as a function of the number of .
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Figure 17: The optimum number of reduction steps, £, as a function of log% and log N

with 7 = 2 (left) and 8 msec (right), and ¢, = 33 psec, t, = 1 psec.

| Algorithm |  Arithmetic | Element transfers | Min start-ups | Memory |
TGET 8LY _ 7% 207 4n max([£]Q, P[¥])
T2GET 8@ _ 4% 20{2=U7C 4 488 4n — 2 max([£1Q, 2124
SS/TGET | 175 -9Q - 7% 20(n +2)Q dn +4 max([51Q,N[%1)
SS/T2GET | 1709 —0Q — 4% | 20(n+ 1)Q + 483 | 4n+2 | max([51Q, %[N
X x| U N NI 9N
SS/BCR | 170% - 17% 120Q - 1209 8n (%19

Table 6: Complexity comparison of algorithms for multiple tridiagonal systems.

3.4 Comparison of Methods for Multiple Tridiagonal Systems,
Q@mod N=0

Table 6 summarizes the complexities of the algorithms. With respect to arithmetic com-
plexity the TGET or T2GET algorithms shall always be used. The required number of
operations is approximately a factor of two lower than that of the other methods. If the
communication is a significant factor, then the choice of algorithm is more intricate.

Figure 19 (left) shows the measured iPSC times of the SS/BCR, SS/T2GET and T2GET
algorithms for P = Q = 128, Q mod N = 0, for up to 5-cubes. The corresponding predicted
times are shown on the right. The agreement between predicted and measured times is good.
The difference in measured execution times for the SS/BCR and SS/T2GET algorithms
is negligible, with a 25% advantage for the SS/T2GET algorithm on a 5-cube. These
measurements agree with the predicted behavior.

The arithmetic complexities of the SS/TGET and SS/T2GET algorithms are lower than
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Figure 19: The measured (left) and the predicted (right) times of the SS/BCR, SS/T2GET
and T2GET algorithms for P = Q = 128.

that of the SS/BCR by approximately 9Q. The data transfer volume of the TGET and
T2GET algorithms are larger than that of the SS/TGET and SS/T2GET algorithms by a
factor of %, and a factor of ~ %’7}% greater that that of the SS/BCR algorithm. The number
of start-ups depends on the maximum packet size, Bp,. For a sufficiently large maximum
packet size, the number of start-ups of the TGET and T2GET algorithms is less than that
of the SS/TGET and SS/T2GET algorithms by a small constant factor, since there is no
communication for substructuring. The number of start-ups for SS/BCR is approximately
twice that of the algorithms based on transposition. However, for a relatively small packet
size compared to P#, the number of start-ups may become proportional to the number of
element transfers, in which case the TGET and T2GET algorithms require a substantially
higher number of start-ups than the SS/TGET and SS/T2GET algorithms, which in turn
might require a higher number of start-ups than the SS/BCR algorithm. Figure 20 shows
the algorithm of lowest predicted execution time as a function of log;— and log—l with
different values of P, Q and N. It is assumed that By, = 1k bytes for the plots on the
left and B,, = oo for the plots on the right. With slow arithmetic T2GET is the method
of choice with respect to execution time. With the time for an arithmetic operation of the
same order as the time for communication of an element substructuring shall always be
used, and the choice is between SS/H and T2GET. The region for BCR increases with N,
and decreases with IQV-

Substructuring shall always be used whenever the BCR algorithm is used. If the T2GET
algorithm is used, then measurements as well as predictions for arithmetic and communica-
tion parameters such as those of the Intel iPSC show that the transpose algorithm without
substructuring shall be used, whenever SS/BCR is not the algorithm of choice.
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3.4.1 QmodN #0

In the above derivations we assumed that N divides Q. To address the case where this
condition is not true we consider the case of @ < N (or Qmod N # 0if Q > N). We
first consider the SS/BCR algorithm. The number of systems treated by a processor after £
reduction steps is % and the size of each such system is —[ Hence, after log @ steps of BCR
we have one system of order & gona subcube with & processors. There are Q independent
subcubes. Each of the systems can be solved by one of the methods described above for a
single system, e.g. (8).

TSS/BCR(P,Q; nata,tc,T) ~ | (25)
17Q(|-']%-l — 1)ta + 2(16Qt. + [lgg]q-) + 2(4Qt. + I'_‘}BQ]T)

loeQ 16Q
+17(Q—1)ta+4(16+4)(Q-—1tc+4Z( ]+[

1)

i=1
N ST lex 2. ax
+(8—Q——7)ta+20(“'"1)tc+ g (=1 + 15D

For the transpose based methods not all processors will have a system to solve for
Q < N, but those that do carry out the same amount of arithmetic as in the case @ = N.
In the transposition the same number of steps is required, but in each exchange operation
the data volume is different for a send and a receive. However, the maximum is the same
as in the case Q = N. The data transfer time is lower than that of the @ = N case by at
most a factor of 2, if the communication system allows one send or one receive, but remains
the same if sends and receives can be performed concurrently. Similarly, the number of
start-ups may be smaller for @ < N than Q = N, if the data volume is large compared to
the maximum packet size. We do not give explicit expressions for the expected execution
time.

4 Two-Dimensional Decomposition

In the one-dimensional decomposition for the solution of multiple tridiagonal systems the
choice of algorithm is either trivial (embarrassingly parallel), or the analysis above should
guide the choice of algorithm. The non-trivial case is of particular interest for two- or
higher dimensional problems, and solution methods such as fast Poisson solvers and the
Alternating Direction Method.

4.1 One Directional Solution

The one-dimensional analysis is easily generalized to the two-dimensional case by assuming
that Q/N; systems are distributed to each of Ny separate subcubes consisting of Ny pro-
cessors each, where N; x N = N. The allocation of partitions to processors within each
subcube is made by a binary-reflected Gray code. The time estimate for the hybrid method
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and two-dimensional domain decomposition with N; > 1 is

Tss/u (P, -]—e—,@; ny,tayte,T) N (26)
17 Q ([__] ta + 2(161—65— + 4—')tc + 2([ 16Q ] + [N BmD
+17-]%—-( - e)ta+80Q (1- e)t +4i([2:16Q l-2"]‘\17QB,,;])T
+ 'N1+Q.N;(82_e1 - 4)ta + {40(ny — £ - I)N C22e+1 +48 Q }tc
+ {16NQ2£ max(0,n; —£—1-lo [N;?BQCOW])
+ 4NQ23 max(0,n; — £— 1 — log[sztB 1) Heopy
+ {min(n; — £ - 1a1°ng212683m])[N221e6.4.Q13m] + min(zjj_:l J N2;?§copy
B min(zjxl : N2126‘%m) b 212?3 [max(0,m = £=1- log[ﬁ%—w )
+ min(n; — £— 1’10g[N242?Bm])[N22‘:gBm] + min(zlgﬁl > N224e%copy
- min(zjzvarll : N242?QB,,,) * [szﬁ21 B, | ax(Om = =1 - logfl_\’::?i‘%c;ﬂ)}%

The expression (26) is simply the time estimate of the hybrid approach (24) applied
with N «— N;, @ «— Q/N2 and N = Nj x N3. The substructuring part has the same
number of floating-point operations as in the one-dimensional domain decomposition cases,
(17), (21) and (24), but the complexity of the other components is lower. Clearly, the time
is minimized if N, is maximized, and indeed the formula shows that the one-dimensional
partitioning yielding the “embarrassingly” parallel case is optimum.

4.2 Alternating Direction Methods (ADM)

We consider a grid of P x Q internal points, and embed it in an N; X N2 processor mesh,
that in turn is embedded in a Boolean n-cube by a two-dimensional binary-reflected Gray
code. Thus, each processor is assigned -ﬁ grid points. The two-dimensional Gray code
ensures that each row and column of the processor mesh is itself a subcube, and that adja-
cency is preserved for each row and column. One ADM step consists of two half steps, each
of which implies a number of tridiagonal matrix-vector multiplications and the solution of
an equal number of tridiagonal systems. Each of the vectors in the matrix-vector multi-
plication represents the solution variables along a row (column) of the computational grid,
and the tridiagonal matrix the approximation of derivatives along the same row (column).
Similarly, tridiagonal systems are solved for each row (column). The second half step is the
complement of the first — one forms the matrix vector products along the grid rows and
solves tridiagonal systems along columns.

One ADM step for this equation consists of two half steps,
1 . 1 .
(I- EAtA,,)u""% = (I+ 5AtBy)',
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1 . .
(I- -2-AtBy)u‘+1 =(I+ -;—AtAz)u“*%.

In each half step computations are performed independently on grid rows or columns,
i.e., on independent subcubes [20] . The matrix vector product takes a time of 5—§ta for

the arithmetic, and requires exchanging % floating-point numbers with nearest (north and
south) neighbors for one of the half step. This gives a total time of

P Q Q
ZnNta+16Ntc+|' B

TMPY(P, TVQ—';nlstthtCa ) S ]47', (27)
2

for the matrix vector products of one half step. Then 7\9,—- tridiagonal systems of order P

each are solved on subcubes of N} processors. For a small cube, like the Intel iPSC, the

T2GET algorithm is likely to be the most efficient and the estimated time for a half step is

P
TADI% (PaQ;nl,nQ, ta,tc,‘l') TI\IPY(P, ]3 3nl’ta’tc,7) + TSS/H(Q’ ']Tlaeﬂta,tc"r)a (28)
and for a complete step

Tapr1, (P,Q;n1,n2,ta,tc,T) (29)

P
= TMPY(P’ Q ;nlata’tmT) +TMPY(Q’ ;n29taatCaT)
N2 Nl

P
+ Tss/n(Q, -N;,%; taste,7) + Tss/u (P, ]—\,Q;,el; taste, T)-

For a given cube a decision has to be made as to how to choose N1 and N;. In the matrix
multiplication and substructuring phases these parameters only enters in expressions of the
form £ t % For the balanced cyclic reduction part there are terms of this form and also

terms of the form W"T + Q_E[' If £; and ¢; are O then clearly these terms are like the

previous ones. Our prevmus ana]y51s of the hybrid method showed that it is approximately
true that n — £ = const for the optimum choice of the number of reduction steps. Hence, for
such a choice of £ it is also true that N; and N, appear in expressions of the form & W —o'-
for Balanced Cyclic Reduction. It can also be verified that for the optimum choice of the
number of reduction steps the same property is true for the T2GET phase. Hence, with an
optimum choice of the number of reduction steps, the total execution time is minimized to
first order, if -1% + % is minimized. Hence,

P_Q _ [PN oo P Q@ _ [P
N =N, or Np= 0 which implies ( N, + N2) 2 -

The optimal aspect ratio of the processor grid is equal to the aspect ratio of the computa-
tional grid.

5 Summary and Conclusions

The execution time for multiprocessors with a packet switched communication systems
with nodes without pipelined arithmetic units can be accurately modeled by the start-up
time for a communication, the data transfer time, maximum packet size, and the time
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for arithmetic operations. The model was verified on the Intel iPSC, for which it is also
necessary to account for the copy time.

The analysis as well as the experiments on the Intel iPSC show that odd-even cyclic
reduction can be competitive with parallel cyclic reduction with respect to arithmetic,
and in particular with respect to communication. Odd-even cyclic reduction performed
considerably better than parallel cyclic reduction on the Intel iPSC. A similar result has
also been observed on the AMETEK system S14 [21].

For sufficiently small cubes and high start-up times for communication data transposi-
tion followed by local Gaussian elimination may be preferable to a parallel algorithm such as
odd-even cyclic reduction, or in the case of multiple systems, balanced cyclic reduction. For
any given set of arithmetic and communication parameters, a parallel algorithm eventually
becomes preferable as the machine size grows. For the particular parameters that apply for
the Intel iPSC a sequential algorithm and data transposition is preferable. ‘

It follows that for a machine with many processors a parallel algorithm should be used
for the first several reduction steps, then a switch be made to an algorithm using trans-
position, local elimination, and transposition. The number of reduction steps replaced by
data transposition and local solution decreases with increased start-up time, and increases
with the number of systems per processor. The number of reduction steps replaced by a
transposition — local solution algorithm is higher for complex systems than for real systems.
For complex systems, 7 = 0.1 msec, t; = 33 usec, and t, = 1 psec the transpose based
algorithms is always preferable for n < 30. For real systems and the same set of values of
7, ta and t., the optimum switching point to transposed based algorithms ranges from 11
to 17 for the number of systems per subcube in the range 1 — 128. The optimum is rather
flat.

For transpose based algorithms we note that the transposition can be terminated one
step before completion, and two-way elimination used. The total arithmetic complexity of
two-way elimination is the same as that of standard Gaussian elimination, but the commu-
nication need is less.

For a one-directional solution of multiple systems of tridiagonal equations the optimum
assignment of equations to processors corresponds to the embarrassingly parallel case. For
solution in alternating directions of equations associated with a lattice the optimum aspect
ratio of the processor grid is to first order equal to that of the lattice forming the base for
the equations.

We conclude that combining in the routing system is important for the performance of
several of the algorithms. The required combining is of the merge/split type (rather than
copy).
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