Subrecursive Predicates and Automata
Celia Wrathall

Research Report #56

October 1975

This work was presented to Harvard University in candidacy for the degree of
Doctor of Philosophy. The research was supported in part by the National
Science Foundation under Grants GJ-30409 and DCR-75-15945.

ii

PREFACE

I am indebted to my advisor, Professor Ronald V. Book, for
‘suggesting this problem area and for his continued support and
encoufagement. Our discussions of this dissertation were invaluable
for its development and organization.

The courses I took from Professor Forbes D. Lewis were essential
preparation for this research. I wish to thank him also for his
willingness to discuss these problems and his helpful criticism of the
style. I am grateful to Mr. Richard Barakat and Professors Emily P.
Friedman and Charles J. Prenner for their efforts as morale boosters.

The credit for the excellent preparation of the manuscript goes to
Ms. Mary-Claire van Leunen and Ms. Gail Beyer Ohlson.

This research was supported in part by the National Science
Foundation under Grants GJ-30409 and DCR-75-15945 and by a John Parker

Fellowship.

PREFACE

iii

TABLE OF CONTENTS

TABLE OF CONTENTS

INDEX OF ﬁEFINITIONS AND SYMBOLS

SYNOPSIS
Chapter 1
1.1
1.2
1.3
Chapter 2
2.1
2.2
2.3
2.4
Chapter 3
‘ 3.1
3.2
3.3
Chapter 4
4.1

4.2

4.3°

INTRODUCTION

Setting

Overview of Chapters

Preliminary Definitions and Notation

TIME-BOUNDED ORACLE MACHINES

Definition and General Properties

Relative Computation in Linear and Polynomial Time
Representation of Languages Accepted by Oracle Machines
A Relativized Time Hierarchy Theorem

THE RUDIMENTARY RELATIONS AND RELATIVE COMPUTATION
Definition of the Rudimentary Relations

A -Characterization of the Rudimentary Relations
Extensions

THE LINEAR HIERARCHY

Definition

A Syntacfic Characterization of the Linear Hierarchy

Complete Sets in the Linear Hierarchy

ii

iii

viii
1-1
1-1
1-6

1-15

iv

Chapter 5 THE POLYNOMIAL HIERARCHY 5-1
INDEX OF DEFINITIONS AND SYMBOLS
5.1 Definition 5-2
5.2 Representation in the Linear Hierarchy 5-3
. Some of the terms and special symbols used in this dissertation are
5.3 Properties of the Hierarchies 5-8

listed here, with the pages on which they appear. Standard notation
Appendix A DISCUSSION OF THE RELATIVIZED TIME~-HIERARCHY THEOREM A-1 .
from automata and formal language theory is reviewed in Section 1.3.

Appendix B CHARACTERIZATIONS OF THE DYCK SETS B-1
REFERENCES R-1
Ak 4-19
AFL 3-19
accept L relative to A 2-3
B, 5-15
bounded existential quantification 3-3
bounded universal quantification 4-8
Cg 3-4
closure under removal of polynomial padding 5-9
complete i 4-14
D,,D, 3-10
DTIME(1in,C) : 2-9
DTIME(t(n),A) 2-6
Dyck -sets 3-10
Ek : 4-10
explicit transformation 3-3
extended positive rudimentary relations 5-17
extended rudimentary relations 5-16
F-reducible, F-complete 4-14

H[L] 3-28

vi

p.c.
L/k

linear hierarchy

linear-time oracle machine
M(A)

m-adic notation

NL()

NLR(), N)

NP()

NTIME(t(n) ,A)

off-line oracle machine
operate in time t(n)

oracle machine

oracle set, oracle tape

P()

PH

polynomial-bounded quantification
polynomial erasing homomorphism
polynomial hierarchy
polynomial representative
polynomial-time oracle machine
positive rudimentary relations
query state

RUD, RUD(S)

response states

3-4

2-9

3-16

vii

rudimentary operations
rudimentary relations
subpart quantification
superadditive funétion
Timee’c(x)

Timey o(x) -

w/k, Tk

§

k

"

e(R), ej(R)

lin

N
[
09
A

N
L B

F

n

H%E"U

i

Vs
@@y)
¥y),

(ﬂy)q, (Vy)q

5-2

3-5

1-16

4-2

5-2

4-2

5-2

1-17

2-10

3-10

viii

SYNOPSIS

This work addresses questions from automata-based computational
complexity, using techniques and conceptual tools from formal language
theory anq the study of subrecursive functions as well as from automata
theory. The goal is to obtain information on the recognitional power of
resource-bounded automata, especially as compared to the expressive power
of string-theoretic predicates used in defining sets.

Chapter 1 introduces the topics considered in this dissertation and
contains an overview of the results.

" models for resource-bounded

"Query machines" and '"oracle machines,
relative computation, have been studied in [3,16,37,38,39,40,52]. The
definition of oracle machine from [39] is used here. Chapter 2 gives
some basic results for time-bounded oracle machines, especially in the
context of linear and polynomial time bounds. Properties considered are
closure under language operations (Theorem 2.2.4), the hierarchy induced
by increasing time bounds (Theorem 2.4.1), relationship to classes defined
by time-bounded Turing acceptors (Propositions 2.1.5, 2.2.2), and the
comparative power of deterministic and nondeterministic operation
(Proposition 2.2.3). It is also shown (Theorem 2.3.1) how the language
accepted by an oracle machine can be represented using language-theoretic
operations applied to the oracle set and a simpler language. With the
exception of Propositions 2.1.5 and 2.2.3, which appeared in [38] and [3],
respe.ctively, for polynomial time bounds, all results in this chapter are

new. Many of the results are extensions to oracle machines of known

properties of Turing acceptors. The representation theorem (2.3.1) was
suggested by the definition of "r.e. in" given in [47].

In Chapter 3, the rudimentary relations [51] are investigated by
applying the connections established there between definition of languages
using.oracle machines and definition using language operations'or string
predicates. Two new characterizations of the class of rudimentary
relations are given (Theorem 3.2.7 and Corollary 3.3.5(2)), which allow
different proofs of known properties of the class (Corollary 3.2.8,
Corollary 3.3.5(1)). Some basic results on the rudimentary relations
from [33,34,42] are given in Proposition 3.2.4(1)-(3) and are used in
proving the characterizations. Corollary 3.2.8 is proved directly in
[41,45] and Corollary 3.3.5(1), in [57]. Proposition 3.2.2, the version
of the Chomsky-Schutzenberger Theorem [14] used here, is taken from [8],
and Proposition 3.2.3 is from [9]. All other results in this chapter
are new.

The linear hierarchy, a decomposition of the rudimentary relations
into a structure of classes defined using linear-time oracle machines, is
the topic of Chapter 4. Closure properties (Propositions 4.1.2, 4.3.2)
and characterizations (Theorems 4.1.4, 4.2.2) of the classes in the
linear hierarchy are established, as well as equivalences among the
questions remaining open (Proposition 4.1.3, Corollaries 4.3.8, 4.3.10).
A generator. ("complete set") for each class is constructed (Theorem 4.3.5).
All results in this chapter are new; some are generalizations of results
previously known for the quasi-realtime languages, the first class in the

linear hierarchy.

The polynomial hierarchy [40,52,53] is considered in Chapter 5.
The technique of "polynomial translation" (as used in [7]) is combined
with results from Chapters 3 and 4 to yield simple proofs of properties
of the polynomial hierarchy. Proposition 5.2.3 appears in [38].
Proposition 5.3.10 was announced in [53] but was obtained independently.
As with the linear hierarchy, many results on the polynomial hierarchy
are generalizations of results known for the first class in the hierarchy.

The appendixes contain proofs, deferred from the text, of two new
results. Theorem 2.4.1 is proved in Appendix A; it is a relativized
version of theorems from [28,49]. Appendix B contains the proofs of
Proposition 3.3.3 and some related results. The development in Appendix
B leads to simplified proofs of Corollary B.4(1) and (2), which appear

originally in [46] and [31], respectively.

Chapter 1: INTRODUCTION
1.1. SETTING

This work -addresses questions from automata-based computational
complexity, using techniques and conceptual tools from formal language
theory and the study of subrecursive functions as well as from automata
theory. The goal is to obtain information on the recognitional power
of resource-bounded automata, especially as compared to the expressive
power of string-theoretic predicates used in defining sets. Only
strictly subelementary families of languages are considered; in
particular, the languages they contain have membership problems of at
most exponential time complexity by means of Turing acceptors. Since
families of languages are the objects for amalysis, the only specific
languages that are of interest are generators for the families.

The study of the finite specification of functions, and, in
particular, of characteristic functions for infinite sets, is central to
the development of the ma;hematical foundations of computer science.
Specification of a set in some system gives a view of the complexity of
its characteristic function relative to the basic operations or
capabilities Af the system. On the one hand, research in computational
complexity focuses on finding specifications that are "concise" or "simple"
i.e., that are of minimal complexit&. On the other hand, properties of
the sets that possess simple descriptions are investigated, leading to

characterization of the expressive power of the system.

1-2

Models for computing functions or recognizing sets that are based
on Turing machines are useful for studying problems of computation and of
complexity. While unrestricted Turing machines are equivalent to many
other formulations of the idea of "effective compufability," it is more
important for the study of computational complexity that correspondences
are known between complexity as measured using Turing machines and as
measured using more realistic models of computation. Thus although the
basic operations allowed in the model are highly restricted, questions
about the actual complexity of functions may be answered by considering
and comparing the power of resource-bounded Turing machines. The
restricted nature of the model simplifies manipulations and constructions
involving the machines and the sets they accept. This is particularly
important for arithmetization and other representations of languages
accepted by machines with small bounds on computational measures.

Variations on the Turing machine model have been defined by varying
the mode of reading input (e.g., one- or two-way, one symbol per step or
with delay), by allowing nondeterministic operation, and by extending or
restricting access to the storage tapes or the actions performed on them
(e.g., allowing multiple heads on one tape or restricting a tape to serve
as a stack or a counter). To derive quantitative information on the
complexity of recognition problems relative to the chosen model, measures
of computational resource are assigned, most commonly the time or space
used during a computation as a function of the input. Certain questions
can be posed concerning the power of the resource-bounded automata thus

defined and the properties of the classes of languages they accept. For

1-3

example:

(1) What correspondence exists among the measured resources used in
computations and among the classes of languages determined by
different measures of resource?

(2) What increase in power results from the extension to nondeterministic
operation?

(3) What increase in allowed resources will result in increased
recogﬁitional capacity?

(4} How do classes defined by various resource bounds relate to classes

of languages arising from other machines models or in other contexts?

Only partial answers to these questions are known. With respect to the
second question, for instance, nondeterminism is known to add
recognitional capacity for certain classes of (time-bounded) machines with
restricted storage, but does not add power for finite-state ‘machines, the
most restricted model. Due to its importance for establishing whether
practical procedures exist for solving certain persistent recognition
problems, the question of the power of nondeterminism in computations of
length bounded by a polynomial in the length of the input ("P vs. NP") is
currently receiving much attention. This question need not be attacked
directly: An answer to it can be derived from answers to other questions,
about the complexity of specific languages and about the closure
properties of the classes involved and their relationship to other
classes of languages. As indicated by this example, these four general

questions are not independent. In particular, instances of the first

three questions can often be stated in terms of topics contained in the
fourth.

Many approaches other than acceptance by automata can be taken for
arriving at definitions of classes of languages. A class might be defined
as consisting of the languages generated by some clasé of formal grammars
(e.g., the context-free languages, generated by the context-free grammars),
or as consisting of the languages associated with a class of trees or of
functions (e.g., the class of languages whose characteristic functions
are elementary functions). A class might also be defined by requiring
the strings in the languages it contains to satisfy some structural
property (e.g., the class of languages with the semilinear property).

Two other approaches are based on defining classes by using operations on
languages. In the first, a class of languages is defined inductively from
another, that is, is defined to be the smallest class containing some
basis languages and closed under given operations. For instance, the
regular sets can be defined inductively from the finite sets using the
operations of union, product, and Kleene closure. In the second approach,
the defined class consists of those languages resulting from one
application of some operation (e.g., complementation) to the basis
languages or from one application of some function in a class of string
mappings (e.g., inverse homomorphisms). As is the case for the examples
given, the classes resulting from these forms of definition can sometimes
be shown to equal or to contain the class of languages accepted by some
type of automaton. Such connections give a different view of the

properties of the computing devices and of the languages they are

capable of accepting, giving rise both to new questions and to new
techniques for studying the automata. Characterizations can be used to
restate open problems into possibly more tractable forms, and often allow
for simpler proofs than the original definition.

Any machine ‘derived from Turing machines operates using
symbol-by-symbol scanning and manipulation of strings, and the basic
operation on strings is concatenation. A natural candidate, therefore,
for a class of languages to compare to automata-based complexity classes
is one defined inductively from a language representing concatenation.
Quine [44] investigated the form in which concatenation could serve as a
basis for arithmetic (and heﬁce for computation with numerals), showing
that addition and multiplication are first-order definable from
concatenation. As part of a study of recursive function theory, Smullyan
[51] defined and used the class of rudimentary relations, consisting of
those sets that are "constructively" definable from concatenation
(restricting the quantifications allowed to a bounded form). Bennett [4]
subsequently showed that addition and multiplication are constructively
definable from concatenation, and defined some further classes of
rudimentary sets. Connections between these classes and classes arising
in automata and formal language theory have been recognized and studied
[41,15,33,34,42,57].

In this dissertation, a machine model ("oracle machines") that
extends Turing machines by allowing relative computation is studied.
Since' the only measure of resource assigned is the number of steps taken

in.a. computation, the first of the questions cited above for resource-

1-6

bounded automata is not considered for oracle machines; partial answers
to the last three questions are developed. Primary attention is given

to the final topic, of the relationships of classes of languages accepted
by time-bounded oracle machines to other classes of languages. We use
oracle machines to derive new characterizations of the rudimentary
relations, which yield further knowledge of the relationship of this
class to classes from automata theory as well as information on open

problems.

1.2.0VERVIEW OF CHAPTERS

This section contains a survey of the topics considered and results
presented in each chapter of this dissertation. In the final section of
this chapter some terminology from automata and formal language theory is
reviewed.

An oracle machine is a multitape Turing acceptor with the added
ability to determine membership in a (variable) language. During a
computation such a machine may write a string on a distinguished tape and
ask for information on the string; the next state the machine enters is
determined by whether that string is a member of the "oracle set" or not.
Thus computations of the machine proceed relative to the information it
receives, and it may accept different languages relative to different

oracle sets.

Unrestricted oracle machines can be used to define Turing
reducibility and hence serve in expressing the notion of degrees of
unsolvability [54,47]. Cook [16] introduced time-bounded relative
computation to define a restricted Turing reducibility and applied it
fruitfully to the question of the power of nondeterminism in poiynomially
time-bounded computations by Turing acceptors. Further studies of these
(and other) time-bounded reducibilities and of the structure they place
on the recursive sets have since been made [3,37,38,39,52].

The model of oracle machine used here is a technical variant of
Cook's "query machines." We view relative computation as a way to define
classes of languages from others and use the tools of automata and formal
language theory to study the languages accepted by bracle machines.
Time-bounded oracle machines share many of the properties of other
resource-bounded abstract automata and proofs that have become standard in
automata theory can be easily extended to apply to them. Chapter 2 gives
some basic results for time-bounded oracle machines, especially in the
context of linear and polynomial bounds, which are used in the remainder
of the dissertation. Properties considered are closure under language
operations (Theorem 2.2.4), the hierarchy induced by increasing time
bounds (Theorem 2.4.1), relationship to classes defined by time-bounded
Turing acceptors (Propositions 2.1.5, 2.2.2), and the comparative power
of deterministic and nondeterministic operation (Proposition 2.2.3). It
is also shown (Theorem 2.3.1) how the language accepted by an oracle
machine can be represented using language-theoretic operations applied to

the oracle set and a simpler language. This representation theorem, in

the spirit of those in [14,9,12], is used extensively in the following
chapters.

The class of rudimentary relations of Smullyan [51] can be defined

as the smallest class of string relations containing the concatenation
relations and closed under the Boolean operations, explicit transformation
and a form of bounded (existential and universal) quantification. It is
known that the addition and multiplication relations are rudimentary [4]
(identifying a number with its dyadic notation), and since, further, this
class is closed under many of the operations studied in automata and
formal language theory, it is of interest for the formal analysis of
computation (as well as for its role in logic [4,51]).

In a natural way the rudimentary relations give rise to a family of
languages. Since (Proposition 3.2.4) a relation is rudimentary if and
only if its associated language is rudimentary, the distinction between
rudimentary relations and "rudimentary languages" is ignored. The class
of rudimentary relations contains all context-free languages [34], all
languages accepted in linear time by nondeterministic multitape Turing
machines (Proposition 3.2.4), and all languages accepted in logarithmic
space by nondeterministic Turing machines [42]; on the other hand, every
rudimentary relation can be accepted in linear space by a deterministic
Turing machine [41].

In Chapter 3, the "machinery" developed in Chapter 2 is used to
provide two new characterizations of the rudimentary relations, one using
oracle machines and the other as an inductively defined class, with a

different basis and different operations than in the original definition.

These results will now be described.

Consider nondeterministic oracle machines that operate in linear
time (i.e., the number of steps in any computation is bounded by a
constant multiple of the length of the input string). If A is a language,
then let NL({A}) denote the class of languages accepted by such machines
wben given an oracle for membership in A. For a class C of languages,
let NL(C) = u{NL({A}): A € C}. Using NL() to denote this operator on a
class of languages, let NL*() denote the closure of a class under
applications of NL(). This provides the notation necessary to state our

first characterization of the rudimentary relations.

Theorem 3.2.7. The class of rudimentary relations is the smallest
nonempty class closed under the operation of relative acceptance by
nondeterministic linear-time oracle machines. That is, NL*({¢}) is

exactly the class of rudimentary relations.

The proof of Theorem 3.2.7 depgnds on a characterization of the
operator NL() in terms of language-theoretic operations that follows
from Theorem 2.3.1.

Because NL() and NL*() are defined by means of abstract automata,
it is apparent from Theorem 3.2.7 that the class of rudimentary relations
is closed under various operations studied in formal language theory, as
well as under the Boolean operations given in its definition; for
example, it is closed under product of languages, Kleéne *, inverse
homomorphism, non-erasing homomorphism, linear erasing, and reversal.

It was shown by Yu [57] that the rudimentary relations are the smallest

1-10

class containing the context-free languages and closed under the Boolean
operations and non-erasing homomorphism. Here, a stronger

characterization is established.

Corollary 3.3.5. The class of rudimentary relations is the smallest
class of languages that contains the language {a™™: n > 0} and is closed
under the Boolean operations, inverse homomorphism, and length-preserving

homomorphism.

This characterization follows from a general statement concerning
the effect of applying NL*() to families of languages (Theorem 3.3.4),
combined with a result on the definability of context-free languages from
the language {a?bn: n 2 0} (Proposition 3.3.3).

In Chapter 4 we turn to a decomposition of the rudimentary relations
based on the characterization given in Theorem 3.2.7. Let % be the class

containing only the empty set. For each k, let o = NL(ck). Thus

k+1
u{ck: k 2 0} is the class of rudimentary relations. Since an oracle
machine with an oracle that always replies "no" can be simulated by a
Turing acceptor, 9 is the class of languages accepted in linear time by

nondeterministic multitape Turing machines (the quasi-realtime languages

of [9]). The linear hierarchy is the structure 0p S0; S0y S - (along

with some related classes).
Whether the linear hierarchy is in fact an infinite hierarchy of

classes (i.e., whether O ; O+l for each k) is unknown; an affirmative

answer to this question would also settle other previously studied

questions: for example, whether the class of quasi-realtime languages is

1-11

closed under complementation, and whether the class of rudimentary
relations is properly contained in the class of relations associated
with E}.

While u O (i.e., the rudimentary relations) is closed under
k

complementation, it is not known whether there exists a k such that Ok is
closed under complementation. This question and that of the finiteness
of the linear hierarchy are closely conmnected, as is seen in the

following result.

Proposition 4.1.3. The linear hierarchy is finite if and only if there

exists some k such that O is closed under complementation.

It is shown in Chapter 3 that for any k 2 1, a language belongs to
O+l if and only if it is the image under a nonerasing homomorphism of the
complement of a language in O From this fact we establish the
following characteri;ation of the classes in the linear hierarchy.

Let 61 denote the family of languages that can be accepted in linear

time by deterministic multitape Turing acceptors.

Theorem 4.2.2. For each k 2 1, the class O consists of exactly those
languages that can be obtained from languages in 61 by application of k
(linearly) bounded quantifications that alternate between existential and

universal quantification and end with an existential quantifier.

Thus the class in the linear hierarchy to which a rudimentary
relation belongs is closely related to the syntactic form of its

definition from concatenation relations.

1-12

In the last section of Chapter 4, we consider the internal structure
of the classes Oy> employing the concept of "efficient reducibility."
Each class is shown to possess a complete set with respect to a
simple-to-compute reducibility. This property allows some comparisons to
be made between the classes in the linear hierarchy and other classes of
languages, and questions about the classes O and about the rudimentary

relations can be reduced to questions about these generators.

Theorem 4.3.5. For all k 2 0, there exists a language Ak € o with the
property that for every L ¢ Oy there is a homomorphism h such that

L - e} =nlay.

The sequence of languages AO’Al"" is defined uniformly from
Ay = ¢ by means of a "universal" nondeterministic linear-time oracle
machine M0 (which is constructed along the lines of the universal
machines studied in [55,11]): Ak+1 is the language accepted by MO when
MO is given an oracle for membership in Ak'

For each k, the language A is a "hardest" language for 0y with
respect to deterministic time-bounded or space-bounded recognition, in
the same sense that the language exhibited by Greibach [24] is a hardest
context-free language. Thus, for example, Ak can be accepted by a
deterministic Turing machine in polynomial time if and only if every
language in 0} can be so accepted.

Although the rudimentary relations form a subclass of the class of
languages accepted in linear space by deterministic Turing machines (i.e.,

accepted by deterministic linear-bounded automata), it is not known

1-13

whether this inclusion is proper. However, from Theorem 4.3.5 and known
properties of the class of languages accepted in deterministic linear

space, we arrive at the following result.

Corollary 4.3.8. If the linear hierarchy is infinite, then there exists
a language that is not rudimentary but can be accepted in linear space by

a deterministic Turing machine.

The polynomial hierarchy of Meyer and Stockmeyer [40,52,53] is
(like the linear hierarchy) a structure of classes analogous to the
arithmetic hierarchy and is potentially useful for classifying languages.
It can be defined using nondeterministic oracle machines that operate in
time bounded by some polynomial of the length of the input: Each class
in the polynomial hierarchy consists of the languages accepted by such
machines relative to a language in the previous class.

In Chapter 5 an investigation of the polynomial hierarchy is made
based on a strong connection that exists between it and the linear
hierarchy. It is shown (Theorem 5.2.7) that a class in the linear
hierarchy forms a basis for the corresponding class in the polynomial
hierarchy under "polynomial translation" [7]. Thus the linear hierarchy
embodies in a simplified form the properties of the polynomial hierarchy.
The same questions remain open for both structures and certain solutions
in the context of the linear hierarchy will supply solutions for the
polynomial hierarchy; for example, if the linear hierarchy is not infinite
(i.e., collapses at some class) then the polynomial hierarchy must

collapse as well (Corollary 5.3.3).

1-14

Under certain conditions established in Chapter 2, an increase in
the time allowed an oracle machine yields increased computational power.
From this it can be concluded that no class in the linear hierarchy can
be equal to any in ﬁhe polynomial hierarchy. Furthermore, each class in
the polynomial hierarchy is decomposed into an infinite union of classes
and hence cannot have generators under some operations (in particular,
under the operations used for Theorem 4.3.5). A representation of the
linear hierarchy such as that given in Theorem 4.3.5 is necessary for
these conclusions to be drawn. The generators constructed for the
classes in the linear hierarchy lift to become complete sets for the

polynomial hierarchy, necessarily under an extended class of functions.

1-15

1.3. PRELIMINARY DEFINITIONS AND NOTATION

Some basic definitions from automata and formal language theory,
used throughout this dissertation, are collected here. All should be

familiar to the reader, with the possible exception of the function 8

‘used to encode tuples of strings as strings.

For a set A and an integer m 2= 1, [A]m denotes the cross product
of A with itself m times. The cardinality of a set A is denoted
#(A).

If S is a finite set of symbols, called an alphabet, then S* denotes
the free monoid generated by the symbols in S. The elements of S* are
strings (finite sequences) of symbols from S; the operation in S* is
termed "(string) concatenation" and is denoted by juxtapostion of the
strings. The identity element of S* is the "empty word" or "empty
string," denoted by e. Thus S* = {e} u {sl...sn : nzl,sl,...,snES}. 1f
nx1 and x = 81---8, is a string in S (sieS for 1<i<n) then the length of
x, denoted |x|, is n; |e| = 0.

If for some alphabet S, a set L is a subset of S* then L is a
language. An m-ary string relation is a subset of IS*]m for some alphabet
S.

In order to use the tools of formal language theqry to investigate
classes of string relations, we combine a tuple of strings into a single

string, as follows. Suppose S is an alphabet and # is a symbol not in S.

1-16

Let S# = su{#}. For nz1, eﬁ:[s;]“ > ([S#]n)* is defined as follows:
(1) For all xeS%*, eﬁ(x) = x;
(2) For n22, if xl,...,xnes* then eﬁ(xl,...,xn) = Zgeeez where
. . 1
m = max {|xi| : l<i<n}; for 1<j<m, zj = [zj,...,z?]s[s#]n; and for
1<i<n, zlzl...zi = x.#m-|xil.
172 m i
The mapping eﬁ is extended to subsets of [s*]" by:
it)
en(R) = {en(xl,...,xn) : (xl,...,xn)eR}.
Hereafter, 8" will be used ambiguously for any eﬁ: n will be
clear from the context and it will be assumed that #¢S. For an
example, suppose S = {0,1} and n. = 3. Then 6(e,101,1) =

[#,1,11(#,0,#1(#,1,#] eud 06(000,101,11)

[}

[0,1,1100,0,11[0,1,#].
The intention of 6 is to describe writing n strings on n "tracks"

of a Turing tape; thus the second example should be read as

6(000,101,11) =

o
oo
S=- O

This "parallel" encoding is due to Myhill [41]. The notation "8“ is

from [57].

Let S and T be alphabets and h:$*»%* be a (ronoid) homomorphism,

so that for any x,y,eS*, h(xy) = h(x)h(y). If L cS* then h(Ll) =

1
{h(x) : xéLi} is the image of the language Ll under the homomorphism h.
If LZET* then h‘l(Lz) = {yeS* : h(y)eLz}; h_l is a mapping from subsets

: *
of S to subsets of T*, called an inverse homomorphism. Definitions

of homomorphisms need only be giﬁen for the symbols in S; they are then

1-17

extended to S* by h(sl...sn) = h(sl) e h(sn). Note that h(e) = e.
Suppose h:S*»T* is a homomorphism. Then h is length-preserving
if |h(s)| = 1 for all seS. It is nonerasing if h(s) # e for all

seS (i.e., lh(s)|21). TFor a language LcS*, the homomorphism h is

e-limited on L if there exists an integer k such that for any string

wel, if w = xyz for some x,y,zeS* such that h(y) = e then]yl<k. (That

is, h can erase at most k consecutive symbols from a string in L.)

The homomorphism h is said to perform linear erasing on LcS* if there
is an integer k such that for any weLl, |w|<k.max{|h(w)|;1}. A family
of languages L is closed under linear erasing if whenever Lel and h

is a homomorphism that performs linear erasing on L, also h(L)el.

Sove further operations on languages are defined as follows:

(1) If L,cS*, L

1
is the language LLy = {xy: xeLl,yeLZ}s(SUT)*. If ¢ is a new symbol,

ZQT* are the languages then the brdduct of L1 and L2

¢ ¢(SuT), then Li¢L2 = {xdy : xeLl,yeLz} is a marked product of L;

and LZ'

(2) 1If LcS* is a language then L+ = {yl ARE A n=1, yieL for l<i<n}
and L% = L+U{e}. Thus for an alphabet T, Tt = T* — {e} = {xeT* : |x]z1}.
The operation taking L to_L* (LY is Kleene 4 (Kleene +). If ¢¢S then
(Lt)+ = {ylﬁ...ynt : n21, yieL} is a marked + of L and (Lé)*v= @) Tule}
is a marked % of L.

(3) The Boolean operations are the operations of set union, intersection
and difference. If Ll,ngS* then a marked union of Li and Ly, denoted

here Ly & Ly, is any language of the form {#}Lju{$]}L, where ¢,$¢S are

1-18

two distinct symbols.

(4) A family of languages L is closed under complementation if
whenever Lel and S is any alphabet such that LcS* also S*-L =
{xeS* : x¢L} is in L. 1If L is a family of languages then co-L
denotes the family containing exactly the complements bf languages
in L; that is, co-L = {S*-L : LcS* in L}. Notice that L = co-L

if and only if co-Lcl if and only if L is closed under complementation.

The family of regular sets is the smallest family of languages
containing the finite languages and closed under the operations of
union, product and Kleene *. It is well known that a language is
regular if and only if it is acceptecd by some finite-state machine,
and that the regular sets are closed under all the operations described
in (1)-(4) above, as well as under homomorphic and inverse homomorphic

mappings.

The model for Turing acceptor used here has a (one- or two-way)
read-only input tape and multiple work tapes (see, e.g., [30]). It
may be deterministic or nondeterministic. The language accepted by
a Turing machine M is denoted by L(M). When Turing machines are
used as transducers, i.e., to compute string functions, one of the
work tapes becomes a one-way write-only output tape.

Let t: (N> [N and s: (N> (N be nondecreasing functions, with t(n)2n
for all neN. (N denotes the natural numbers.) A Turing acceptor

is said to operate in time t(n) if for every input string x every computa-

1-19

tion of the machine on x takes at most t(]x]) steps. A Turing
acceptor is said to operate in space s(n) if for any input x, no
more th;ln s(]x]) tape squares are visited on any one of the work tapes
during any computation on x. We use lg(n) to denote the function whose
value at nelN is the length of the binary representation of n, so
1g(0) = 1 and for n>0, logy(n)<lg(n)<logy(n)+1. Following [49],
define a function t N to be a "running time" if there is a deterministic
Turing acceptor M such that on any input x, M takes exactly t{|x]|)
steps and halts.

The notation used here for families of languages defined by
resource-bounded Turing acceptors follows.

For a time bounding function.t(n):
DIIME(t(n)) = {L(M) | M is a deterministic Turing acceptor that operates

in time bound t(m)};

NTIME(t(n))

{L() 1 M is a nondeterministic Turing acceptor that
operates in time bound t(n)}.
It is known [9] that for any constant c¢ and any Turing acceptor
that operates in time cn there is a nondeterministic Turing acceptor
that accepts the same languagé and operates in time n(i.e., in real-time);
hen‘ce
NTIME(n) = U{NTIME(cn) : c > 1}.
Also,
DIIME(lin) = u{DTIME(cn) | c = 1};

DIIME(poly) = U{DTIDIE(p(p)) | p a polynomiall;

ornE M) = uIDIEQT) | ¢ > 0).

lin

NTIME(poly) and NTIME(2™ ") are defined similarly.

For a space bounding function s(n):

DSPACE(s(n)) = {L(M) | M is a deterministic Turing.acceptor that
operates in space bound s(n)};.
NSPACE(s(n)) = {L(M) | M is a nondeterministic Turing acceptor that

operates in space bound s(n)}.

Using standard tape-compression techniques, a Turing machine
that operates in space c:s(n) for some czl can be converted to an
equivalent Turing machine that operates in space s(n). In particular,
DSPACE(n) = U{DSPACE(cn) : c = 1} and

NSPACE(n)

L}

UINSPACE(cn) : c = 1}.

The class DSPACE(n) is the family of languages accepted by deterministic
linear-bounded automata (LBA's); NSPACE(n) is the family of context—
sensitive languages [41].

In this notational scheme, the class U{DSPACE(p(n))] p a polynomial}
is denoted by DSPACE(poly). However, since it is known [48] that
U{DSPACE(p(n)) | p a polynomial} = U{NSPACE(p(n)) | » a polynomial},
this class will be denoted here by PSPACE.

A push-down store is a Turing tape that is one-way infinite to the
right and the action of which is restricted in the following ways:

(i) only the rightmost symbol on the store may be read; and (ii) if
the head moves left into the string written on the store then all symbols
to the right of the head must be erased. Thus a machine with a push-down

store can test it for emptiness and manipulate it by "pushing" symbols
P y g

orito the store (printing and moving right) or by "popping" symbols

from the store, if it is nonempty (erasing and moving left). The

family of languages accepted by nondeterministic (deterministic)

Turing acceptors with one-way input and one push—down store as

auxilliary storage is the family of context-free languages (deterministic
context—-free languages). The family of context—free languages is also
that generated by the context—free grammars. See [18,30] for discussion

of context—free languages and their properties.

Chapter 2: TIME-BOUNDED ORACLE MACHINES

In this chapter the definition of oracle machines is given and
some basic properties of time-bounded oracle machines are developed.

As a model for relative computation, oracle machines are a variant of
the model used to explain the arithmetic hierarchy [47] and of the
query machines used by Cook [16] to study efficient reductions between
language recognition problems.

Constructions involving Turing acceptors generally apply with only
slight modification to oracle machines, so we have, for example,.the
expected closure properties for families of languages defined by time-
bounded oracle machines (Theorem 2.2.4). There is also a result
(Theorem 2.4.1) corresponding to the "time hierarchy theorem" for Turing
acceptors, giving conditions under which an increase in the time allowed
an oracle machine yields an increase in its definitional power. The
investigation to be made of the families of languages defined by time-
bounded oracle machines is greatly aided by Theorem 2.3.1, in which the
language accepted by an oracle machine is represented algebraically, in
terms of language-theoretic operations applied to simpler languages. In
subsequent chapters, we will consider only time bounds which are linear
functions or polynomials; most of the results in this chapter are there-
fore stated for those cases, although they can be seen to hold more

generally.

2.1. DEFINITION AND GENERAL PROPERTIES

We begin with an informal definition and discussion of oracle
machines. The interested reader can make the connections to the formal

definition that follows.

Definition 2.1.1. An oracle machine is a multitape Turing acceptor

with an added dynamic capability. A computation of an oracle machine

M depends on both an input string x and an oracle set A, which may
be any language over the tape alphabet of M. The machine M has

three distinguishe& states 9, qyes and 9U0° along with its initial
and final states, and one of its work tapes is distinguished as the
oracle tape. At any point during a computation of M on x relative
to A, there are two possibilities: '
(1) . The current state of M is not its query state 9, (although it
might be one of the response states qyes, qno). In this case the next
step of the computation isidetermined by the transition function of M,
as for an ordinafy Turing acceptor. During such steps M can read from
and write on its oracle tape, as well as its other work tapes.

(i1) M has entered its query state 455 in order to make an oracle
call. In this case the next step is determined by the string on the
oracle tape and the oracle set: if the (nonblank) contents of the
oracle tape is the string 2z, 'then the next state is qyes if z ¢ A
and is 0 if z ¢ A. During a step that is an oracle éall, the oracle
tape is erased (i.e., reset to blanks) but the configuration of the other

work tapes and the input tape is unchanged.

2-3

The oracle machine M is deterministic if its transition function
allows at most one move at any step, nondeterministic otherwise. The
transition function is undefined for the query state, so moves from
that state are uniquely determined by A. M 1is said to accept x
relative to A if and only if sdme computation of M on x relative
to A reaches an accepting state. Let M(A) denote the set of strings
accepted by M relative to A.

This definition of 5rac1e machines is essentially that used in [39]
and differs from the model used in [3,16] in that the oracle tape is
erased after an oracle call. This convention is made here to allow a
simpler form for the representation of languages accepted by oracle
machines in terms of language-theoretic operations (Theorem 2.3.1).
There is no difference in computational power when the class of oracle
machines that operate in arbitrary polynomial time bounds is considered.
It should be apparent that a multitape Turing acceptor is (equivalent
to) an oracle machine thag never queries its oracle, and conversely.

More formally, a k-tape oracle machine is a (k+9)-tuple
M = (X, I, Fl’ v Tk, S, 9> 9p» qyes’ 9o’ F, j) where the compo-
nents have the following interpretations:

(1) K, z, Fl’ ceey Fk are finite sets, the state set, the input
alphabet and the alphabets for tapes 1 through k, respectively. The
set T = u{T.,: 1<i<k} is the tape alphabet of M, and
I'vuZ is the alphabet. Let B denote the blank tape symbol, B ¢ T.

(2) 9y € K 1is the initial state of M, q, 1is the query state, qyes

and q ., are the response states, and F c K 1is the set of final
states.

(3) The j-th tape is the oracle tape, and 1 < j £ k.. The set Fj will
be termgd the oracle tape alphabet of M.

(4) & is the tranmsition function of M, a function from

(K—{q?}).x (Z u{e}) x ry v {B}) x ... x (rk u {B})

into the finite subsets of

Kx [(T; u {B}) x {0,1,-1}] x ... x [, v {B}) x {0,1,-1} 1.

For simplicity, the dynamics of .an oracle machine will be des-
cribed only for the case of a two-tape machine

M = (K, z, Pl, Pz, 8, 9y 955 4 > 4 F, 2). Note that the second

yes
tape of ‘M is the oracle tape.

An instantaneous description (ID) of M is a 6-tuple
(q, w, Vs Yoo il, i2) where qe K, we Z*, yj € (I'j u {B})+
and 1 < ij é lyj1. The components of an ID have the usual interpreta-
ti&ns: M is in state q, with w remaining on the input tape, ¥1
on tape 1, and y, on tape 2 and is reading the ij—th symbol (from the
left) of yj, j=1,2.

If A 1is a subset of F; then the yield relation hr- on IDs
of M reiative to A is defined as follows.

(1) Suppose qe K- {q,}, aczud{e}, aj € u {B} for

T
hj
i =}l,2, and (q', b, dp, by, dz) e §(q, a, a;, az) for some

5 l,d2 e {0,1,-1}. Then for any

* * *
x5y € (T u {BD), Xy, € (1‘2 u{Bh) , wez,

bl e‘Fl u {B}, b, e Fz u {B} and d

2-5

(q, aw, X131Y15 Xy3,75, |x1[+ 1,]le + 1) h;— (q', w, 215 Zy» il’ iz)
where for j = 1,2

(1) if dj = 0 then zy = ijjyj and ij =]le + 1.

(ii) if dj=1 then i =[xj| + 2. If dj=1 and y; = e then

J
. = x,b.B; if vy, th . =xb.y..
S T B 7 # e then I B O
(iii) if dj = -1 and xj = e then ij =1 and zj = Bbjyj; if
d.=-1 and x, # e then i, = |x and z, = x,b.y,..
B 3 J | jl 3 3737

*
(2) Suppose we I, and for j =1, 2, yj € (I‘j u {B})+ and
1<i, < . The
i]yjl n
(q?: W, yl, }’2, il’ iz) fr— (q, w, }’1, B, il’ Iy
*
if and only if Yy = Bszj for some =z € F2, m,j 2 0; and either
ze A and q = qyes or z¢ A and q = Uor

*
Let fz— denote the reflexive and transitive closure of hf_'
Then the language accepted by M relative to A is defined by

*
M) ={xe £ : for some q ¢ F, yp e (T v {B})+, y, € (F2 u {B})+,

*
(9> *; B, B, 1, 1) b= (4, e, y5 ¥, 1, 1,)}.

In this dissertation only time-bounded oracle machines will be
considered. The following definition establishes what will be meant by
an oracle machine operating in a time bound: this property is to be
independent of the selection of the oracle set. Time-bounding functions
are assumed to be nondecreasing and at least as large as the identity

function.

2-6

Definition 2.1.2. (1) Suppose t: N+ N is a nondecreasing function

which satisfies t(n) 2 n. An oracle machine M is said to operate in

time t(n) if for any input x and any oracle set A, every computa-

tion of M on x relative to A halts in at most t(|x|) steps.
(Recall that an oracle call costs one step.) Thus the time allo%ed M
for a computation is a function of the length of the input string

(|x| =n).

(2) For a language A and a function t(n), define

DTIME(t(n), A) = {M(A): M is a deterministic multitape oracle machine
that operates in time t(n)}; and

NTIME(t(n), A) = {M(A): M is a nondeterministic multitape oracle

machine that operates in time t(mn)}.

Thus for a language A, DTIME(t(n), A) (NTIME(t(n), A)) consists
of ‘languages that can be accepted (nondeterministically) relative to A
in time t(n). In particular, since an oracle machine need not consult
its oracle, DTIME(t(n)) c DTIME(t(n), A) and
NTIME(t(n)) c NTIME(t(n); A) for any function t(n) and any language
A.

By applying the standard construction for shortening computations
of Turing acceptors by a constant factor [30], the following "speed-up"

theorem for oracle machines can be derived. Since the work tapes of the

machine constructed are "compacted" versions of the tapes of the original

machine, the oracle set must be altered; the translation can be described

as the application of an inverse homomorphism.

Proposition 2.1.3. Suppose M is an oracle machine which operates in
time t(n). Then for any k > 1 and any oracle set A for M, there
exist an oracle machine M' and a homomorphism h such that

@ mw = ween; '

(ii) M' is deterministic if M is deterministic; and

(iii) M' operates in time n + t(n)/k.]

The next proposition uses a construction for "composing" oracle
machines with deterministic Turing acceptors, in order to give an upper
bound on the complexity of languages accepted by time-bounded oracle
machines. This fact appears in [38] in the context of polynomiél time

bounds.

Definition 2.1.4. A function t: N > N is superadditive if for all
n,m, t(n) + t(m) < t(n+m). Note that polynomials are superadditive

functions.

Proposition 2.1.5. Let tl(n), tz(n) be time-bounding functions, with
tl(n) superadditive. If A ¢ DTIME(tl(n)) then
DTIME(tZ(n), A) < DTIME(Ztl(tZ(n))), and

NTIME(tz(n), A)

n

NTIME(Ztl(tZ(n))).

Proof. If A is a language in DTIME(tl(n)), let M. be a determinis-

1
tic Turing machine that accepts A and operates in time tl(n). Suppose
M 1is an oracle machine that operates in time tz(n), and let

L2 = M(A). The machines Ml and M are combined to construct a Turing

2t Given an input x, M2 begins a computa-

tion of M on x; if M would query its oracle, M2 instead uses

machine M2 to accept L

M. to test whether the string on the oracle tape is in L, and then

1 1
continues the computation of M from the appropriate state. (Note that
we assumé that Ml alﬁays halts.) Clearly M2 will accept précisely
L2; since M1 is deterministic, M2 will be deterministic if M is
and nondeterministic otherwise. Suppose that on some input .x of
length n, M2 follows a computation of M on x in which the oracle
was queried about string Zys eees Zp (m 2 0). The length of that com-

putation of ‘M, is then at most tz(n) + [t1(|zll) + ...+ tl(]zml)].

2

Since the oracle tape of M is erased after every oracle call,
Izi|,s tz(n); hence since t1 is a superadditive functionm,

tl(lzil) < tl(t2<n))f Therefore M Fakes at most

m
L
m
oA 2
tz(n) + tl(tz(n)) < 2tl(t2(n)) steps in any computation on an input of

length n. 0

It is a simple matter to alter the argument for Proposition 2.1.5
when M1 is a deterministic oracle machine rather than a Turing accep-
tor. Thus, for example, if A ¢ DTIME(tl(n), B) and tl(n) is super-

additive, then NTIME(tZ(n), A) < NTIME(Ztl(tZ(n)), B).

2-9 2-10

2.2. RELATIVE COMPUTATION IN LINEAR AND POLYNOMIAL TIME
Proposition 2.2.2.

(1) NL({¢}) = NL(DTIME(lin)) = NTIME(n).
The remaining chapters deal primarily with oracle machines that DTIME(lin,{@#}) = DTIME(lin)
s .
operate in time bounds which are linear functions or polynomials. We
(2) NP({@}) = NP(DTIME(poly)) = NTIME(poly).
therefore establish the following notation for the families of languages .
P({#}) = P(DTIME(poly)) = DTIME(poly). 0

accepted by such machines.

In the notation of [38] parts of Definition 2.2.1 can be restated
Definition 2.2.1. (1) An oracle machine is termed a linear-time
as
oracle machine if it operates in time cn + d for some constants c, d.

IA

N

. B ¢ P({A}) & B A and
If an oracle machine M operates in time t(n) and t(n) is a poly-

B ¢ NP({A}) & B < A .

=g

nomial (in n), then M is a polynomial-time oracle machine.

t_n .
(2) If C is a class of languages, define In [38] the symbol "<" is used for reducibilities: in this case,

the membership problem for B is reduced to that for A by means of

NL(C) = {M(A): Ae C, M a nondeterministic linear-time oracle machine}
a polynomial-time oracle machine. The superscript ™P" ("NP") indi-
= u {NTIME(cn +d , A): A e C, c,d >0} ;
cates that the reduction is performed deterministically (nondeterminis-
NP(C) = {M(A): A e C, M a nondeterministic polynomial-time oracle tically) in polynomial time and the subscript "T" denotes Turing
machine}; and reducibility. Thus, the relations "B ¢ P({A})" and "B ¢ NP({A})"

P(C) = {M(A): A e (C, M a deterministic polynomial-time oracle ma- are viewed as restricted Turing reducibilities [47,54]. The structural
chine}. . properties of these reducibilities on recursive sets have been studied

recently [38,3,37]. In particular, in [3] it is shown that no general
When no confusion can result, we will write, e.g., NL(A) for
statement can be made about the inclusion (or equality) relations holding
NL({A}). By analogy with the notational scheme used for families defined
among the classes P(C), NP(C), co-NP(C).
by Turing acceptors, let DTIME(lin, C) denote

U {DTIME(cn + d, A): A€ C, c,d > 0}. Proposition 2.2.3. (1) [3,38] One can construct recursive sets
The following proposition is immediate from Proposition 2.1.5 and Ay, Ay, Ay such that P(Al) = NP(A)), P(4) : NP(AZ) = CO'NP(Az)
previous remarks. and NP(AS) # co-NP(As).

(2) One can construct recursive sets Bl’ BZ’ B3 such that

DTIME(lin, Bl) = NL(Bl), DTIME(lin, BZ) i NL(BZ) = co—NL(BZ)

and NL(BB) # co—NL(B3). 0

The second part of this proposition can be proved by simple modi-
fications of the arguments for the polynomial case. Note that the exis—
tence of the languages A3 and B3 implies that neither of the rela-
tions "B ¢ NP(A)", "B ¢ NL(A)" is transitive.

Several positive closure properties are known to hold for a wide
variety of classes of languages accepted by abstract automata, for exam-
ple, closure under the operations corresponding to an "abstract family
of languages'" [20]: union, product, Kleene *, intersection witﬂ fegular
sets, inverse homomorphism and nonerasing homomorphism. For multitape
devices the class of languages defined is usually closed under intersec-
tion. The following theorem gives these closure properties in the con-
text of oracle machines; the statement of the theorem refers only to
classes of languages NL(C), but it will be clear which of the construc-

tions apply to P(C) and NP(C) as well.

Theorem 2.2.4. (1) For any nonempty class of languages C(:

(1) C v co-C c NL(C); and

(ii) NL(C) 1is closed undef marked +, Kleene *, linear-erasing
homomorphism, inverse homomorphism, and union and intersection with lan-

guages in DTIME(1lin).

(2) 1If either (1is closed under marked union or consists of a single

1anguagé, then NL(C) is also closed under marked product, product,

intersection, marked union and union.

The proof is for the most part applications of the standard con-
structions to oracle machines, and is given only for completeness. The
operations of union, intersection and product differ from the others
in tﬁat possibly two oracle sets are involved; use of two oracle sets is

reduced to one by applying the operation of marked union.

Proof. (1) First suppose 'S 1is any alphabet. It is easy to con-

struct deterministic oradcle machines D1 and D both of which operate

22
in time nt+l, such that for any language L c S%, Dl(L) =1L and
DZ(L) = 8% - L; therefore if L ¢ ¢ then L and S*¥ - L are in
NL(C) .
Now suppose A e C and M is a nondeterministic linear-time oracle

machine, so that L = M(A) 1is a representative element of NL(C). Let

S be the input:alphabet of M and suppose M operates in time cn + d.

(a) Suppose ¢ 1is a new symbol, ¢ ¢ S. Let Mi be an oracle machine

that operates as follows: M; rejects its imput x e (s u {#})* unless

x has the form xléxzé...xmé for some m > 1, Kis eees X € Sx, If

the input is of the correct form, M1 acts like M on each segment X,

of x, wusing its work tapes (and oracle tape) just as M would. Then

M1 can be constructed to operate in time (2¢ + d)n, and

+ +

ww = mwh = ah’, s ah’ e mo.

(b) Suppose hl: S* > T* is a homomorphism with the property that,
for some k 21, for any x ¢ L, |x| < kemax {hl(x),l} , 1i.e., h1

is a homomorphism that performs linear erasing on L. Let M2 be a
nondeterministic oracle machine which, given y e T*, first guesses

a string x ¢ S* such that hy(x) =y and | % < kemax {|y|, 1} and
then accepts x if and only if M accepts y (?elative to the same
oracle set). Then M2 operates in time c'n + ¢' (where

c¢' =k(c+2) +d) and Mﬁ(A) = hl(L).

(c) Suppose hz: T* > §* is a homomorphism. Let

k = max {|h(a)|: aec T}; then for any x, |h(x)| < k|x|. Let M,
‘be an oracle machine which, given y e T*, first writes hz(y) on an

extra tape and then accepts y if and only if M accepts h,(y). Then
2

M3 operates in time k(c+2)n + d and M3(A) = h;l(L).

(d) Suppose/ L' c 8* 1is a language in DTIME(lin). Then L' is ac—
cepted by a deterministic Turing machine M' which operates in time kn
for some k > 1. Let M4 and M5 be oracle machines which, given an
input X, test first whether M accepts x and then test whether M'
accepts x. MA
succeeds and M5 accepts if and only if both succeed. Then M4 and

accepts the input if and only if either of the tests

M. both operate in time (k+ct+l)n+d; and M4(A) =LuL'" and

5
MS(A) =LnlL".

Note that if M is deterministic then the machines constructed
in (a), (c¢) and (d) will also be deterministic. Closure under Kleene *
follows from (a), (b) and (d): L* = h(((L n sHAH™N u {e}, where
h: (Su {é})* > 8% is the simple homomorphism determined by defining

h(s) =s for se S and h(f) = e. The homomorphism h is e-limited

2-14

on (@nsHpt.

(2) Suppose Ll,L2 € S* are elements of NL(C). First, there exist

a language Ao € C and nondeterministic linear-time oracle machines

Nl and NZ such that Li = Ni(AO) for i =1,2. This is clearly the
case if (' consists of a single language, C = {AO}. If C contains
more than one language, then since Ll,L2 € NL(C) there are languages

Al,AZ € C and nondeterministic linear-time oracle machines Ni and

Né such that L = Ni(Ai)’ i=1,2. Let T be an alphabet such that
Al,A2 S T* and let #1, #2
is closed under marked union then A0 = #lAl u #2A2 € C. For i=1,2,

be two distinct symbols not in T. If C

the machine -N! can easily be altered to mark each string on its oracle

i

tape with #i before making an oracle call; the resulting oracle machine
+ = N! =
N, will also operate in linear time and Ni(Ao) = Ni(Ai) Li'
Now, since NL(C) is closed under linear-erasing homomorphism, it
suffices to show closure under marked product, marked union and inter-

section.
(a) Let ¢ ¢S be a new symbol. Let M be an oracle machine which

rejects its input x unless x = xléx2 for some XpsX, € S*. On an

inﬁut of the correct form, M, first tests whether N accepts x

6. 1 1

and then tests whether N, accepts X,3 M6 accepts x if and only if

2

both tests succeed. Since N1 and N2 operate in linear time, so will
M, and MG(AU) = LléLz.

(b) Suppose é,$ ¢ S. Let M, be an oracle machine which if given

7

input ¢x, x € S*, acts like Nl on x; if given input $x, X € S¥%,

2-15

acts like N2 on x; and rejects strings of any other form. Again

since Nl and N2 operate in linear time, so will M

Mo (a) = £L, v L,.

e and

(¢) Let M, be an oracle machine which given input x e S*, first

8
tests whether Nl accepts x and then whether NZ accepts x; M8
accepts its input if and only if both tests succeed. Then MS will
operate in 1inea? time, and M8(A0) = Ll n LZ.
Again, note that the three machines described above will be
deterministic if N, and N are deterministic. 0

1 2

2.3. REPRESENTATION OF LANGUAGES ACCEPTED BY ORACLE MACHINES

In the following theorem, language-theoretic operations are used
to obtaiﬁ the language accepted by a linear-time oracle machine from
the oracle set and a simpler language.. This representation will be used
extensively in Chapters 3 and 4, to aid in characterizing NL(C) for

certain classes of languages (.

Theorem 2.3.1. (1) Let M be a nondeterministic linear-time oracle
machine. Then there exist a 1ength—preserving homomorphism h and a
deterministic linear-time oracle machine D such that for any oracle set
A, M(A) = h(D(4)).

(2) Let D be a deterministic linear-time oracle machine with tape al-
phabet S. Then there exist a language L ¢ DTIME(lin), a length-
preserving homomorphism h

and a homomorphism h, such that for any

1 2

2-16

A c S%, D(A) - {e} = hl(L n h;l(L')) where

L' = (A® (S* - A))* = (#1A u #Z(S* - A))* with #1,#2 é s.

Proof. First, some notation is necessary. If T' 1is an alphabet and k
is an integer, k21, let T, ={[wl: we % 1< |w <k}. ‘That is,
for each nonempty string w e I'* of length at most k, [w] is a new

symbol, and T is the set of these symbols. For x e I'*, x/k ¢ (Fk)*
is defined as follows. Suppose Ix] =mk + j, m=20, 0< j< k-1. If
j =0 then x/k = [wl][wzl...[wm] where x =w;...w ~and]wi| =k
for 1< i<my if j =21, then x/k = [wl]...[wm][y] where

X =Wy, |wi] =k for 1<i<m and |y| =j. If LcT%,

let L/k = {x/k: x e L}." Note that Tr*/k is a regular set.:

(1) Part (1) is proved by applying to oracle machines a technique used

in [10,16,36]. Suppose a nondeterministic oracle machine M operates in
time cn + d and has input alphabet T. Let k = ctd. Suppose M has

at most - m choices of transition at any step and let

V- = {vo, Vi v vm} be an alphabet of mtl distinct symbols. ("VO"

représents a call on the oracle, the only move possible from the query

state.) Let I =T x Wku{ﬂ)={WJh be T} v {[b,[w]]l: b e T,

we Vk, 1c< [w|vs k } where # ¢ Vpr

Let D, be a deterministic oracle machine which has input alpha-

1

bet- I and on input e simulates all the possible computations of M

on e, using its oracle tape just as M would. Dl rejects any non-

2-17

empty input strings. Since there are only finitely many computations
of M on the empty word, D1 can be constructed to operate in linear
time, and for any gracle set A, Dlﬂ(A) = M(A) n {e} . We now consider
a deterministic oracle machine D2 to follow comﬁutations of M on
non-empty inputs.

D, will accept only strings of the form o(x,u/k) ¢ * with

2
X € T+, u e V+, |u/k| < |x|. Given such an input, D, accepts if

and only if the choice of transitions glven by u leads M to accept

x (so that D2 uses its oracle tape just as M would). That is, for
any oracle set A, D(A) = {o(x,u/k): x e T+, u e V+, |u/k| < |x]
and u describes choices of trans;ttions by which M accepts x rela-
tive to A}. D2 can be constructed to operate in linear time; since M
operates in time cn+d and cn+d < kn for n > 1, for any x # e
and any A, x ¢ M(A) if and only if there is an accepting computation
of M on x relative to A with at most k| x| steps if and only if
there is some u ¢ V+ such that 0(x,u/k) e DZ(A). Using a construction
similar to those in Theorem 2.2.4, there is a deterministic linear time

oracle machine D such that for any A, D(A) = Dl(A) U D2‘(A). Let

h: I* > T* be the length-preserving homomorphism defined by
h([bl,bz]) = bl for bl e T, b2 € Vk u {#}; then M(A) = h(D(A)).
(2) Suppose D is a deterministic oracle machine that operates in
time cn + d and has input alphabet T and tape alphabet S. Let

#1,#2 ¢ S be two new symbols and U =S y {#l,#z}. Let

I =Tx (Uk u {#}), where k = cHd.

Let R < I* be the regular set R = {6(x,y): X ¢ T+, y € U%/k,
|x| 2 |yl}. Let hy: I* > U* be the homomorphism defined by
h,([b,#]) = e and for we U*, 1< |u] <k, beT, h([b, [w]]) = w.
Then if A c S* and L' = (A & (S% - A))*, h;l(L') nR = {o(x,y):

X € T+, yeL'/k, |x] = |y|}.

Let D' be the following deteministic Turing acceptor, with input
alphabet X. D' rejects its input unless it is of the form O(x,u/k)
with x e T+, ue U* and |u/k| < |x|. On an input of this form, D'
acts like D would on input x, using the information in

u=+#,u ... #, u instead of oracle calls; that is, D' ' checks that
il 1 im m

D would query its oracle about u. (in that order) and D'

15 cees Up
continues from the "yes" state if ij =1 and from the "no" state if
i, =2, 1<j<m D' accepts 0O(x,u/k) if and only if the answers
in u lead D to accept x. Now since D operates in time cn + d
and the oracle tape is erased after an oracle call, if during a computa-
tion on x, D queries its oracle about strings Ups eeey Wy @ > 0,

and receives "answers" 11’ ooy im then

m + luli + ...+ }um] < clx] +d4 < k|x| for x # e; hence if
u = '#i ug ... #i u_ - then |u/k| < |x]|. Further, for any oracle set
1 m "

A, the answers in u are correct relative to A if and only if
u € (#lA] #Z(S* - A))* = L'. Therefore for any x € T+, x € D(A) if
there exists u e¢ U* such that O(x,u/k) ¢ L(D') and u e L'; or,

x € D(A) 1if and only if there exists y ¢ Uk* with |y| < |x| such

that 0(x,y) ¢ L(D") n (h;l(L') nR).
Let hl: I* > T* be the length-preserving homomorphism determined
by defining hl([bl’bZ]) = bl' Let L =L(D") n R; since R is a regu-

lar set and D' can be constructed to operate in linear time,

L ¢ DIIME(lin). Then D(A)-e} = h (L n h;l(L')). ' 0

The two parts of Theorem 2.3.1 are combined with the closure pro-

perties given in Theorem 2.2.4 to yield the following corollary.

Corollary 2.3.2. For any class of languages C,

ML) = (b (Lo hy'((A @ ($% - A)*): AcS* in C, h, a length-

1

preserving homomorphism, h2 a homomorphism, L e DTIME(lin)}.

Proof. Suppose A c S*¥ isin (. Then from Theorem 2.2.4 A and
S* — A are in NL({A}) and NL({A}) 1is closed under marked union,
Kleene *, inverse homomorphism, intersection with languages in
DTIME(1lin) and linear-erasing (hence length-preserving) homomorphism.
Therefore if L e DTIME(lin), hl is a length-preserving homomorphism
and h2 is an arbitrary homomorphism, then

h (L 0N @ (5% - M)* € NL(AD) < NL(O).

On the other hand, if L e NL((C) then L =“M(A) for some A < S*
in ¢ and M a nondeterministic linear-time oracle machine. From
Theorem 2.3.1 (1), there is a length-preserving homomorphism h and a
deterministic linear-time oracle machine D such that L = M(A) = h(D(A)).
From Theorem 2.3.1 (2), there is a length-preserving homomorphism g1s

a homomorphism h, and a language L' e DTIME(lin) such that

2

D(A) - {e} = gl(L' n h;l((A @ (S* — A))*)). Let hl be the homomor-
phism that is the composition of h with gl; that is, hl is deter-
mined by defining, for a symbol a, hl(a) = h(gl(a)). Then hl is

also a length-preserving homomorphism. Let L=L'y (D) n {e});
since D(A) n {e} is either empty or the singleton set {e}, it is a

regular set, so L e DTIME(lin). ‘Then L = hl(f, n h;l((A ® (S* - A))*)). O

In Chapters 3 and 4, Theorem 2.3.1 will be used to give simpler
representations for NL(C) than Corollary 2.3.2 when C satisfies
certain conditions; e.g., for some classes of languages C,

NL(C) = {‘n(L1 n (S* - Lz)): Ll’LZ c 8% in C, h a length-preserving
homomorphism} . v

The constructions used in the proof of Theorem 2.3.1 can be applied

to oracle machines which do not necessarily operate in linear time,

yielding the following generalization of the representation to arbitrary

time bounds.

Proposition 2.3.3. Suppose M is a nondeterministic oracle machine
which operates in time t(n) and has tape alphabet S. Then there
exist homomorphisms hl and h2 and a language LM € DTIME(1lin) such
that for any oracle set A c S*, M(A) = h (L, n h;l((A & (S* - A))*)),

Further, the homomorphism h, has the property that for any z e L

1 M’

|z[< t(|h1(z)|).

Proof. (sketch) The language L, 1is given by :

M

2-21

Ly = {0(x,y,2): the transitions described in y and the information
given in z about the oracle set cause M to accept x}. The homomor-
phisms ‘hl and hz, then, satisfy hl(O(x,y,z)) =x and

hz(e(x,y,z)) = z. Since M operates in time t(n), if 0(x,y,z) € LM

then lo(x,y,2z)] = |y| =< t(|x|) = t(]hl(e(x,y,z)){). Since the

homomorphism hl does some erasing, the language L does not depend

M
on A. Note that the strings y and z are now written "one symbol per

"

square," rather than k symbols as in Theorem 2.3.1; thus for a symbol

a, |n;(a)], (@] < 1.]

If we drop the convention that the oracle tape is erased after an
oracle call, then a representation similar to Proposition 2.3.3 still
holds. However, it may no longer be the case that for 0(x,y,2) € LM’
lz] < |y| s e(|x|), although |z] < (e(|x|))2.

The conclusion of Proposition 2.3.3 may be restated as follows:
for B = M(A),

x € B iff there exists a string @(x,y,z? such that 0(x,y,z) € LM
and z e (A @ (S* - A))*,

In this form, it is similar to the definition given in [47] of the rela-

tion "B is r.e. in A." Both allow separate consideration of two condi-

tions that must be satisfied by an alleged computation of M with oracle

set A: (1) moves from the query state must be consistent with the

answers from the oracle and other moves must follow from the transition

function of M; and (2) the answers from the oracle must be correct

relative to A. This separation of the oracle calls from the other moves

can be used to simplify proofs about oracle machines, in particular,
the proof of the following fact, which states that the multiple work
tapes of a nondeterministic oracle machine may be replaced with a fixed

number of tapes at the cost of only a linear increase in time.

Corollary 2.3.4. Suppose M is an oracle machine, which operates in
time t(n). Then there exists a nondeterministic oracle machine M'
with 3 work tapes such that for any oracle set A

(1) M'(A) = M(A); and

(ii) every accepting computation of M' relative to A on an input
of length n has to most 3t(n) steps (i.e., M' "accepts" in time

3t(n)).

gggég, Let M be an oracle machine and let S be the tape alphabet
of M. From the previous proposition{ there exist homomorphisms ‘ hl’
h2 and a language LM € DTIME(1lin) such that for any oracle set
Ac S* M(A) = h(Lyn h;l((A ® (S* - A))*)). Also, if M operates
in time t(n), then [u] < t(|h (@|) for ue Ly

Since LM ¢ DTIME(1lin) E‘NTIME(n), from [9] there is a nondeter-
ministic real-time Turing machine M1 with 2 workbtspes that accepts
LM' The nondeterministic‘oracle machine M' operates as follows:
given an input string x - (over the input alphabet of M), M' guesses,
one symbol per step, a string u = 0(x,y,z) for some y and 2z, read-
ing x while guessing the first |x[symbols of wu. As each symbol uy
of u is guessed, M' writes the corresponding symbol hz(ui) of z

on tape 1 and uses u, as the next input symbol to Ml' M' wuses tapes

2-23

2 and 3 as the work tapes of Ml; the third tape is the oracle tape of
M' but the oracle is not queried during this phase of the computation.
If Ml enters an accepting state then the string 0(x,y,z) guessed up

to that point is in LM’ so its length is at most t(|x|). If M1
accepts, then M' proceeds to copy each segment zj e S* of

z = #i zy ... #i z, (m > 0) onto the oracle tape, querying its oracle
1 m

about zj and comparing the response to the marker #i . This phase of
’ 3

the computation takes |z| + m < 2|z| ‘steps. For any z and A, M

accepts x relative to A if and only if there exist strings y,z such

that 0(x,y,z) € LM and z e (A ® (5% - A))*, so M'(A) = M(A). If

M' does accept ‘x (relative to A), by guessing strings y,z, then

lyl,lz| < t([x[); therefore that computation of M' on x has length

at most |0(x,y,2z)| + 2|z| = |y| + 2|z| < 3t(|x|).]

Recall that a function t(n) is a "running time" if there is a
deterministic Turing machine which on any input of length n takes ex-
actly t(n) steps. If in Corollary 2.3.4 t(n) is a running time, then
with the addition of some finite number of extra tapes, the oraéle ma-
chine M' can be constructed to operate (réfher than accept) in time
3t(n). In the context of linear time bounds, this fact will be used in

Chapter 4, so it is stated as a separate corollary.

Corollary 2.3.5. For any class of languages C,
NL(C). = {M(A): Ae ¢, M a nondeterministic linear-time oracle

machine with 4 tapes}. : ' u}

2.4. A RELATIVIZED TIME-HIERARCHY THEOREM

As is the case with the analogous result for Turing acceptors,
Corollary 2.3.4 allows construction of a nondeterministic oracle .machine
which can simulate computations of any oracle machine that operates in
time t(n) and which itself operates in time not much larger than t(n).
The known methods of deterministic simulation with a fixed number of
tapes of deterministic oracle machines are less efficient. These simu-
lation techniques are used in the following theorem to give conditions
on functions tl(n),tz(n) which ensure that relative computation in

time tz(n) is more powerful than relative computation in time tl(n).

Theorem 2.4.1. Suppose A 1is a recursive language and tz(n) is a

running time.

t, (n)1g(t; (n))
(1) If lim ~————S—— = 0 then
e t, ()

DTIME(tZ(n), A) ¢ DTIME(tl(n), A),

'ty (o+1)
(2) If %}gl W= 0 then
NITME(t,(n); A) ¢ NTIME(t,(n), 4). al

See Appendix A for the proof'of Theorem 2.4.1. The proofs 6f
parﬁs (1)'énd (2) are essentialiy the same as the proofs for the analo-

gous results for Turing acceptors [28,49,50]. 1In part (1), it is not

necessary that A be recursive, since the proof is by diagonalization;
the recursiveness of A 1is used to derive a contradiction in the proof
of (2). In both cases the proof is uniform, in the sense that the
oracle machine constructed to demonstrate the non;containment does not
depend on A but only on an alphabet I such that A c I*,

Theorem 2.4.1 will only be applied in the context of polynomial
time bounds. It implies in particular that for a recursive language
A, NP({A}) (and P({A})) can be decomposed into an infinite hier-
archy of classes based on the degree of the polynomial used as a time-

bounding function.

Corollary 2.4.2. For any recursive language A
(1) NL({A}) g NP({A}); and
(2) for any polynomial p(n),

DTIME(p(n), A) G P({A}l)

¢

NTIME(p(n), A) ; NP({A}).

Proof. 'Part (2) follows easily from the theorem. For part (1),
suppose A is a language and M is a nondeterministic oracle machine
which operates in time .cn + d. The language

L = {xe M@A): |x| <c+d} is finite, so let M' be a nondetermi-
nistic oracle machine which acts like M on input strings of length

at least c¢ + d and accepts strings in L by simply reading its input.
Then M' operates in time n2 and M'(A) = M(A); so

NL({A}) < NTIME(nZ, A). If A 1is a recursive language then from part

(2), NL({ah) < NTIME (n?, A) ; NP({A}).]

2-26

One might consider extending Theorem 2.4.1 to classes of languages,
to find, for example, conditions on a class of languages C such that
NL(C) 3 NTIME(nB, C) =u {NTIME(ns, A): A e C}. 1If the class NTIME(poly)
satisfied those conditions, then it will follow from results in Chapter
5 that NTIME(poly) could not be closed under complementation. However,
the proofs of Theorem 2.4.1 (1) and (2) seem to apply only when the
class C has a simple structure; and there exist classes (for which
C = NL(C) = NP(C) (e.g., C = PSPACE).

In the remainder of this dissertation, frequent application will
be made of the "mathematical machinery," representation theorems and

closure properties established in this chapter.

Chapter 3: THE RUDIMENTARY RELATIONS AND RELATIVE COMPUTATION

In this chapter the rudimentary relations will be defined and in-
vestigated as a family of formal languages. The class of rudimentary
relations is the smailest class of string relations containing the con-
catenation relations '"xy = z" and closed under some natural operations,
called the rudiﬁentary operations (basically the Boolean operations and
a form of bounded quantification). Extending the work of Quine [44] on
definability from concatenation, Smullyan [51] introduced the rudimen-
tary relations (or ﬁattributes") and used them in a development of recur-
sive function theory based on string manipulation. Bf taking this ap-
proach, Smullyan identified small bases for the recursively enumerable
sets and proved normal form theorems without relying on number theory.

The rudimentary relations are "constructively" definable from con-
caténation; hence they may be viewed as a string-theoretic analog of the
constructive arithmetic relations, also defined by Smullyan [51]. The
class of constructive arithmetic relations is the smallest class of rela-
tions on natural numbers containing addition and multiplication -and closed
under number-theoretic versions of the rudimentary operations (the
Boolean operations, finite quantification and explicit transformation).
Since most formal models for computation and, in particular, for restric-
ted computation are based on string manipulation, it is appropriate for
the study of computational complexity to consider the rudimentary rela-

tions rather than the constructive arithmetic relations. Results about

either class apply to both, however, since Bennett [4] has shown that

the two classes are the same when strings are viewed as numerals.
Interest in the rudimentary relations is strengthened by the observation
that although it is a class of "low" complexity (contained in Grzegor-
czyk's class Zg [25]) yet it contains exponentiation (as the relétion
"mt = p" [4]) and forms a basis for the recursively enumerable sets.

We will see in this chaptef and the next how questions which remain open
about the rudiméntary relations are tiéd to some important open questions
in automata-based computatioﬁal complexity.

The first section of this chaptef contains the definition used here
for the class of rudimentary relations; it is equivalent to the defini-
tions used by Smullyan and others [4, 33, 57]. To allow comparison 6f
the rudimentary relations to classes of languages, the mapping 6 (given
in Chapter 1) is used. No information is lost in passing from the rudi-
mentary relations to the family of languages associated with it under
this encoding, since a relation is rudimentary if and only if the lan-
guage encoding it is a (l-ary) rudimentary relation. In Section 2, some
properties of the rudimentary relations are established and the machinery
developed in Chapter 2 is applied to the class of (encodings of) rudi-
mentary relations. As a result, the family of rudimentary relations is
characterized as the smallest nonempty class of languages "closed under"
the operator NL(). Finally, in Section 3, parts of the proof of this
characterization are examined more closely, to extract the information’
they contain about classes of languages in general and about language-the-

oretic closure properties. In particular, the class of rudimentary rela-

tions is shown to be the class of languages generated by the language
{a™": n 2 0} under the operations of inverse homomorphism, length-

preserving homomorphism and the Boolean operations.
3.1. DEFINITION OF THE RUDIMENTARY RELATIONS

We begin with a definition of the rudimentary operations and the
rudimentary relations. The definition is in a more general form than

that given by Smullyan [51] and is based on the definition of Jomes [33].

Definition 3.1.1. (1) We shall call the following operations the "rudi-
mentary operations."

(1) Explicit transformation: An explicit transformation of a rela-

tion R is obtained by adding redundant variables, identifying or per-
muting variables, or substituting a string for a variable. That is,
Q E[S*]n is defined by explicit transformation from R S[S*]m if and
only if Q = {(xl, vees xn): (tl, ey tm) € R} where for 1< i< m,
ti is a string containing symbols from S or variables Xps eeey X

*
(or both). For example, ty might be x, ora string we S or
X WKy«
(ii) Boolean operations: The Boolean operations are union, intersection
and difference of relations over the same alphabet.

+
(iii) Bounded existential quantification: Suppose R < [S*]n l, n > 0.

n+l

*
A relation Q c [S'] is defined by bounded existential quantification
%
from R if and only if Q = {(xl, ey xn,y): for some z € S° such

that |z| < |y|, (xy> -++5 x,2) € R}. This will also be written

Q= 3<R.

*
(2) For an alphabet S, the concatenation relation CS on § is

defined to be CS ={(x, y, 2): x,y,z ¢ s*, xy = z}. Define RUD(S)
to be the class of relations on S* definable from CS by a finite
number of applications of the rudimentary operations; that is,

RUD(S) is the smallest class of relations containing Cq and closed
under the Boolean operations, bounded existential quantification and

explicit transformation. Finally, define

RUD = v {RUD(S): S any finite alphabet}.

The definition of the rudimentary relations in [51] restricts them
to the alphabet {1,2}, and in [4] separate classes of m-rudimentary
relations are defined for each m > 1; in both these definitions the
operation of explicit transformation is restricted to a simpler form,

in which each term t, is either a constant string or one of the vari-

i
ables. Clearly if #(S) = #(T) then RUD(S) is equal to RUD(T) (i.e.,
isomorphic under a renaming of the symbols); it is shown in [33] that
for #(S) =m, RUD(S) is equal to the m-rudimentary relations. More-
over, in a certain sense (discussed below) the alphabet may be restric-
ted to two letters without changing the class of relations defined.

A string relation may be viewed as a relation on natural numbers,
in the following way. If S = {sl, cees sm} is an alphabet with m
symbols, let eg: N + S* be the bijection which assigns to a number

its m-adic notation. That is, eS(O) =e and for n21,

k ;
e(n) =s, s, ... s if and only if n =) i.mk_J. The function e
S i71 i jo1 3 S

2 k

is extended to tuples of numbers and to relations on numbers in the
obvious way. The results in [4,33] show that for #(S),#(T) > 2, if
W is a relation on IN then eS(W) € RUD(S) if and omly if

eT(W) € RUD(T); further, for £ ={1,2} a relation W on IN is
constructive arithmetic if and only if ez(w) € RUD(Z). Hence

RUD = RUD(L) when they are viewed as relations on natural numbers,
and, also in this sense, RUD is the class of constructive arithmetic
relations.

The class of rudimentary relations is closed under two other forms
of bounded existential quantification. If n > 1, R c [S*]n+l,_
define

(i) e®R) = {(xl, vees xn>: there exists z e¢ S* such that

|z] < max{|x 1<i<n} and

nE
(xl, cees X, z) € R}; and
(ii) for 1< j < m,

ej(R) = {(xl, cees xn): there exists z ¢ S* such that

|z| < |xj| and (xl, cees X z) € R}.

Let Q = I< R be as in Definition 3.1.1. Then sj(R) is an explicit
transformation of Q: for 1< j < n,
ej(R) = {(xl, vees xn): (xl, cees X5 xj) € Q}.
Also, €e(R) can be defined from Q using union and explicit transfor-
mation: e(R) = sl(R) u EZ(R) U oo U en(R).
The same class RUD of relations results if the operations P

i 21, are used in place of 3J< in the definition of the rudimentary

*
operations. To see this, let R' c [S]n+2 be the explicit transfor-
mation of R defined by
LI . .
R {(xl, v Xn+2)' (xl, cees X xn+2) € R};

then Q = sn+1(R'). When ¢ is used to define a relation R from

i 1
R, this will also be written

(xl, ey xn) € Ry & (Bz)xi[(xl, ees X, 2) € R].

Notice that this is a quantification in which the length of z is

bounded by the length of x (rather than one in which the number rep-

i

resented by z 1is bounded by the number x represents) .

i
The class of rudimentary relations is also preserved if constant
multiples of the lengths of the variables are used to bound the quantifi-

cation. For exémple, suppose k is an iﬁteger and
Q' = {(xl, cees Xy y): ‘there exists z e S* such that
|z| < k|y| and (xl, <evs X5 2) € R}

Then Q' is an explicit transformation of Q:

Q= LGy e x W (e, X, yk) €Ql

k
where = yy... is the strin concatenated with itself k times.
y y. - y g vy

In Theorem 3.2.7 the rudimentary relations will be compared to a
certéin class of languages; to make this comparison we associate the
language 6(R) with a string relation R. Myhill used the mapping 6
in a proof that any rudimentary relation could be accepted by a determi-
nistic linear-bounded automaton, i.e., RUD C DSPACE(n). Other encodings

of tuples of strings are possible, for instance the "sequential" one,

3-7

taking (xl, “ons xn) to xl# - #xn. The "parallel" encoding 6 is
used here because it gives rise to simple relationships between the

rudimentary operations and language-theoretic operationms.

Proposition 3.1.2. If a relation Q is defined using rudimentary op-
erations from a relation R, then 6(Q) can be defined from 6(R) and
languages in DTIME(1lin) by application of Boolean operations, homomor-
phism and inverse homomorphism. Specifically:

(1) If R,R'c [*]" and #¢ S then B(RUR') = 6(R) u 6(R'"),

6(Rn R') =6(R) n 6(R'") and B(R-R') =06(R) - 6(R");

(2) 1f Q is defined from R by bounded existential quantification,
then there exist a regular set LO, a homomorphism h and a length-pre-

serving homomorphism h' such that 6(Q) = h'(L0 n h-l(e(R))); and

(3) If Q is an explicit transformation of R then 6(Q) can be
formed from 6(R) by applying inverse homomorphism, iinear—erasing homo-

morphism and intersection with languages in DTIME(lin).

Proof. Verification of (1) is straightforward.

n+l

For (2), suppose Q,R < [s*1 and Q = 1< R. Let

*
Ly = {8Cxy, cvvy x5 5, 2)¢ lz] < |y} < ([S#]n+2) 3 them Ly 1is a

nt+2, * n+l, *

regular set. Let h: ([S#]) > ([S#]) be the homomorphism deter-

mined by defining

e if b1=...=bn =‘bn+2=#
h([bl, vees bn+2])

[b b, b

by vves by n+2] else.

n+2, * nt+l, *

Let h': ([S#]) > ([S#]) be the length-preserving homomorphism

} ' =
determined by defining h ([bl’ vees b D) [bl’ vees bn+1]' Then

n+2

h(e(xl, ey X 5 Vs 2)) = 0(X,5 ee., X0 z) and

n

h(O(xg, ..., X5y, 2) = 8(xy, .y X, y) if |z] < |y|; hence

8(Q) = h'(Ly 0 (e ®))).

For (3) it is sufficient to show that the statement holds in the
following three cases, since any explicit transformation can be built up
from transformations of these forms. Suppose R c [s*1® and let
(i) Q) = {(xg5 weny x)t (x"(l),b cees xﬂ(n)) € R} where w is some

permutation on {1, 2, ..., n};

(ii) Q, = {(xl, vees X 1): (xl, vy xn) € R}; and

nt.

i Qg = {(x, R N L IR TII I NI I CPIRPRIE SN R}

where t(xl, sep xn—l) is a string containing variables and symbols

*
from S. Let hy: ([S#]n)* > ([S#]n) be the length-preserving homo-
morphism determined by defining hl([bl, cees bn]) = [bn(l)’ ceesy bw(n)];

ntl, *

then e(Ql) = h;(8(R)). Define a homomorphism h,: ([S#]) >
nok
([s#]) by f e if b, = ... =b_=¢#

By(Ibys ees b1

L[bl, seey bn] else.

Then hz(e(xl, cees xn+l)) = 0(X;s oves xn) and
0(Q) = h18(®) n 0([S*]™). (Note that 8([s*]™) is a regular set.)

Let h,: ([S#]n)* -> ([S#]n-l)* be the homomorphism (similar to h

3 2

determined by defining e if bl = ... =b = #
h3([b1, oo bn]) =

ﬁbl, ceey bn-l] else.

Let L, = {6(x1, vy xn): x = t(xl, cees X

)}. Then

6(Q3) = h3(e(R) n Ll). Since t(xl, «ees X) 1is formed by concate-

n-1
nating some of the variables and some strings in S*, it is easy to see
that Ll can be accepted in linear time by a deterministic Turing ma-
chine with two-way input and one work tape. (Notice that if

t(xl, ey Xn—l) is of a simple form, either a constant string or one

of the variables, then L is a regular set.) Also because of the form

1

of t(xl, cees Xn-l)’ there are constants Cps Cps oes c 1 su?h that
*

for any Xis eees X 1€ S,

|t(xl, ey Xn—l)l s ¢yt c1|x1! + ..+ cn-llxn—ll' Therefore if

c = n-max{ci: 0 <1< n-1} then for any z ¢ Lis |z] < c[h3(z)|;

that is, h3 is a linear-erasing homomorphism on L hence on

1’

L, n 6(R).]
If explicit transformations are restricted to forms (i) and (ii)

above and form (iii) with t(xl, ey xn_l) either a constant string or

one of x then part (3) of this proposition can be strength-

12 s X 1o
ened as follows: for any explicit transformation Q of R, there exist
a regular set L and homomorphisms 81> 8 such that

6(Q) = gl(ggl(e(R)) n L) and g1 is e-limited on ggl(e(R)) nL.

3-10

3.2. A CHARACTERIZATION OF THE RUDIMENTARY RELATIONS

The distinction between the rudimentary relations and the class of
languages . {6(R): R e RUD} will now be ignored. We will see that the
rudimentary relations are closed under some useful language-theoretic
operations and contain the languages accepted by certain types of
resource-bounded automata. In particular, any language accepted in
linear time by a nondéterministic multitape Turing acceptor is rudimen-
tary. ' This fagt combined with the representation given in Theorem 2.3.1
yiel#s the principal result of this section, that RUD 1is the smallest
nonempty class f satisfying NL) E,{_’.

The comparison of RUD to a class of languages defined by automata
is easier if the latter class can be shown to be generated by some rudi-
mentary language under operations which preserve RUD. The Dyck sets,

defined below, are the basis for two such élgébraic characterizations.

Definition 3.2.1. Let 22 be the alphabet {al, a,, Ei, ;é} and let

I ez, be the alphabet {al,;i}. Let ~ be the binary relation on

*
) defined by x ~y if and only if x = ua a,v for some u,v e I

z 1

2 3
i=1lor 2, and y=uv. That is, x~y if y results when some

*
43 or a,a is cancelled from x. Let ~ denote the reflexive

and transitive closure of ~. Then D2, the Dyck set on two letters,

pair a

* *
is defined to be D, = {x € I, 2 x e} and Dy, the Dyck set on one
*

*
letter, is defined to be Dl ={x ¢ El : x ~ e},

3-11

Consider ay and ar, and a, and ;é to be two types of match-

ing parentheses. Then D1 consists of strings of balanced parentheses
of one type, and D2 consists of strings that are_properly nested and
balanced parentheses of both types. The Dyck sets are context-free lan-
guages; the importance of the Dyck set on two letters lies in the fact

that it generates the context-free languages under the operations of

intersection with regular sets, inverse homomorphism and homomorphism.

Proposition 3.2.2 (Chomsky-Schutzenberger). If L is a context-free
language then there exist a regular set L' and homomorphisms hl’ h2,

with h, length-preserving, such that L = hZ(L' n hIl(DZ)).]

The first version of the Chomsky-Schutzenberger Theorem appeared in
[14]. in that proof, as well as in subsequent refinements [18], the
homomorphism h2 is not necessarily even e-limited on L' n hil(Dz);

a proof of the version of the theorem given above can be found in [8].

The following result when combined with Proposition 3.2.2 shows
that the class NTIME(n) is generated by the Dyck set on two letters and
the regular sets under the operations of intersection, inverse homomor-

phism and length-preserving homomorphism.

Proposition 3.2.3 ([9]). If L e NTIME(n) then there exist a length-
preserving homomorphism h and context-free languages Ll’ LZ’ L3 such

that L = h(L1 n L2 n L3).]

The next proposition brings together some facts about rudimentary

relations that will be useful for the proof of Theorem 3.2.7.

3-12

Proposition 3.2.4. (1) (Jones [33]) For aﬁy relation R, R e RUD if
and only if 6(R) € RUD.

(2) For any relation R, if 6(R) ¢ NSPACE (lg(n)) € then R RUD (i.e.,
NSPACE(lg(n)) < RUD).

(3) Suppose L c S*, h: T* > S* is a homomorphism and h': S* > ¥
is a homomorphism that performs linear erasing on L. Then L ¢ RUD
implies h 1(L),h'(L) ¢ RUD.

(4) For any relation R, if 6(R) e NTIME(n) then R € RUD.

*
(5) 1f Ll’ L2 are rudimentary languages then (L1 & L2) € RUD.

Note that part (1) justifies our equating the family of rudimentary rela-

tions and the family of languages {6(R): R ¢ RUD}.

Proof. (1) For n =1, let Tn = {(xl,...,xn,z): z = e(xl,...,xn)}.
Jones [33] has shown that Tn is rudimentary for each n (and any alpha-
bet); the proof relies on the fact that relations such as "|x| = |y|"
and “"a is the |x|-th symbol in y" are rudimentary. Recall that

]G(xl, cees xn)| = max{ |x 1< i< n}. Now for any relation R,

il
6(R) = {z: there exist Ky eees X such that |xi[< |z! for

1<4i<n, (xl, cees Xy z) € T and (xl, S xn) € R};
and
R = ((xl,'..., xn): there exists z such that |z| < mﬁx]xil,

(xl, cees Xy z) € T, and ze 8(R)}.
°

As remarked previously, the types of quantification used in the two ex-

pressions above can be replaced by bounded existential quantification

3-13

(and explicit transformation and union); therefore R and 6(R) can

be defined from each other and Tn by use of rudimentary operations.

(2) If Rc [s*1™ and # ¢ S, let
o(R) = {xl#xz#...#xm: (xl, cees xm) € R}.
It is shown in [42] that R 1is rudimentary if there are constants k > 1
and e, 0 < e <1, such that o(R) is accepted in time nk and space
n® by a Turing acceptor with a two-way read-only input tape and one
work tape (to which the space bound applies). The proof is similar in
form to that in [45], where Turing acceptors are arithmetized to show
that a class of relations contains a basis for the recursively enﬁmerable
sets; in this case the arithmetization must be done to allow use of only
bounded quantification, so that the resulting relations are rudimentary.
A similar theorem appears in [57].

It is easy to see that o(R) € NSPACE(lg(n)) if and only if
6(R) < NSPACE(lg(n)) and that any language in NSPACE(lg(n)) can be accep-
ted by a device which satisfies the conditions of the theorem cited

above; therefore, if 6(R) ¢ NSPACE(lg(n)) then R is rudimentary.

(3) Given L c s* and h: T* - s* a homomorphism, let

m = max{|h(a)|: a € T}. Let Ry be the binary relation on (S u T)*

defined by R, = {(x,y): x e T, y € s*, h(x) = y}. Then

S(Rl) € DSPACE(1g(n)), so R, is rudimentary. Let R, be the explicit

transformation of L given by R, = {(x,7): x e T¥, y € L}. Let Ry

be defined from R, n R

1) by bounded existential quantification:

(x,y) € R, = (Hz)y[(x,z) € Ry n Ry]. Then h-l(L) = {x: (x,x™) ¢ R3}

is an explicit transformation of R3; hence h_l(L) is rudimentary if
L is rudimentary.
suppose h': ¥ > T* is a homomorphism with the property that.

|%| < k|h'(x)] for any x e L. Let Q; = {(x,y): h'(y) = x} and

*
Q, = {(x,9): xe€ T, ye L}. Then e(Ql) € DSPACE(lg(n)) and Q, is an
explicit transformation of L, so both are rudimentary if L is. If
Q3 is defined from Q1 n Q2 by bounded existential quantification, then

h'(L) = {x: (x,xk) € Q3} and therefore h'(L) is rudimentary.

(4) Since ©0(R) ¢ RUD dimplies R e RUD, it is sufficient to show that
any language L e NTIME(n) is rudimentary. 1In [46] a deterministic
automaton is described which accepts the Dyck set on two letters and uses
1g(n) space on an input of length n; hence D2 € DSPACE(lg(n)) and,
using part (2), D2 € RUD. Also, any regular set is rudimentary, since

any regular set is in DSPACE(lg(n)). Therefore, from Proposition 3.2.2 and
part (3), any context-free language is rudimentary. Using the characteri-
zation of NTIME(n) given in Proposition 3.2.3 and the closure properties of
RUD, any language in NTIME(n) is therefore rudimentary. (In [34,57]

the Chomsky-Schutzenberger Theorem is also used to show that any context-
free language is rudimentary, with different methods for showing that

the Dyck.sets and regular sets are rudimentary.)

(5) Suppose LisL, € s and ~#i,#2 ¢ S, and let

= = * & *, .
L1 [L2 = #lLl u #ZLZ' Let L = ({#l,#z}s)¢ - (L1 & L2) s since

3-15

(¢4 #l,#z}s*)* is a regular set, (Ll] Lz)* is rudimentary if and only
if L is rudimentary.

Let T=Suy {#l,#z}. Rather than giving an explicit definition of
L from CT using the rudimentary operationms, thevpreviously established
facts about RUD will be used, specifically the facts that RUD is
closed under nonerasing homomorphism, inverse homomorphism and intersec-

tion with regular sets. Note that
L = ({#l,#z}s*)*({#l} (s* - Ll) u {#2} (s* - LZ))({#l_’#z}S*)*'

Let U =1{a: ae S} be an alphabet isomorphic to S, with Un T = @.

For i=1,2 Ilet Ri c Uu T)* be the regular set
*
Ry = (#0038 ({4, #309%. Let hy: (Uu D* > T be the

length-preserving homomorphism determined by defining hl(#l) = #l’

hl(#z) = #2, and for ae¢ S, hl(a) = hl(z) = a. Let h2: wuD*> s*

be the homomorphism determined by defining hz(#l) = h2(#2) = e and for
ae S, hz(a) = a and hZ(Z) = e. Thus, applying h; to a string

x € S inserts some symbols from U u {#1,#2} into x, and applying
hl to a string y e (U u T)* changes symbols a e U occurring in y

to the corresponding symbols a ¢ S. Then
_ -1, .* =1, .%
L = hl((h2 (s - Ll) n Rl) u (h2 (s* - LZ) n Rz)),

so L is rudimentary. . a

Recall that NL(C) = {M(L): L€ C, M a nondeterministic linear—
time oracle machine}. We now define iterations and the closure of the

operator NL().

3-16

Definition 3.2.5. Let C be a class‘of languages. Define N‘LO(C') =C,
and for k=0, M) = X)), Define NLA() = u (NMK(O): k = 0}.
Thus, NL¥*(C) is the closure of C under the operator NL(), the

smallest class of languages L satisfying C c ,,(and NL(L) S Fé

*
The following closure properties of classes defined by NL () are

easily established using Theorem 2.2.4.

Proposition 3.2.6. Suppose (is a class of languages which either
consists of a single language or is closed under marked union. Then
NL*(() is closed under the Boolean operations, linear-erasing homomor-

phism and inverse homomorphism, and contains the class DTIME(lin). O

Note that if C(is a nonempty class then § ¢ NL(C); hence if C
is nonempty and NL(() < ¢, then NL* ({@}) c C. Therefore, NL*({m)
is (by definition) the smallest nonempty class that is closed under
ML). ’

We now have the necessary preliminaries for the proof of the char-

acterization.

Theorem 3.2.7. A relation R is rudimentary if and only if
8(R) € NL*({(B}), i.e., RUD = NL*({G}). Thus the class of rudimentary

relations is the smallest nonempty class (satisfying NL(O) c C

Proof. First note that for any finite alphabet S, (-)(Cs) € DTIME(lin),
where Cg = {(%,y,2): xy = z, x,y,z € 5*}. Using Proposition 3.2.6,

e(cs) e NL*({@}). Also from Proposition 3.2.6, NL¥*({@}) is closed

3-17

under inverse homomorphism, linear-erasing homomorphism and the Boolean
operations. Combining this with Proposition 3.1.2, we see that the class
of relations {R: 8(R) e NL*({@})} is closed under the Boolean operations,
explicit transformation and bounded existential quantification, so from
the definition of RUD, if R is a rudimentary relation then
8(R) e NL*({g}).

Clearly @ e RUD. Since 6(R) ¢ RUD implies that R is rudimen-
tary, to show that NL*({g}) < RUD it suffices to show that
NL (RUD) € RUD. Let L be a language in RUD and let M be a nondeter—
ministic linear-time oracle machine. Using the representation given in

Corollary 2.3.2, there exist a length-preserving homomorphism h a

1’
homomorphism h2 and a language L' ¢ DTIME(lin) such that
ML) = hy(L' 0 B3N((L @ (S* - L)), where L c S*. Now AUD is closed
under intersection and difference and, from Proposition 3.2.4 (3-5),

under the other operations used in this expression; therefore

M(L) € RUD. 0

The family DSPACE(n) contains DTIME(lin) and is closed under
the Boolean operations, inverse homomorphism and nonerasing homomor-
phism; therefore from Corollary 2.3.2 NL(DSPACE(n)) < DSPACE(n). Since
the empty set is clearly in DSPACE(n), we can conclude the following

known inclusion.

Corollary 3.2.8 (Myhill [41]). Every rudimentary relation can be accep-

ted in linear space by a deterministic Turing machine:

3-18

RUD c DSPACE(n). a

This coroliary can be proved by another method. It is known [45]
that the family DSPACE(n) is Grzegorczyk's class éi [25], again
viewing strings as numérals in m-adic notation. From the definitions

of the classes it is not hard to show that every rudimentary relation is

in ﬁg [51], hence RUD ¢ fg < é* = DSPACE(n). (A direct proof that
22 . 20 < 2
RUD ¢ 2, is given in [45].) It is not known whether T 7 Cgs O
22 20 _ 22
whether RUD i .4 3 mnote that if RUD = DSPACE(n) then Te= i

This problem will be discussed further in the next chapter.

3.3. EXTENSIONS

In the proofs of Proposition 3.2.4 and Theorem 3.2.7 only some of the
properties of the rudimentary relations were used in each part. In this
section the ideas of those proﬁﬁg will be applied to classes of lan-
guages in general.

We first restate the closure properties of NL(C) and NL*(C) in

the following form.

Proposition 3.3.1. If Cv ié a class of languages closed under marked
union or which conéists of a single language then:

(1) the clésure of C under union, intersection, product, Kleene %, in-
verse homomorphism and linear-erasing homomorphism is contained in

NL(C); and

3-19

(2) the closure of (C under the Boolean operations, product, Kleene *,
inverse homomorphism and linear-erasing homomorphism is contained in

NL*(C) . » o

An "abstract family of languages' (AFL) [20] is a class of languages
containing at least one nonempty language and closed under union, inter-
section with regular sets, product, Kleene *, inverse homomorphism and
nonerasing homomorphism. Thus Proposition 3.3.1 states that, for a non-
empty class (satisfying the condition, NL(C) contains the AFL-
closure of C (i.e., the smallest AFL containing (); and NL*(C) con-
tains the Boolean and AFL closure of C. The containment may be proper:
for instance, the class ;Z of regular sets is closed under the Boolean
and AFL operations, but NL(R) = NTIME(n) and NL*(Z) = RUD, both of
which properly contain the regular sets.

We now consider conditions under which equality does hold in Propo-

sition 3.3.1.

Proposition 3.3.2. Suppose (is a class of languages containing DZ’
the Dyck set on two letters. Then NL*(C) is contained in the closure
of C wunder intersection, difference with regular sets, inverse homomor-

phism and length-preserving homomorphism.

Proof. The proof is similar to the proof of Theorem 3.2.7. Let C be

a class of languages that contains D and let (, denote the closure

2 0

of C wunder intersection, difference with regular sets, inverse homomor-

phism and length-preserving homomorphism; it must be proven that

NL¥(C) < C

0
Since C ¢ C,, for NL*(C) < Cy it is sufficient that

NL(CO) < CO. It is easy to see that Co is closed under union and con-

tains every regular set. Since D2 is in CO and 00 is closed under

inverse homomorphism, length-preserving homomorphism and intersection
(wifh regular sets), from Propositions 3.2.2 and 3.2.3, NTIME(n) c Co.
Referring again to Corollary 2.3.2, if M is a nondeterministic linear-
time oracle machine and L c S* 1is an oracle set, then M(L) € CO if

(L& (S*-L)*eC since M(L) can be formed from (L & (S* - L))*

0)
using length-preserving homomorphism, inverse homomorphism and intersec-

tion with a language in DTIME(lin). Recall from the proof of Proposi-

tion 3.2.4 (5), that for L.,L c 5%, regular sets Rl’RZ and homomor-

1’72

phisms hl, h2 were constructed (with h, length-preserving) such that

1
* _ -1 -1
(#8357 = (Ly @ L)* = h)((h)"(8% - L) n R u (hy (S* - L,) n Ry)).

Therefore if L c S* is in C then (L & (S* - L))* ¢ C and so

0’ 0’

NL(CO) c CO. 0
In the proof above, to allow the conclusion that NTIME(n) < Co,

it is sufficient (and also necessary) that the Dyck set on two letters

be in C,. Thus the condition on C in Proposition 3.3.2 can be weakened

0

if D, can be generated from some other language in C.

2

Proposition 3.3.3. If C is a class of languages containing the lan-
guage {0™1™: n > 0} then the Dyck set on two letters is in the closure

of C under intersection, difference with regular sets, inverse homomor-

phism and length-preserving homomorphism. 0

The proof of Proposition 3.3.3 can be found in Appendix B. It is first
shown that D2 can be formed from Dl by application of Boolean opera-
tions with regular sets, union, inverse homomorphism and length-preser-
ving homomorphism; and then that D

, can be formed by applying those

operations to {0"1": n > 0}.

Theorem 3.3.4. Suppose (is a class of languages which contains

{Onln: n 2 0} and which is either a singleton class or is closed under
marked‘union. Then NL*(C) is equal to the closure of (under inter—
section, difference with regular sets, inverse homomorphism and length-
preserving homomorphism. If further C is closed under inverse homomor—
phism, then NL*(C) is equal to the closure of (under intersection,

difference with regular sets and length-preserving homomorphism.

Proof. The first part follows easily from Propositions 3.3.1-3.3.3.
For the second part, let 01 denote the closure of ¢ under intersec-
tion, difference with regular sets and length-preserving homomorphism;
it must be shown that Cl -1s closed under inverse homomorphism.

Let D, =(C and for k >0, let D 1= {Ll n LZ’ R-1L

0 k+ r

h(Ll): Ll,L2 € Dk’ R a regular set, h a length-preserving homomorphi-

sm}. Then 01 = L}Dk. Since by assumption (is closed under inverse
k

homomorphism, if L € D0 and h is a homomorphism then h-l(L) € Cl.

For any languages Ll’ L2 and any hbmomorphism h,

n g Ly = ntaw) o nh,) and w7t - L) =t - h’l(Lz).

Furthermore, inverse homomorphism and length-preserving homomorphism

"commute," in the following way:

Claim. If hl: S* >~ T* 1is a nonerasing homomorphism, h2: U* > T*
is a homomorphism and L c S*, then there exist a regular set L', a

length-preserving homomorphism h and a homomorphism h4 such that

3
w1l (L) = b o BIE))
2 V1 3 4 .
This construction is given in [21, pp. 43-44].
Thus an induction argument can be given to show that for all

k>0, if L ¢ Dk and h is a homomorphism then h_l(L) e C and

1’
therefore Cl is closed under inverse homomorphism. O

Theorem 3.3.4 yields other, algebraic, characterizations of the

rudimentary relations.

Corollary 3.3.5. (1) (Yu [57]) RUD is equal to the closure of the
context—free languages under the Boolean operations aﬂd length-preser-
ving homomorphism.

(2) RUD is the smallest class of languages containing 0™": o= 0}
and closed under the Boolean operations, inverse homomorphism and length-

preserving -homomorphism. O

Note that part (1) of the corollary above holds if the context-

free languages are.replaced by any class of languages contained in RUD,

closed under inverse homomorphism and containing {Onln: n 2 0}, e.g.,

the deterministic context-free languages, the linear context-free lan-

3-23

guages, the one-counter languages, the class DSPACE(lg(n)). Recall ‘that
the closure of the regular sets under the Boolean operations and length-
preserving homomorphism is just the regular sets, which is properly con-
tained in RUD. Since {Onln: n20} is a simple.nonregular set, this
raises the question of whether there is a class of languages for which
the closure in part (1) properly contains the regular sets but is itself
properly contained in RUD. Alternately, is there a nonregular language
L such that the smallest Boolean-closed AFL containing L is propgrly
contained in RUD?

Part (2) of this corollary has the following interpretation. It
can be shown that for any alphabet S the language
{6(x,y,2): x,y,z € S*, xy # z} can be accepted by a nondeterministic
one-counter automaton with the property that during any computation the
counter makes at most one turn (i.e., one change from increasing to
decreasing). Furthermore, the class of nondeterministic one-turn one-
counter languages is generated by the language ™™ o> 0} under the
operations of intersection with regular sets, inverse homomorphism and
homomorphism [22].

Nonerasing or linear-erasing homomorphism can be used in Corollary
3.3.5, with the same results. On the other hand, the closure of the
(linear) context-free languages under intersection and arbitrary homomor-
phism is the family of recursively enumerable sets [26, 2]; and any r.e.
set can be generated from {anbn: n 2 0} by application of the AFL op-
erations, intersection and arbitrary homomorphism [27].

Recall that NL*(C) 1is closed under linear-erasing homomorphism for

3-24

any class of languages C. There exist classes of languages closed
under nonerasing homomorphism (and the other AFL operations) but not
under linear erasing [23]; however, from Theorem 3.3.4 it is clear that
any sufficiently large Boolean-closed AFL is closed under linear-ergsing

homomorphism.

Corollary 3.3.6. If C is a class of languages containing
0™% a2 0} and closed under difference with regular sets, union,
intersection, inverse homomorphism and length-preserving homomorphism,

then C is an AFL closed under linear-erasing homomorphism. u}

In [12] conditions on C are given for which the closure of C
under intersection and nonerasing homomorphism is itself closed under
linear erasing homomorphism; the proof, like tﬁat for Corollary 3.3.6,
uses constructions involving automata. Once these results have been
stated it is possible to give proofs which make no reference to automata,
but ﬁhich, however, sﬁill rely on such algebraic éharactefizations as
those given in Propositions 3.2.2 and 3.2.3.

It is possible to strengthen Cor. 3.3.6 as follows: if C contains
the (deterministic) linear context-free languages and is closed under
intersection, inverse homomorphism, length-preserving homomorphism and
union with {e}, then C is also closed under linear—e;asing homomor-
phism.

Now we consider the relationship of the operator NL() to lan-

guage-theoretic closure properties.

Theorem 3.3.7. Suppose C is a class of languages closed under marked

product, marked +, inverse homomorphism, union with languages in

DTIME(1lin) and intersection with and product with regular sets. Then
*

* .
NL(C) = {h(L1 n(Z - Lz)): Ll,L2 c I in ¢, h a nonerasing

homomorphism} .

Proof. For the containment from right to left, first recall from The-
orem 2.2.4 that NL(C) is closed under nonerasing homomorphism and
union with regular sets and contains L and 2* - L whenever L c I*
is in (. 1If Ml and M2 are nondeterministic ;inear-time oracle
machines (with the same input and tape alphabets) then for any orécle
sets Ll’ Lz, it is easy to construct a nondeterministic linear-time

oracle machine Mb

such that Ml(Ll) n MZ(LZ) = MO(LO) where

L0 = (L1 u {e})é(L2 u {e}). Thus if C is closed under marked product
and union with regular sets, NL(C) is closed under intersection, and
the containment follows.

Suppose L ¢ NL(C), so that L = M(Ll) with Ll e, M amnon-
deterministic linear-time oracle machine. From Theorem 2.3.1 (1), there
is a length-preserving homomorphism h and a deterministic linear-time
oracle machine D such that M(Ll) = h(D(Ll)); since the composition
of nonerasing homomorphisms is a nonerasing homomorphism, we may assume
that M 1is deterministic.

Now suppose M operates in time cn +d and L ¢ T*, L, c S%,

Let #, #1, #2 be three new symbols and

U=Tx ({#} v (Su {#l,#z})k) = {[a,#]: ae T} u

{[a,w]l: ae T, we (Su {#l,#z})*, 1< |w < Kk},
where k = c + d. Let hlz U* > T*% be the homomorphism determined by
defining hl({a,x]) = a, and h2: U* > (S u {#1,#2})*, by defining

hz([a,#]) = e and hz([a,w]) = w. The proof of Theorem 2.3.1 (2) can
be modified slightly to yield the following: there exists a language

Ly £ U% in DIIME(Lin) such that L = M(L;) = h (L, n b3 (L,)) where
- _ *
Ly = (L# v (s* L#)™.
Let S ={a: ae S} be an alphabet disjoint from S. Let
hy: (S U Su {#1,#2})* + (Su {#1’#2})* be the homomorphism determined
by defining h3(a) = h3(5) =a, aces$§, h3(#l) = #1 and h3(#2) = #2.
Let U; be the alphabet T x ({#} u (S u S u {#,#)})). Define

languages L) c S%, L4,L5 c U,* by:

1 1
L = {xe S*: hy(x) e S* - L };
L, = {0(x,v/K): x e T*, |x| > |[v/k|, ve Lyt v E*#z)*}; and
Ly = 00w/ x e ™, |x| 2 vk, ve (sx#) v Lt

e(x,h3(v)/k) € LZ}.
Now if h4: Ul* + T* 1is the length-preserving homomorphism determined by

defining h4([a,x]) =a, then L = hl(L2 n h2 (L3)) = h4(L4 nL The

5)'
containment from left to right will therefore follow if it is shown that

* _ .
L4 and U1 L5 are in C.

3-27 3-28

Let hg: (Su Su {h#,1)* > (S v {#1})* be the homomorphism DTIME(lin). Since C is closed under union with languages in DTIME(lin),
that erases symbols in Su {#2}: hs(a) = a, hs(z) =e for ace S, L7 h L‘S €Cs but L7 v L8 - Ul* - Ls’ se Ul* - L5 €C. o
hS(#l) = #1 and hs(#z) =e. Let hg: Ul* > (S U_{#l})* be the homo- Notation [19]. If £, .4(2 are classes of languages, let
morphism determined by defining h6([a,#]) = e, h6([a,w]) = hs(w), so ‘%l : 342 B [Ll o by? Li < d{i, 1=1L2; and
that h6(e (x,v/k)) = hs(v). Let L6 < Ul* be the regular set V-H[ill = (B3 Lefy, b anonerasing homomorphisn) .
L6 = {0(x,v/k): x e T*, ve (S*#l U -S—*#Z)*’ |x] > [v/k]}. Then In this notation, Theorem 3.3.7 becomes: for a class (satisfying

-1 + the conditions, NL(C) = H[C A co<C]. In particular, we have the follow-
LA = h6 ((Ll#l) u {e}) n L6. Hence since (1is closed under marked +,

ing corollary.
inverse homomorphism and intersection and union with regular sets,

]_,4 e C. Corollary 3.3.8. If C 1is an AFL containing DTIME(lin) then

Let h7: (SusSu {#1,#2})* > (Su {#2})* be the homomorphism H[C A co=C] 1is an AFL closed under intersection and linear erasing.]
(similar to hS) determined by defining h7(;) = a, h7(a) = e, Part of Corollary 3.3.8 also follows from results in [21], namely that
h7(#1) =e, h7(#2) = #2; and let h8: Ul* > (Su {#2})* be determined if ¢ 1is an AFL then so is H[C A co-C]. However, closure under linear

- erasing and under intersection do not seem to follow, unless (is
by defining h8([a,#]) = e, hs([a,w]) = h7(w). Note that

closed under intersection.

-1 — % —

h ((S*#)*L.#, (S*#,)%) n (S*#. u S*# = (S*#., u S*#)* - (Sk# LI#)%,
7 27 7172 2) 1 2) _ (1 2) (1Y M 2) In the preceding comparisons of NL(C) and NL*(C) with closures

If L, c U, * is defined to be of C,

7 1 only sufficient conditions were given, because the necessary

L7 = "‘;sl((S*#z)*"l#z(s*#z)*) n L6 then conditions that can be derived are not informative (e.g., if the conclu-

— % sion of Theorem 3.3.7 holds then DTIME(lin) < H[C A co-C]). There is a
L, = {0(x,v/k): x e T*, x| 2 |v/k|, ve (8*#, u S*f,)* - (s%#, u Li#z) }. -

class of languages that fails to satisfy the conditions of Theorem 3.3.7

L7 e C since (1is closed under product by regular sets, inverse homo-
and for which the containment NL(C) < H[C A co-C] is open: the family

morphism, and intersection with regular sets. Let
DCF of deterministic context-free languages. It is known that
Lg = {6(x,v/k): 6(x,v/k) ¢ Lg and e(X,h3(V)/k) e U% - LZ} U (Ul* - L6)' co-DCF = DCF (see [18]) and DCF is closed under the operations used in

Since L, is in DTIME(lin) and L6 is a regular set, also Lg is in the proof of Theorem 3.3.7 except union with DTIME(lin). (Recall that

3-29

only a simple form of product with regular4sets was used.) Since
DCF < DTIME(1lin), NL(DCF) = NTIME(n); the results in [9] can be used
to show that NTIME(n) = H[DCF A DCF A DCF]. However, it is unknown
whether H[DCF A DCF] = H[DCF A DCF A DCF]. »

Theorem 3.3.7 will be used in the next chapter to show that for

certain classes (, NL(C) = H[co-C].

Chapter 4: THE LINEAR HIERARCHY

In this chapter, the structure of the class of rudimentary rela-
tions is examined more closely. Using the characterization given in
Chapter 3, the class of rudimentary relations is decomposed into the

' a structure of classes of languages analogous to

"linear hierarchy,'
the arithmetic hierarchy defined using linear-time oracle machines.

The - k+l-st class o in the linear hierarchy is defined from the

k+l

by o = NL(ok), so that a language is in o© if

k-th class o K+l Kl

k
and only if it can be accepted nondeterministically in linear time given
an oracle for some language in 0y - It is not known whether the linear
hierarchy is in fact an infinite hierarchy of classes; a positive

answer to this question would close several open questions in automata
theory and logic.

Section 1 gives the definition of the 1ineér hierarchy and estab-
lishes some of its basic properties, which follow easily from the more
general results proved in Chapters 2 and 3. In particular, a simpler,
alternate definition of the linear hierarchy is given (Theorem 4.1.4):
for k 2 1, a language belongs to the k+l-st class if and only if it
is the image under a nonerasing homomorphism of the complement of a '
language in the k-th class. In Section 2 this alternate definition
is used to prove a resuit that strengthens the analogy between the
linear hierarchy and the arithmetic hierarchy: the k-th class in the

linear hierarchy consists of exactly those languages that can be obtained

from languages in a basis class by application of k alternations of
bounded quantification (Theorem 4.2.2). Thus the class in the linear
hierarchy to which a rudimentary relation belongé is closely related
to the syntactic form of its definition from concatenation.

We turn in Section 3 to investigation of the internal structure of
the classes in the linear hierarchy, employing the notions of "effi-
cient reducibility" and "complete sets." Each class is shown to possess
a complete set with respect to reductions of a simple form (Theorem
4.3.5); this property of the classes allows some conclusions to be drawn
about the relationship of the linear hierarchy and of the rudimentary

relations to other families of languages.
4.1. DEFINITION

The linear hierarchy consists of the classes of languages 0>
L and :Sk (k 2 0), defined immediately below. The names of the
classes were selected to suggest the analogy to the arithmetic hierar-

chy.

Definition 4.1.1. Define o, = 7, = 60 = {@#}. For k > 0, define

0 0
Oy = NMelopds
"k+1 = co—ck+1; and
6k+1 = {M(L): L e O M é deterministic linear-time oracle
machine}.

Note that o, = NLk({ﬂ}) for all k = 0; hence
RUD = U{Gk: k 2 0}. Primary attention will be given to the classes

¢ For k 2 1, the class T consists of languages whose complements

K

are in Op» and § consists of languages that can be recognized

k+1
deterministically in linear time relative to some language in Op+ >
Except for the trivial case k =0, it is not known whether o, § o .
k # "kl
A proof of either proper containment or equality must rely on properties
specific to the classes rather than only on general properties of the
operator NL(), since, by employing techniques used in [3] in the
context of polynomial time, classes of recursive languages Cl and Cz
= c

can be found such that Cl N‘L(C’l) but C2 7 N'L(C’z).

The following proposition applies some results from Chapter 2 and
related constructions to the linear hierarchy. As well as providing

information about the classes, these containment and positive closure

properties will be useful in the investigation to follow.

Proposition 4.1.2.

(1) For each k 2 0, O U M 6k+1 € 41 n T4l
2) o = NTIME(n); & = DTIME(1in).

1 1

(3) For each k 21, o, is closed under union, intersection, product,

k

Kleene *, inverse homomorphism and linear erasing homomorphism.

(4) TFor each k> 1, w, and sk are closed under union, intersec-

k

tion, marked product, marked +, and inverse homomorphism; Sk is closed

under complementation.

Note that closure under complementation for O and closure under

44

nonerasing homomorphism for Gk are not asserted; in Proposition 4.1.3
it will be seen that proof of either of these closure properties is

equivalent to proving the finiteness of the linear hierarchy.

Proof.

(1) For any alphabet S, it is easy to construct deterministic oracle

machines Dl and D2,

S*, Dl(L) = DZ(S*—L) = L. Hence, if L ¢ Ok then

both operating in time wn+l, such that for any

L

n

L= Dl(L) €8 and if L € w, then S*L ¢ o and so

K+’ k k
L= DZ(S*—L) € 6k+1’ The second containment follows from the facts that
6k+1 S (by definition) and that 5k+1 is closed under complemen-

tation. It is possible that § which is not the case

c
K+ £ k1 7 T’
for the corresponding classes of the arithmetic hierarchy (e.g., a set

is recursive if and only if both it and its complement are r.e.).

(2) Since o, = {@#}, these equalities are consequences of Proposition
0

2.2.2.

(3) The class % consists of a single language; since o, = NL(ok_

k l)’

by using induction on k and Theorem 2.2.4 we see that for each k 2 1,
O is closed under marked union as well as the other operations

listed.

(4) The proof that 5k is closed under these operations for each

k 2 1 wuses that fact that is closed under marked union and

k-1

simple machine constructions (omitted here), similar to those given in

Theorem 2.2.4. Closure of the classes 7, under the operations listed

k

can be seen from part (3) and the following identities: if L.,L, c S%,

1’72

¢ds, T=8Su{¢ and h: U > S* is a homomorphism, then

(S*—Ll) u (S*—LZ) = S% - (Ll 0 Ly)s
(S*—Ll) n (S*-LZ) = 5% - (L1 u L2);
(S*-L)#(S*-L,) = T# - [(T% — (S%S%)) U Ly £S% U S*EL,];

(S*-LDAHT = TH = [(T* = (5¥O)F) v (S*A)* L(s*)*]; and

hlsx - L) = Uk - h'l(Ll). 0

iU
It is not known whether any of the classes 6k and ﬂk is closed
under nonerasing homomorphism; that one of them should be so closed is
a necessary and sufficient condition for the linear hierarchy to
"collapse" at that point. Similarly, a class O is closed under com—
plementation if and only if the linear hierarchy is finite (and

RUD = Gk).

Proposition 4.1.3.

(1) For all k

v

1, Gk is closed under nonerasing homomorphism if

and only if O = § if and only if for all j = 1, Gj < Sk.

(2) For all k =1, =, 1is closed under nonerasing homomorphism if

k

and only if O is closed under complementation if and only if for

all j =21, o, co

3 k’

Proof. First note that if for some k > 1, o = NL(ok) is contained

k+1
in Ops then for all j > 0, NLJ(ck) <oy and hence for all j = 1,

Also, if o is closed under complementation then, using the

k* k

other closure properties given in Proposition 4.1.2(3), if L ¢ Ops

g, € O
ji-=

L c %, then for any length-preserving homomorphism hl’ _any homomor-

4-6

morphism h2 and any language L' € %es

By L' 0 h;l((L ® (S*-L))%)) ¢ %G

Therefore, from Corollary 2.3.2 if M is any nondeterministic linear-

time oracle machine and L € Uk’ then M(L) € Gk; that is,

et = ML) S

To see the first part of the proposition, recall from Theorem
2.3.1(1) that if M is a nondeterministic linear-time oracle machine,
then there exist a deterministic linear-time oracle machine D and a
length-preserving homomorphism h such that for any language L,

M(L) = h(D(L)). 1In the context of the linear hierarchy, this implies

that for all k 21, o < {h(L): L € & h a nonerasing homomor-

k’
phism}. 1In fact, since Gk < Gk and ok is closed under nonerasing

homomorphism, we see that for all k 2 1, Gk is equal to the closure

of Gk under nonerasing homomorphism. Thus if for some k, 6]; is

x = cfk. Now since Gk is

closed under complementation, if 5k = Gk then Gk is also closed

closed under nonerasing homomorphism then &

under complementation, so by the remark above, for all j=z1,

=34 On the other hand, if for all j 21, o, < & then in

k’ i- 'k

particular Uk < Gk, so that O = 6k and since O is closed under

GjSOk

nonerasing homomorphism, also Sk is closed under nonerasing homomor-
phism.

For the second part, suppose for some k 21, "k is closed

under nonerasing homomorphism. Then, since 6k < “k’ the closure of

81 under nonerasing homomorphism is contained in Tes hence, from

the proof of part (1), o < T Since m, = co-o

& X if o < "k’ then

k’ k

Uk = ".k and so %

plies that for all j > 1,

is closed under complementation. Again this im-

Gj S O+ For the reverse implication,

if for all j =1, qj < G then in particular Y41 S G- Since
LS bqk+1’ this implies that T € 9 hence M = O and T is

closed under nonerasing homomorphism. 0O

In the proof of the proposition above, it was shown (using Theorem
2.3.1) that for all k > 1, %G = {h(L): L ¢ Sk, h a nonerasing
homomorphism} = H] Gk]. Use of Theorem 3.3.7 allows the following

result, which is stronger in case M1 i Gk.
Theorem 4.1.4. For all k > 2, 9 = H[wk_l].

Proof. Since each class ¢

'k is closed under nonerasing homomorphism

[the containment from right to left is clear.

and since ﬂk-—l < s
Consider %b1 for k > 1. From the closure properties of 9
given in Proposition 4.1.2(3) and the fact that DTIME(lin) = 61 € O

we see that % satisfies the conditions of Theorem 3.3.7: i.e.,

ak is closed under marked product, marked +, inverse homomorphism,
union with DTIME(1lin), and intersection with and product with regular

sets. Therefore T4 = NL(ck) = HIok A co—~ok] = H[ok A 1rk]. Clearly

M € HIwk]. Also, o = HNk] c H[ﬁk] so both LN and 0, are con-
tained in H[m 1. From [21, p. 45] we see that the closure properties
of - T given in Proposition 4.1.2(4) ensure. that HI'nk] is closed

under intersection and nonerasing homomorphism (i.e., is a "pre-

Tk
AFL" closed under intersection). Therefore H[Gk A wk] < H[nk] and

S0 Oy = HInk]. a

Theorem 4.1.4 gives an alternate definition for the "¢ classes"
of the linear hierarchy: 0, = H[DTIME(1in)] and for k > 1,
Ol = H[co—gk]. The original definition allowed simple proofs of
closure of the classes under language-theoretic operations, for which
well-known constructions involving automata could be applied. On the
other hand, because of the close relationship between the operations
of nonerasing homomorphism and bounded existential quantification
(partially expressed in Proposition 3.1.2), this definition ﬁakes vir-

tually immediate the "syntactic" characterization of the classes o, to

k
be given in the next section. As a further preliminary for that charac-
terization, we consider another operation on string relationms, Eounded

universal quantification.

Definition 4.1.5. The operation of bounded universal quantification
n+l

is defined as follows: Suppose n 2= 0 and R ¢ [S*]

Qc [S*]n+1 is defined by bounded universal quantification from R

Then

(written Q = V< R) if and only if Q = {(xl,...,xn,z): for every

y € S* such that |y| < |z], (%5005% ,¥) € R

o+l _ n+l

Note that if Q = V/ < R, then [S*] Q= 3= (%" - B,
so the rudimenatry relations are closed under bounded universal quanti-
fication.

If two relations Q and R satisfy Q = V< [3 < R] then Q
is just an explicit transformation of R; therefore rather than classi-
fying rudimentary relations by the number of applications of bounded

quantification used in their definition, we consider quantifications

bounded by (the length of) one of the variables. Recall from Chapter 3

4-9

that any rudimenatry relation can be defined using the Boolean opera-
tions and explicit transformations, and quantification of the form
ei(R) = {(xl,...,xnj: there is some y € S* such that |y| < |x1|
and (xl,...,xn,y) € R}

n+1. The analogous form of universal quan-

where 1< i<n, Rc [S¥]

tification is given by:

ui(R) =‘{(x1,...,xn): for every y}e sk, if |y| = |xi| then
(xl,...,xn,y) € R}.

To increase readability, the definition of relations Q1 = si(R) and

Q2 = ai(R) by use of these operations is written:
(%y5+005%) € @ & (Iy)_ [(x;5...5% ,y) € Rl; and
1 n 1 x5 1 n

(x50 0o%) €Q, & (VY)xi[(xl,---,xn,y) e R].
4.2. A SYNTACTIC CHARACTERIZATION OF THE LINEAR HIERARCHY

In this section we consider a certain classification of the rudi-
mentary relations, by the number of alternations of applications‘of
bounded‘existential and Qniversél quantification used ip their defini-
tion. If RO denotes the class of relations definable from concatena-
tioﬁ relations by a finite number of applications of the Boolean opera-
tions and explicit transformation, then any ru&imentary relation can be
obtained by appl&ing some number of quantifications and explicit trans-
formations to a rélation in R.. It is easy to see that if a relation

0

R is in R, then O(R) ¢ DTIME(lin); we will see that, for example,

(0]

if a relation R is defined from a relation in R

0 by applying bounded

4-10

universal quantification, explicit transformation and bounded existential
quantification (in that order) then O(R) ¢ 0y

The following definition, of classes of languages Ek’ k>1, is
made only for notational convenience; Theorem 4.2.2 states that for all

k=1, E’k and 2N contain exactly the same languages.

Definition 4.2.1. For each k > 1, define the class E’k as:

(1) If k is odd, then a language L is in E, if and only if for

k

some language L0 ¢ DTIME(lin), for all x,
xel & (v, (Vyp, oo Iy loty,. .y e Lyl

(2) If k is even, then L is in E‘k if and only if there exists

L, € DTIME(lin) such that for all x,

0
xe L < Ay, (W), o (Vy), o0y, ny) € Ll

The quantifiers in these expressions alternate between existential and

X

universal, so that the j-th quantification (from the left) is (Elyj)

if j is odd, and (Vyj)X if j is even.

Thus the class E'k consists of languages that can be defined from
languages in DTIME(lin) by use of k alternations of quantification
bounded by x and with an existential quantification applied last (i.e.,
3 is the leftmost quantifier in the prefix). If a langauge L ¢ E’k
is defined from L0 = G(RO) € DTIME(1lin), then L is an explicit
transformation of a relation defined by successive application of bounded
universal or existential quantification and explicit transformation to

RO.

The definition of E'k could have been made to allow multiple

4-11

occurrences of quantifiers between alternations; the same classes of
languages would have resulted. Suppose, for example. that

LQ ¢ DTIME(lin) and a language L satisfies: xe L if and only if
(HY)(HZ)[]YI,IZ] < |x| and o(x,y,2) ¢ LO]'

Let L be the language L, = {o(x,w): w = 9(y,z) for some y and
z, and 0(x,y,z) ¢ Lo}; then also Ll e DTIME(1in). Since L satis-

fies x e L if and only if (3w)x[e(x,w) € L;], Le Eq-

It is not hard to see that a relation R is rudimentary if and

only if for some k> 1, O(R) ¢ E in fact the classification of

k;
RUD given by ki()Ek is the same as that given by the linear hierarchy.

Theorem 4.2.2. For all k = 1, Ek =0y

The proof is by induction on k. In the induction step for the
containment from left to right, we use Theorem 4.1.4 (ck = H[wk_l])
and the fact that application of bounded existential quantification
followed by comp'lementatién is equivalent to application of complement
followed by bounded universal quantification. For the reverse contain—

ment we essentially show that Ek +1 = H[co-E’k].

Proof. For the basis of the induction, recall that

oy = NTIME(n) = H[DTIME(lin)]. Therefore if L ¢ o L c S*, then

1°

there is a language L, ¢ DTIME(lin), Ll c T*, and a nonerasing homo-

1

morphism h: T* > S* guch that L = h(Ll). Let L0 = {o(x,y):
h(y) =x and y e Ll}; then also Ly e DTIME(1lin). Since h is

nonerasing, if h(y) = x then |y]| < |x], so for all x, xe L if

4-12

and only if
@nllyl < [x] and ox,y) e Lyl

therefore L e Ei. The proof that Ei <o,

the proof to be given for this containment in the induction step, and

is essentially the same as

is omitted.

Suppose Ek =0, for some k =2 1, and further suppose that k

is even. (The proof for the case k odd is a simple notational vari-

ant.) If L c S* is a language in Ek+1’ let L, € DTIME(lin) be the

0
language such that

xel & Ay, (Fy) oon Ay D 0060y 0y) € Ll

! ! = . =
Let L0 be the language L0 {O(Z,yz,...,yk+l). z e(x,yl) for some

x and y1 such that 0(x) € LO}; it is easy to see that

:yl’ . "yk+1

Lé e DTIME(1lin) if L0 e DTIME(lin). Let L' be the language defined

by
2l & (dyp ,(Vy),...(¥y) [0(z,5,. 050 € L3l

Since L) e DTIME(lin), L' e E . Recall that if |y1| < |x|, then

IO(x,yl)| = |x|; hence for any x, x e L if and only if
(ayl)[lyll < |x| and G(x,yl) e L'].

Now suppose T and # ¢ T are such that L' ¢ ([T#]Z)*. Let

L" < ([T#]z)* be the regular set L" = {0(x,y): x € S*, y e T*,

Iyl < |x|}. Since L' ¢ Ek =0 and L" is regular, L" = L' ¢ Tt
If h: ([T#]z)* + (T u {#})* is the length-preserving homomorphism
determined by defining h([a,b]) = a, then L = h@L" -1L") ¢ H[ﬂk].

Therefore, from Theorem 4.1.4, L € 0k+1'

4-13
To see that °k+1 < Ek+1’ suppose L e ck+1' From Theorem 4.1.4
there is a nonerasing homomorphism h and a language L' ¢ e such
that L = h(L'). Since Ty = CO=op and o = Ek, there is a language

Lé e DTIME(1lin) such that for all x (over the appropriate alphabet)
x 4L & Ty, (W, v (W loGxyg,c oy € Ll
Define a language L0 by:
0 (X,¥y5-+ es¥pyp) € Ly if and only if
@) nly) =x;

(ii) for 1 < j < k/2, and

[¥254al <174l5

(iii) 4if for 1 < j < k/2 [yzj] s[y1| then
0(}'1,}’2,--'-,}’1{_,_1) ¢ L(') .

Now if h 1is a nonerasing homomorphism, h(yl) = x dimplies

[yl| < |x|; therefore
x el & (v (W, oo Ay oty ny) <Ll

so L e Ek+l' 0

A "direct" proof of the containment o E.

ol (that is, one

ktl S

not relying on Theorem 4.1.4) is much longer, since it requires showing

that if L c S* dis in E,, then (L & (S*-L))* ¢ Ek+1'
‘ If the linear hierarchy is finite, so that for some‘ k>1,

Lj{gj: j=21} = Oy s then also RUD = Op = Ek. Hence for any rudimen-

tary relation k, ©(R) could be obtained from a language in DTIME(1lin)

by use of a finite number (k) of alternations of bounded existential

and universal quantification. Equivalently, if it could be shown that
no finite number of applications of bounded quantification will suffice
to define all rudimentary relations, then ¢ 1 ‘)i RUD, so

o = NTIME(n) could not be closed under complementation. In the next
section, it will be shown that a stronger result about definability of
rudimentary relations can be derived from the assumption that the linear
hierarchy is finite: if it is finite, then there is an integer m such
that for any rudimentary relation R, 0(R) can be obtained by applying

m operations to the language {Onln: n > 0} (or to a Dyck set).
4.3. COMPLETE SETS IN THE LINEAR HIERARCHY

The concepts of efficient reduction of one (recognition) problem
to another and of completeness have been found useful in studying the
computational complexity of languages. The reducibilities considered
are restrictions of the many-one reducibility of recursive function
theory [43, 47]; their general form, and the corresponding definition of

complete set, may be stated as follows.

Definition 4.3.1. Suppose F ‘is a class of string-to-string functions.

(1) If L cS*% L' cT* are languages, then L is F-reducible to L'

if there is a function f: S* » T* in F such that for all x e S*,
xelL 1ff f(x) ¢ L' (i.e., L = f-l(L')). A family of languages C
is said to be F-reducible to a language L' if every language L ¢ C

is F-reducible to L'.

(2) A language L0 is F-complete in a family of languages C (or,

4-15

complete in (¢ with respect to F-reductions) if L0 e C and (¢ is

F-reducible to LO'

Note that if a language L is F-complete for (¢ then

0
Cc {f_l(LO): f e F}. If the class (¢ 1is closed under application .of
inverses of functions in F then since Lo e (s equality holds; that

1: feF}.

is, L; gemerates (under the operations {£

In applying these ideas to the linear hierarchy, we will not
consider specific languages but rather view existence of complete sets
and of reductions of languages in one class of languages to languages
in another as properties of the classes of languages.

The appropriate class of functions to consider with the linear
hierarchy is that consisting of functions which can be computed in
linear time by deterministic Turing machines (say, with a two-way input
tape and a one-way output tape). It is easy to see that this class of
functions contains all identity functions and is closed under composi-
tion; hence the reducibility relation it defines is reflexive and
transitive. We therefore abbreviafe "L is reducible to L' by a

function that can be computed in linear time" by: L Two

Slin L',
other reducibilities which have been extensively used and which will
arise ip the next chapter are: Slg’ corresponding to the functions
that can be computed in 1g(n) space [35, 53], and S:l s, corresponding
to the functions that can be computed in polynomial time [36]. Note

that if either L <M p!

or L Slg L' then L SII; L'.
The following proposition states that each class in the linear

hierarchy is "closed under linear-time reductions." The concept of

4-16

closure under a reducibility is useful in comparing classes of languages

and in deriving conditions for one class to be contained in another [7].

Proposition 4.3.2. For all k2 1, if AslinB and B € Ok (respec-
tively, e Sk) then Asck (respectively, Ty (Sk).

Proof. The proof is a simple construction. Suppose A c S%*, B c T*
and f: S* > T* is a function which can be computed in linear time and
which reduces A to B: for all xe S*, xe A iff f(x) ¢ B. Note
that if f can be computed in time cntd, then for all x,

|£)| s c¢|x| + d. First suppose B 0> so there is a language
Ceoyq and a linear-time oracle machine M such that B = M(C). The
machine M and the machine that computes f can be combined to con-
struct a linear-time oracle machine M' such that M'(C) ='A. Given an
input x ¢ S*, M' first computes f(x) as the input to M, accepting
x if and only if M accepts f(x) relative to the same oracle set.

-1

Then M'(C) = {x e S*: f(x) ¢ M(C) = B} = £ "(B) = A. Since the length

of f(x) is bounded by a linear function of |x| , M' can be constructed

to operate in linear time. Thus A € O+ In the preceding construction,
if M is deterministic then M' will also be deterministic; hence if

Be s then A e §,. Moreover, since f also reduces S*-A to T*-B,

k k
if Bem then Aem. : a -

From Proposition 4.3.2 it is clear that for any k =2 1 and any

Leo {f-l(L): f a linear-time computable function} < o It will

%

now be shown that o

X
k is generated by a single language Ak under

application of inverses of a subset of this class of functions. An

inductive scheme is used to define the generators; a generator is defined

from the previous one by means of the "universal" linear-time oracle

machine described in the following theorem.

Theorem 4.3.3. Let § = {0,1}. One can construct a nondeterministic

linear-time oraclevmachine MO with input and tape alphabet § which
has the following property: If M is any nondeterministic linear-time
oracle machine (with alphabet), then there is a homomorphism

h.M: £* » £* such that for any oracle set L c &%,

M(L) - {e} = Bl (M (L))

Proof. The theorem essentially states that MO(L) is a "hardest"

language for; NL({L}) in the sense of [24]. The construction of MO
uses a technique in [55, 11].

First, suppose N is a (nondeterministic) oracle machine with
four tapes, the last one the oracle tape, and input and tape alphabet
%. Then there is a string N e {0,1,f}* that describes N in such a
way that information about the action of N can be extracted easily
from N (e.g., using an encoding similar to that in Appendix A). Also,
we can assume that vno such encoding is a substring of any other, so
that for x = al(ﬁ)d... am(ﬁ)d with d > 1, ayseeesdn € I, m=x>1,
the strings aj...ay and N and the integer d can be determined
uniquely from X.

Let hy: {0,1,4}* > T* be the homomorphism determined by defining
ho(O) = 00, ho(l) = 12!. and ho(t) = 01. Note that ho is a one-to-

one function. The oracle machine M, will reject its input x e I¥*

0

unless x = ho(al(ﬁ)d... am(ﬁ)d) for some m > 1, al,.'..,am e X,

4-18

d>1 and N a description of a four-tape oracle machine. MO can

be constructed so that checking that the input is in the correct form
takes only linear time. On an input of the correct form, MO simulates
some computation of N on y = ay...a, using 4 of its tapes, in-
cluding its oracle tape, just as N would. MO clocks the simulation,
however: if within [x] of its steps Mo simulates an accepting com-

putation of N on y, then M, accepts X, and otherwise it rejects

0
X. MO can be constructed so that it needs at most 2|ﬁ| steps to
simulate one step of N. Then MO operates in linear time, and accepts

x 1if and only if it simulates an accepting computation of N on y of
length at most |x|/2|N]|.

Now suppose M is any nondeterministic linear-time oracle machine
with alphabet X. From Corollary 2.3.5 there is an equivalent nondeter-
ministic linear-time oracle machine with four tapes, so we may assume
that M itself has 4 tapes, named in such a way that the last one is the
oracle tape. Let M operate in time cntd and let k = ctd. Define
the homomorphism hy: % > 5% by hM(a) = ho(a(_ﬁ)k) for ae Z. Note
that for any y e I*, |[Wi(y)| = 2k|y|+|M|. Then for any y e I* and

0
of MO’ y#e and y e M(L). On the other hand, if y is a nonempty

L cz*, if M accepts hM(y) relative to L, then by construction

‘string in M(L) then there is an accepting computation of M on vy
relative to L, which has at most c|y| + d < k|y| = |bM(y)|/2|ﬁ|
steps; therefore hM(y) € MO(L). Thus for any L c I* and

y e 2% - {e}, y e M(L) if and only if hM(y) € MO(I;)’ or

(L) - fe} = hglog). : 0

4-19

The construction in Theorem 4.3.3 can be extended to any horest,
superadditive time-bounding function t(n), by allowing M() to take
t([x[), rather than |x| , steps during the simulation phase. The
resulting machine MO will be universal for the class of oracle
machines which operate in time linear in t(n).

The oracle machine described in the proof above gives a uniform

method for producing the desired generators for the classes Op*

Definition 4.3.4. Let MO be the linear-time oracle machine of

Theorem 4.3.3. Define AO =@ and for k 2 0, Ak-l-l = MO(Ak).

It is apparent from the definition that Ak.e O for each k 2 0.
Therefore (from Proposition 4.}.2) for k=21, O contains the family
of languaggs generated by Ak under application of inverse homomor-
phisms and union with {e}; the following theorem implies that in fact

Ok is equal to this family of languages.

Theorem 4.3.5.
(1) For all k=21, O = N‘L({Ak_l}).

(2) For all k=20, if L € Ok then there is a homomorphism h such

that L - {e} = h"l(Ak)-

Proof. Both parts of the theorem will be proved together, using induc-
tion on k. By definition, part (2) holds for k = 0; it will be shown

that if part (2) holds for Op1® then both (1) and (2) hold for O+

Suppose for some k >'1, for every language L € o there is

k-1’
a homomorphism h such that L - {e} = h-l(Ak_l). Let L ¢ S* be any

4-20

language in oy and suppose S = {sl,...,s }. Let hlt S* > {0,1}*
P .
be the homomorphism determined by defiping for 1< j< p,

hl(sj) = 01j0. Then L, = hl(L) is also in o, so there exist a

1 k

language LZ €0 and a nondeterministic linear-time oracle machine

k-1
Ml such that L1 = Ml(LZ)' Without loss of generality we may assume

2 € 91 there is a homomorphism h2 such

_ -1 . _—
that L2 = h2 (Ak—l)' Let MZ be the nondeterministic linear-time

oracle machine that acts like M

that e ¢ L,, so since L

i except that it uses. tape symbols of

1 encoded as strings in {0,1}*, and if Ml would query its oracle

about a string z, MZ instead queries its oracle about h2(z). Then

M

MZ(Ak_l) = Ml(h;]'(Ak_l)) = M;(L,). Therefore L; = M;(L,) « NL({Ak_l});

since L = hil(Ll)’ also L e NL({A _;}) and so o c NL({a ;D).

Further, M, satisfies the conditions of Theorem 4.3.3, so there is a

2

. i | o
homomorphism h, such that MZ(Ak—l) - {e} = h3l(MO(Ak-l)) = hy (A
Let h: S* > {0,1}* be the homomorphism that is the composition of h3
with h;: h(s) = h3(hl(s)) for s € S. Then

-1 -1, -1 -1
L - {e} = h T, - {eh) = BTG5 NA)) = nThay). 0

The following corollary is easily proved from part (2) of Theorem
4.3.5, using a construction similar to that used to prove Theorem

4.3.5(1).

Corollary 4.3.6. For all k > 1, Gk = {M(Ak_l): M a deterministic

linear-time oracle machinel. 0

We now consider the consequences for the linear hierarchy and for

4-21

the class of rudimentary relations of the representation given in
Theorem 4.3.5. The corollaries which follow will be used in the dis-
cussion of the polynomial hierarchy in Chapter 5 and have significance
for basic questions in automata-based computational complexity.

Suppose the linear hierarchy is finite, so that RUD = g, for

k

some k > 1. Since Ak ¢ RUD, from Corollary 3.3.5(2) Ak can be
defined from the language {Onln: n > 0} by use of some finite number,
say m, of applications of the Boolean operations, inverse homomorphism
and length-preserving homomorphism. But from Theorem 4.3.5(2),

Ok =v{hfl(Ak), h_l(Ak) u {e}: h a homomorphism}. Therefore if the
linear hierarchy is finite, then for any rudimentary relation R, O(R)
can be defined from {inn: n > 0} by at most m2 applications of.
the Boolean operations, inverse homomqrphismvand length-preserving
‘homomorphism. Conve;sely, ifia language L is obtained from

™M™ o > 0} by use of k of these operations then L ¢ o Hence

. kK’
the linear hierarchy is infinite if and only if {0(R): R ¢ RUD} cannot
be generated from one language by use of a bounded number of applica-
tions of language-theoretic operations. The representation of the

classes O in terms of operations applied to the language Ak also

shows that o, DPossesses a Slin —complete language.

Corollary 4.3.7. For all k > 1, the language {$} u {$}Ak is complete

in o with respect to linear-time reductions.

k

Proof. Suppose k> 1. Récall that by definition, e ¢ Ak and

A< {0,1}*; let Aﬂ ={$} v {S}Ak. As noted previously, A €0, 80O

4-22

Al'(€ 0y If L c S* is any language in o let h: S* > {0,1}* be

iy
the homomorphism such that L - {e} = h’l(Ak). If ee L, let

f: % > {0,1,$}* be the function defined by f£(x) = $h(x) for all

X e S*; if e ¢ L, define f by f(e) =e and for x # e,

f(x) = $h(x). 1In either case, for any x ¢ S*, xe L 1iff £(x) ¢ Allc’
so f reduces L to Al'c Moreover, the function f can be computed
in time mn+l (where m = max {|h(a)|: a ¢ S}) by a deterministic
Turing machine with only a one-way input tape and a one-way output tape,

so L slin Al'c [}

The arguments. of Theorem 4.3.5 and Corollary 4.3.7 can be used to
show that, in general, if (1is a class of languages and LO is com
plete in C with respect to linear-time reductions, then
NL(C) = NL({LO}) and NL(C) possesses a linear-time complete language.

The existence of a complete set for each class o, yields the

k
following information on the question of the finiteness of the linear

hierarchy.

Corollary 4.3.8.

(1) The linear hierarchy is finite if and only if the class of rudimen-
tary relations contains a language that is complete with respect to

linear-time reductioms.

(2) 1If the linear hierarchy is infinite then the rudimentary relations
are properly contained in 6: .

Proof. 1If the linear hierarchy is finite then there is some k such

lin
= i ! = - i
that RUD =.0,- Then since Ak {$} u {$}Ak is < complete in o

Kk’

for every rudimentary relation R, O(R) would be reducible to
Al': € RUD in linear time; that is, Al'(would be complete in RUD with
respect to linear-time reductions. On the other hand, suppose

L, € RUD is Sh'n—complete for RUD. Since RUD = U{cj: j = 1} there

is some 'k such that L0 € Op- If R is any rudimentary relation then

1
O(R) < in L0 € 0ps SO from Proposition 4.3.2, O(R) ¢ ¢,. Hence

k
RUD ¢ 0, and the linear hierarchy is finite.

To see part (2), recall from Corallary 3.2.8 and the discussion
there that RUD c DSPACE(n) and ai = DSPACE(n). There is a language
Lo ¢ DSPACE(n) such that DSPACE(n) <''® L [55]; the language L,
is similar in form to the language accepted by the machine Mo of

Theorem 4.3.3:
Ly = {Ell-ﬁzﬁ . Enl_{: M is a deterministic linear-bounded automaton

and aja, ... a < L(M}. Therefore if ai < RUD, then L, € RUD, so

0
RUD - contains a complete set with respect to linear-time reductions and
from part (1), the linear hiefarchy must be finite. The reverse impli-
cation of part (2) seems implausible; it states that if for some k,

RUD = % then DSPACE(n) = O
DSPACE(n) = {h_l(Ak),h_l(Ak) u {e}: h a homomorphism}. u}

and hence

The classes DSPACE(1lg(n)) and NSPACE(1g(n)) are contained in
the rudimentary relations (Proposition 3.2.4), hence contained in
U{Gj: j 2 1}. Whether either of these families of languages is compara—
ble to any °k is not known; however, the structure of the classes [

k
revealed in Theorem 4.3.5 gives partial information on this question.

424

Corollary 4.3.9. For all k =1, o is not equal to either

DSPACE(1g(n)) or NSPACE(lg(n)).

Proof. As remarked previously, Theorem 4.3.5(2) implies that for all
k1, o = {h_l(Ak),h—l(Ak) u {e}: h a homomorphism}. However, such
a representation (as a class generated by a single language under those
operations) cannot hold for the classes DSPACE(lg(n)) and
NSPACE(1lg(n)): they are each the union of an infinite hierarchy of
classes that are closed under inverse homomorphism and union with {e}

[32, 49,50].

There is an alternate proof of Corollary 4.3.9 using a "transla-
tional" argument [7]; this approach will be taken in Chapter 5 to
generalize the statement of the corollary to DSPACE((lg(n))j) and
NSPACE((1g(n))d) for all 3 = 1. -

Neither DSPACE(1lg(n)) nor NSPACE(lg(n)) is known to be closed
under nonerasing homomorphism; their closure under this operation has

the following consequences for the linear hierarchy.

Corollary 4.3.10.
(1) 1f NSPACE(lg(n)) is closed under nonerasing homomorphism then

NTIME(n) is not closed under complementation.

(2) If DSPACE(lg(n)) is closed under nonerasing homomorphism then
the linear hierarchy is infinite (and, in particular, NTIME(n) is not

closed under complementation).

4-25

Proof.

(1) The class NSPACE(lg(n)) is closed under inverse homomorphism
and intersection and contains the Dyck sets and regular sets. Using
Propositions 3.2.2 and 3.2.3, if NSPACE(1lg(n)) 1is closed under non-

erasing homomorphism then o, = NTIME(n) < NSPACE(1g(n)). From Proposi-

1
tion 4.1.3, if o, is closed under complementation then for all j = 1,
oj c Gl so NSPACE(1lg(n)) ¢ RUD ¢ 0, = NTIME(n). Since

NTIME(n) # NSPACE(lg(n)), a contradiction results if both closure

properties are assumed.

(2) Suppose DSPACE(1g(n)) is closed under nonerasing homomorphism.

It is also closed under the Boolean operations and inverse homomorphism
and coﬁtains {o™": n\2 0}; ‘hence from Corollary 3.3.5(2),

RUD c DSPACE(lg(n)), so RUD = \J{cj. j=z 1} = DSPACE(lg(n)); If also
the linear hierarcﬁy is finite, then there is some k such that

RUD = O = DSPACE(1g(n)), contradicting Corollary 4.3.9; therefore the

linear hierarchy must be infinite. From Proposition 4.1.3, if the linear

hierarchy is infinite then for all k2> 1, o is not closed under

k

complementation. 0

It was possible to draw a more general conclusion in part (2) of
this corollary than in part (1) because NSPACE(lg(n)) is not known to
be closed under complementation. This difference between the two
lg(n)-space classes is reflected in the facts that (i) if DSPACE(1lg(n))
is closed under nonerasing homomorphism then DSPACE(lg(n)) is the
rudimentary relations; while (ii) if NSPACE(lg(n)) is closed under

nonerasing homomorphism then it is the class of positive rudimentary

4-26

relations, defined by Bennett [4]. In terms of the definitions used
here, the class of positive rudimentary relations is the smallest

class of string relations containing the concatenation relations and
closed under union, intersection, explicit transfbrmation, bounded exis-
tential quantification and universal subpart quantification (that is,
quantification of the form "for every z that is a substring of

y ..."). This is a "positive" class in that the operations of comple-
mentation and bounded universal quantification are excluded. The proof
in [42] in fact shows that any language in NSPACE(1g(n)) is a posi-
tive rudimentary relation; hence oy = NTIME(n) is contained in the
class of positive rudimentary relations. On the other hand, it is not
known whether even 62 is contained in the positive rudimentary rela-
tions. In the next chapter we will see that a positive answer to this
question would imply that the class NTIME(poly) is closed under com—

plementation.

Chapter 5: THE POLYNOMIAL HIERARCHY

This chapter explores the polynomial hierarchy of Meyer and
Stockmeyer [40,52,53], employing primarily the connections between it
and the linear hierarchy. The polynomial hierarchy can be used for the
classification of problems whose solution is not known to require more
than polynomial time, but for which no polynomial-time algorithm (even
nondeterministic) is known to exist. This hierarchy, like the linear
hierarchy, is a structure analogous to the arithmetic hierarchy; its
definition, using polynomial-time oracle machines, extends the analogy
between’the recursive sets (those sets for which it is possible to
decide memberéhip} and the class DTIME(poly) of sets recognizable
deterministically in polynomial time (those sets for which it is
"practical" to decide membership [15,36]).

Section 1 presents the definition of the classes in the polynomial
hieiarchy and establishes that proper containment holds between
corresponding classes in the linear and polynomial hierarchies. A
further relationship between the two structures is derived in the
second section: each language in a class in the polynomial hierarchy is
represented in the corresponding class of the linear hierarchy by
application of "polynomial padding." The third section contains facts
about the linear and polynomial hierarchies that follow from this

relationship.

5.1. DEFINITION

The following definition differs only in notation from that given
in [40]. 1In particular, the superscript "p'" has been dropped from the
names of the classes, since the classes of the arithmetic hierarchy are

not referred to here by name.

Definition 5.1.1. Define I, =1, = AO = {¢}. For k 2 0, define

0=
Tigp = NPC)
Hk+1 = co—NP(Zk)
beyp =BG -

Finally, define PH = U[Zk : k > 0}.

Note that Al = DTIME(poly) and 21 = NTIME(poly) .
It is apparent from this definition that each class in the

polynomial hierarchy contains the corresponding class in the linear

hierarchy (e.g:, o, ¢ Zl). In fact, using the time-hierarchy theorem

given in Chapter 2 (Theorem 2.4.1), the containments can be shown to be

proper.

. = c i c
Proposition 5.1.2. For all k > 1, O + Zk, e + Hk and Sk + Ak'

Proof. Suppose k > 1. Recall from Theorem 4.3.5 that o) = NL({a, D)
(=]
with Ay _; € o ;. From Corollary 2.4.2, NL({Ak_l}) " NP({Ak_l}) so
C . .
O + NP(ck_l) c Zk. Similarly, using Corollaries 4.3.6 and 2.4.2,
2 < c . _
8 € DIDME(n”,A_1) 5 P(A 11 € B(Z,_)) so &) - A, Now if m =T

(=
then (from the definition) 0y = co-m = co-]'[k = Ek; hence T # Hk. [}

By using constructions similar to those given for Theorem 2.2.4,
it can be seen that, for all k 2 1, Zk possesses the same positive
closure properties as Ot Zk is closed under union, intersection,
product, Kleene *, inverse homomorphism and linear-erasing homomorphism.
Moreovér, ;k is closed under application of polynomial-erasing
homomorphisms; that ;s, if L ¢ S* is a language in Zk and h: S* » T*% is
a homomorphism with the property that for some polynomial p(n), for
every x € L, '|x| < p(|h(x)1]), then h(L) € I . We will make occasional
(implicit) use of these facts.

The same relationships hold between classes in the polynomial
hierarchy as hold between the corresponding classes in the linear
hierarchy. ' Thus, for each k 2 1, Tep YT < A, eI n HkL As is the
case with the linear hierarchy, it is not known whether any of the
inclusionsi:k c Zk+l for k 2 1 is proper, i.e., whether the polynomial
hierarchy is finite or infinite. (If DTIME(poly) = NTIME(poly) then
none of these inclusions can be proper [40].) By restating the proof of
Proposition 4.1.3 in the context of the polynomial hierarchy, it can be
seen that if for some k > 1, Ek = Zk+1 (or, equivalently, Zk = Hk) then
the polynomial hierarchy collapses at that point, that is, Ej = Zk for

all j = 1.
5.2. REPRESENTATION IN THE LINEAR HIERARCHY
Many properties of the classes in the polynomial hierarchy can be

established (as indicated above) by using arguments similar to those in

Chapter 4. However, some properties can be arrived at more simply by

making use of the fact that a language in the polynomial hierarchy has
a certain representation in the corresponding class of the linear

hierarchy.

Definition 5.2.1. Suppose L ¢ S* is a language, é ¢ S is a new symbol
and p(n) is a polynomial. The language {x¢® : x ¢ L, m = p(|x|)} is

termed a polynomial representative of L.

It will be shown that the polynomial hierarchy is "polynomially
represented" in the linear hierarchy; we first establish some
preliminary results.

Recall that for languages A and B, A Slin

B if there is a string
function f that can be computed in linear time such that A = f~1(B)
(i.e., for all x, x ¢ A iff £(x) € B). In connection with the

polynomial hierarchy, we extend the class of functions allowed for

reductions to include functions computable in polynomial time.

Definition 5.2.2. Let A c S* and B ¢ T* be languages.

(1) A Ss B if there is a function f : S* - T* and a polynomial p(n) such
that A = f-l(B) and for any x ¢ S*, f(x) can be computed in time
pUixl).

(2) A Slg B if there is a function f : S* > T* such that A = f-l(B) and

for any x € S*, £(x) can be computed in space 1g(lx]).

The model for the computation of these reduction functions is a
Turing machine with two-way (read-only) input, a one-way output tape and
multiple work tapes. The space bound applies only to the number of

squares used on the work tapes. The class of functions computable in

5-5

this way invlg(n) space is known to be closed under composition [35,53]
and clearly contains the identity function, so Slg is a transitive and
reflexive relation. Similarly, Sg is transitive and reflexive. Since a
Turing machine that operates in lg(n) space (and halts) also operates in
polynomial time, Slg is a restriction of Sg. The relation Sz is itself
a restriction of the relation on languages defined by the operator P():
i.e., if A <P B then A ¢ P({BD).

Using essentially the same argument as was given for Proposition
4.3.2, the following proposition can be established; it states that the
classes in the polynomial hierarchy are closed under polynomial-time

reductions (hence closed under lg(n)-space reductions).

Proposition 5.2.3. For any k 2 1 and languages Ll’LZ’ if Ll si L2 and

L2 € Zk (resp., Hk, Ak) then Ll € Zk (resp., Hk’ Ak). [E]

The statement of Proposition 5.2.3 can be easily seen to hold in .
general; that is, if A Sg B then, for ekample, B € NP({C}) implies
A e NP({C}) for any language C. The next proposition might be termed
the "inverse" of this fact: if two languages are polynomially equivalent
then they give rise to the same class of languages when used as oracle

sets with polynomial-time oracle machines.

Proposition 5.2.4. For any language A, P(P({A})) c P({A}) and

NP(P({A})) < NP({A}). Hence if L s}; L

1 then P({L;}) < P({L,}) and

2
N ({1, h) ¢ Ne{L, D).

Proof. The proof uses a construction similar to that of Proposition

2.1.5. Suppose Ml is an oracle machine that operates in time pl(n) and

5-6

M, is a deterministic oracle machine that operates in time pz(n), where

2
pl(n) and pz(n) are polynomials. Let q(n) = pl(n) + pl(pz(n)). The
action of Ml on input strings can be composed with the action of M, on
the oracle strings to construct an oracle machine M such that: (i) M is
deterministic if Ml is deterministic; (ii) M operates in time gq(n); and

(iii) if A is an oracle set for M, and B = MZ(A) then M(A) = Ml(B)

2
(i.e., MQA) = Ml(MZ(A))). The details of the construction are
straightforward. Note that if M2 is not assumed to be deterministic,

then this construction fails, since there may be nonaccepting

computations of M2 relative to A on a string z € MZ(A)' O

v i

Returning to "polynomial representation," we see that it is a

restricted form of lg(n)-space equivalence.

Proposition 5.2.5. If L' is a polynomial representative of L then
L o=l

Proof. Suppose L ¢ S* and L' = {x¢™ : x ¢ L, m=p(lx|)} where ¢ ¢ S
and p(n) is some polynomial. Let f : S* > (Su{¢})* be the function
f(x) = xcp(lxl). Let g : (Su{¢l)* - (Su{¢})* be the function defined
by: for y € (Sul{¢h)*, if y = x¢p(lxl) for some x € S* then g(y) = x and
for y not of this form, g(y) = ¢. Clearly f reduces L to L'; since

L cS* ¢ ¢ L sog reduces L' to L. Moreover for a string z of length

n, both f(z) and g(z) can be computed in space linear in lg(m). O

A polynomial representative L' of a language L contains strings
from L padded to increase their lengths. Since computation time is

measured in terms of the length of the input, by a suitable choice of

the length of the padding the apparent complexity of L' can be made
smaller than that of L. Applying this principle to polynomial-time

oracle machines yields the following result.

Proposition 5.2.6. Suppose M is a polynomial-time oracle machine. Then
there is a linear-time oracle machine M' such that (i) M' is
deterministic if M is deterministic; and (ii) for any oracle set A,

M'(A) is a polynomial representative of M(A).

Proof. Let M be an oracle machine that operates in time p(n), where
p(n) is some polynomial. Let S be the input alphabet of M and ¢ ¢ S.
The oracle machine M' operates as follows: given an input y e (Su{¢})*,
M' first tests whether y is of the form X¢P(|X|) for some x ¢ S*., If
the test is successful, then M' proceeds to accept y if and only if M
accepts x (relative to the same oracle set). Clearly M' will be
deterministic if M is deterministic. Since M operates in time p(n), the
second phase of the computation of M' takes at most p(|x]|) < |y| steps.
Thus M' operates in linear time, and for any oracle set A,

M'(A) = {xcp(lxl) : x € M(A)} is a polynomial representative of M(A). U

Based on the preceding propositions, the proof of the desired

"representation theorem" is straightforward.

Theorem 5.2.7. For any k 2 0 and any language L, L ¢ Zk (resp., Hk’ Ak)

if and only if L has a polynomial representative in O (resp., Ty Bk).

Proof. The statement is clearly true for k = 0, since the only
polynomial representative of the empty set is the empty set.

Suppose k > 1, L is a language and L' is a polynomial representative

of L. IfL'e¢ I (Wk, Gk) then also L' ¢ Zk (Hk, Ak); from Proposition
5.2.5, L Slg L', so from Proposition 5.2.3, L € Ek (Hk, Ak).

As noted above, the implication in the other direction holds for
k = 0; suppose it holds for some k 2 0 and let L be any language in

b3 By definition there is a language A € I, such that L ¢ NP({A}).

k+1°
Since A € Zk, A has a polynomial representative A' in Oy - Since

A <18 A', from Proposition 5.2.4, NP({A}) c NP({A'}) so L e NP({A'}).
Hence from Proposition 5.2.6, L has a polynomial representative in

NL({A'}) ¢ NL(o}) = o A similar argument, again using Propositions

k+1°

5.2.4 and 5.2.6, shows that for L € A 1= P(Zk), L has a polynomial

k+.

representative in § If L c S* is a language in Hk+1 then for

k+1°

L1 = S* - L, we have Ll € Ek+1' Since the statement was shown to hold

in this case, there is a polynomial p(n) and a symbol ¢ ¢ S such that

Ll' = {x¢®: x e L,m= p(Ix} is in o) Let

+1°
Lo={x":xe S*, m = p(|x]|)}; then Lp € DTIME(liq), so

Ll' u [(Su{eh)* - Lp] € o Therefore

kH1"
(suleh* ~ [L;" u [(Suleh)* - Lp]] = LP - L' € m,q;5 and

Lp - Ll' = {xcm :m=p(|x|), x € L} is a polynomial representative of

L. 0

The remainder of this chapter is devoted to consequences of Theorem

5.2.7 for the linear and polynomial hierarchies.

5.3. PROPERTIES OF THE HIERARCHIES

We first use the representation theorem to show that if the linear

hierarchy is finite then the polynomial hierarchy must be finite as well.

5-9

The proof technique does not seem to allow proof of the reverse
implication; however, necessary and sufficient conditions for the
finiteness of the polynomial hierarchy which involve the classes of the
linear hierarchy can be established. The relationships between the
questions of finiteness of the two hierarchies follow from a more
general statement (Proposition 5.3.2) about families of languages that

contain a class in the linear hierarchy.

Definition 5.3.1. A family of languages C is said to be closed under

removal of polynomial padding if whenever L' is a polynomial

representative of L and L' € C, also L ¢ C.

Proposition 5.3.2. >Suppose C is a family of languages which is closed
under removal of polynomial padding. If for some k = 1, O (resp., L

Sk) is contained in C, then I, (resp., I, Ak) is contained in C.

Proof. Suppose k 2 1 and o € C, where C is closed under removal of
polynomial padding. If L is any language in Zk then from Theorem 5.2.7
there is a language L' € O such that L' is a polynomial representative
of L. Then L' ¢ C so since C is closed under removal of polynemial
padding, L € C; hence I, <€ C. The other two cases (nk and I, and §

k
and Ak) follow from a similar argument. O

It is easy to see (using Propositions 5.2.3, 5.2.5) that every
class in the polynomial hierarchy is closed under removal of polynomial
padding. Thus, for example, if o, < 21 then 22 < Zl and therefore
PH = g Zj < El; since gy € 22 the converse also holds. The general

statements that follow from this reasoning are contained in the next

5-10

corollary.

Corollary 5.3.3. For every k 2 1:
(1) e € I, if and only if § € X, if and only if for all j 2 1,

k k+l = "k
Zj = Zk.
(2) 1f U{cj 1321} = 0, then PH = I o

For the case k = 1, the first part of this corollary implies
the following fact: co-NTIME(n) is contained in NTIME(poly) if and only
if NTIME(poly) is closed under complementation. The next corollary
also generalizes ; result known for NTIME(poly) = El to the othgr
classes in the polynomial hierarchy; in this case, the fact that
NTIME(poly) = DTIME(poly) if and only if DTIME(poly) is closed under

nonerasing homomorphism.

Coroilarz 5.3.4. For all k > 1 the following are equivalent:

D) o = A
@ =85
(3) A, is closed under nonerasing homomorphism.) 0

From Propositions 5.3.2 and 5.1.2 it is clear that if C is a family
of lanéuages closed uﬁder removal of polynomial padding and, e.g., o < C
then o ¢ C. Therefore, no class in the linear hierarchy can be equal to
any class closed under removal of polynomial padding. Many families of
languages defined using resource-bounded automata can be sﬁown to be
closed under this operation; for some of thesé families (e.g., PSPACE)

the fact that they properly contain Oy for each k can be derived from

the containment o, < DSPACE(n). Of greater interest are families

k

defined using space bounds of the form (lg(n))j, i.e., polynomials in
lg(n). Except for the case j = 1, these families are not known to be
comparable to any class in the linear hierarchy or to the class of

rudimentary relations.

Corollary 5.3.5.
(1) For all j,k > 1, o, # DSPACE((1g(m))7) and o, # NSPACE((1g(m)?).

(2). For all k > 1, o # u{DSPACE ((1g(a))?) : j > 1}.

(Recall that ? NSPACE((1g(n))d) = ; DSPACE((1g(n))J)[487).

The polynomial hie;archy was originally presented as a structure
for classifying the complexity of problems (encoded as languages).
Reducibilities such as sg have been found to be useful in such classifi-
cation; moreover, it can be more easily done when complete sets are
known. Use of Theorem 5.2.7 (in conjunction with Theorem 4.3.5) estahlishes
one sequence of complete sets for the classes in the polynomial hierarchy,

the languages AO,Al,... from Chapter 4. These complete sets are not

"natural", taking "natural" to mean a language that arises from a problem
the solution of which is of independent interest. However, the relationship
betwéen the linear and polynomial hierarchies can be used to simplify
proofs of completeness for other languages and (as in Chapter 4) the
existence of complete sets gives some information about the classes in

the polynomial hierarchy.

Proposition 5.3.6. For all k 21,
1
(1) Zk <8 Ak; and

(2) z, =NP({4a D).]

r, PL and 3z . = NP(fLy}).
The representation of the classes Zk given in part (2) of this

proposition shows that the first part cannot be strengthened; that is,

for any reducibility more "efficient'" than Slg’ such complete sets

cannot exist. Any lg(n)-space computable function can be computed in

polynomial time; on the other hand, any polynomial can be "clocked"

in 1g(n) space (i.e., for any j there is a machine that on an input

of length n will use lg(n) space and run for exactly nj steps). The

latter property is essential for the reduction of a language in Zk

to the language Ak (or any other language).

Corollary 5.3.7. Suppose F is a class of functions with the property

that for some polynomial p(n), any function in F can be computed in

time p(n) except for finitely many inputs. Then for all k > 1 &

k

cannot have an F-complete set.

Proof. The proof is by contradiction, employing a technique used in
[6,7,19]. Suppose L0 is F-complete in Zk for some k 2 1. Since then
Lye = NP({Ak_l}) = U{NTIME(q(n),Ak_l) : q(n) a polynomial}, there
is some polynomial qo(n) such that Ly € NTIME(qO(n),Ak_l). Now if L

is any language in I, then L is F-reducible to Ly: for some f ¢ F,

k
L= f_l(LO). The obvious construction, combining the time qo(n) oracle
machine for L0 and the machine that computes f, yields L ¢ NTIME(ZqO(p(n)),
Ak—l)' Hence I, < NTIME(ZqO(p(n)),Ak_l) so using Corollary 2.4.2,

Zk g NP({Ak_l}? = Zk, the desired contradiction.]

5-13

Suppose a space bounding function S satisfies

lim S(n) _

n> lg(n) o

and f is a function that can be computed in space S(n). Then, by

counting configurations of a machine that computes f, it can be seen

that f can also be computed in time n3 (except for finitely many inpufs,

the number of which depends on f); hence a result similar to Proposition

5.3.6 (1) cannot hold if the space allowed is further restricted.
Corollary 5.3.7 reveals, for example, that none of the classes

Xk'can possess a set that is complete with respect to linear-time

reductions. This knowledge allows generalization of some facts concerning

NTIME(poly) to other classes in the hierarchy: each of the classes on

the right in the corollary below contains such a complete set (see

[6, Lemma 3.41).

Corollary 5.3.8. For all k > 1,
(1) Zk # DSEACE(nr) or NSPACE(n®) for any r > Q;

(@ 1, # orovE(2t?);
3 1, # N), O
The statement of part (3) can be strengthened in ;he case k = 1[5]:

lin lin).

since NTIME(poly) c NTIME(2), we see that NTIME(poly) g NTIME(2

lin)

For k > 1 it is unknown whether Ek CSNTIME(2 . Corollaries 5.3.7 and

X and Ak as well.

Corollary 2.4.2 implies that for any index k > 1, any language

5.3.8 can be shown to hold for the classes PH, I

L e Zk—l and any polynomial p(m), Zk properly contains NTIME(p(n),L).

However, it does not exclude the possibility that Zk < NTIME(p(n),L) for

some language L, even L in Zk’ and some polynomial p(n). If L e Zk

has this property for Zk’ then Corollary 5.3.7 requires that the power

of relative computation must be exploited to overcome the restriction

to time p(n). The existence of such an L would imply that the polynomial
hierarchy contains at least two distinct classes, so that DTIME(poly)

NTIME(poly).

Corollary 5.3.9. For all j 2 1, if for some polynomial p(n) and language
L ¢ PH, Zj S NTIME(p(n),L) then Ej ; zj+l and therefore NTIME(poly) is

not closed under complementation. O

Now we consider the extension to the polynomial hierarchy‘of the
representation of languages in the linear hierarchy in terms of bounded
quantifiers. Quantification bounded by a polynomial function of the
length of a string is used, instead of simply the length of the string.

This polynomial-bounded quantification takes the following form.

Notation. Suppose L is a language and q a polynomial. Let languages
Ll and L2 be defined by:

x e Ly <= gyl |yl < q(Tx|) and 6(x,y) € LI and.

X € L2 <=> yyl[if]yl < q(|x|) then 6(x,y) e LI.
Then Ll (LZ) will be said to be defined from L by polynomial-bounded
existential (universal) quantification. The expression defining Ll
will also be written (zy)qLe(x,y) e L], and that for LZ’ (Vy)q[e(x,y) e LI.
In tiue case 6f multiplé cuantifiers, the subscripting polynomials will

all refer to bounds in terms of x; e.g., (‘_:[y)q (vz) [6(x,y,z) e L]
1 q,
denotes (gy)(w)[|y| < ql(]xl) and if |z| < q2(|xl) then 6(x,y,z) e LI.

5-15

The following characterization of the classes Zk and Hk follows
easily from Theorems 4.2.2 and 5.2.7. It was in this form—-definition
b& the number of alternations of bounded quantifiers--that the polynomial

hierarchy was suggested by Karp [36].

Proposition 5.3.10. Let L c S* be a language. For any k = 1: L ¢ Zk
if and only if there is a language L' ¢ DTIME(poly) and a sequence of
k polynomials PysecesPy such that for all x € S*

xel <=>,(Hy1)pl(vy2)p2-u((z yk)pkle(x,yl,--.,yk) e L'].

Dually, L ¢ Hk if and only if

X e L <=> CVYl)pICHyZ)pZ...(Q'yk)pkle(x,yl,...;yk) € L]

for some L' ¢ DTIME(poly) and polynomials PyseessPy- n]

The quantifiers in these expressions alternate, so that if k is
odd then Q is ¥ and Q' is V, and if k is even then Q is ¥ and Q' is 3.
This result was announced, without pfoof, in [53]. Note that in the
implication from left to right it ié sufficient to take L' ¢ DTIME(lin),
and the polynomials Ppse-esPy Can all be the function pi(n) = n.

The . form of the expressions in Proposition 5.3.10 recalls another
sequence of complete sets for the polynomial hierarchy. - Suppose pro-
positional formulas containing variables from the set {x<i,j> : i,j = 1}
are encoded as strings over some finite alphabet. For each k 2 1 let
Bk be a certain set of such strings, defined as follows. The encoding
of a formula F is in Bk is and only if

& §1) (v §2) ... (Q ggk) IF(§1, vee ,gk) is true] where the variables
1

in F are exactly X~ = {x<1,1>,...,x<l,n1>}, e s gk = {x<k,1>, ... , x<k,nk>}

5-16

for some n,, n,,...,0, = 1, and where (as above) Q is3d if k is odd
1 2 k

and b4 if k is even.

Thus Bl encodes the set of satisfiable formulas; as remarked in

135], the proof of Cook [16] (see also [1]) can be used to show that

Bl,is Slg—complete in NTIME(poly) = Zl. In general, Bk is slg-complete

in k = 1 [53]. Using Cook's result for the basis, the general

Ek,
case follows by induction on k. The induction step can be done by

"relativizing" the proof for k = 1 to oracle machines (as in [53]) or,
more easily, by making use of the following fact, which can be derived

from Theorems 5.2.7 and 4.1.4: for each k 2 1, = [h(L) : Le L

I

h a polynomial-erasing homomorphism} [56].

The family of "extended rudimentary relations" was suggested by
Bennett [4, p. 67]: in terms of the definitions used here, it consists
of those string relations that are definable from rudimentary relations
by one application of polynomial-bounded existential quantification.
From Theorem 5.2.7 and the fact that the‘union of the linear hierarchy
is the rudimentary relations, we see that PH = {6(R) : R an extended
rudimentary relation}. The characterization given in Proposition 5.3.10
therefore shows that the extended rudimentary relations can also be defined
as the smallest class containing the concatenation relations and closed
under the Boolean operations, explicit transformation and polynomial-

bounded existential quantification.

By using the proof technique of Corollary 5.3.8 it can be seen

that the class of extended rudimentary relations is not equal to any class

DSPACE(n"), r > 0. (In particular, it is not equal to Ei = DSPACE(n).)

However, PSPACE = u DSPACE(n") can be easily shown to contain PH

r
(which is the extended rudimentary relations); the question of proper
containment remains open. The class PSPACE possesses a complete set

with respect to lg(m)-space reductions [53] so we obtain a result

lifting Corollary 4.3.8 to the polynomial hierarchy.

Proposition 5.3.11. If the polynomial hierarchy is infinite then the
extended rudimentary relations are properly contained in PSPACE (and

the rudimentary relations are properly contained in DSPACE(n)). 0

Recall that no class in the linear hierarchy can be equal to
any family of languages that is closed under removal of polynomial

padding. Hence, in particular, for all j,k>1, o, # Ek; that is, for

]

k<j, o0, % I and for k > j, cj g L. Now, if the linear hierarcy is

k]
finite, then for some k, RUD = B and the polynomial hierarchy is

also finite. Thus we can conclude the following.

Corollary 5.3.12. If the linear hierarchy is finite then the rudimentary

relations are properly contained in the extended rudimentary relationms. u}

Two other classes of string relations defined by Bemnett [4] are
of interest in connection with the linear and polynomial hierarchies.
Recall from Chapter 4 that the class of positive rudimentary relations
is the smallest class of string relations containing the concatenation

relations and closed under union, intersection, explicit transformation,

bounded existential quantification and universal subpart quantification.
A relation is an extended positive rudimentary relation if it can be

obtained from a positive rudimentary relation by one application of

polynomial-bounded existential quantification; as noticed by Cobham
[15], the class of extended positive rudimentary relations is in fact

the class NTIME(poly).

It is not hard to see that the positive rudimentary relations
are contained ‘both in the rudimentary relations and in the extended
positive rudimentary relations [4]. Whether either containment is
proper is not known, nor is any inclusion relation known to hold
between the rudimentary relations and the extended positive rudimentary
relations (i.e., between RUD and NTIME(poly)). If RUD is in fact equal
to the positive rudimentary relations then the linear hierarchy is all
contained in NTIME(poly) and so (from Corollary 5.3.3) PH = NTIME(poly).
The same conclusion can be drawn if RUD is contained in the extended

positive rudimentary relatioms.

As remarked in Chapter 4, o = NTIME(n) is contained in the
positive rudimentary relations but this inclusion is not known to hold
for classes in the linear hierarchy with larger indices. If even 62 is
contained in the positive rudimentary relations then also 62 S NTIME(poly)
so (again from Corollary 5.3.3) every class in the polynomial hierarchy

is contained in NTIME(poly).

We have seen in this chapter that a strong and useful relationship

exists between the linear and polynomial hierarchies. Questions that

remain open about the polynomial hierarchy can be solved if the corresponding

questions about the linear hierarchy have certain solutions (e.g., if the
linear hierarchy collapses at a class then the polynomial hierarchy
collapses at the corresponding class.) Properties desired for the classes

in the polynomial hierarchy need only be proven in the context of the

linear hierarchy (that is, only linear time bounds, rather than
polynomials, need be considered); they can then be lifted to the
polynomial hierarchy. Thus, for example, to show that a language

LO € Zk is completeiin Zk with respect to polynomial-time reductions,
it is sufficient to show that any language in %% is polynomial-time

reducible to LO’

Appendix A: DISCUSSION OF THE RELATIVIZED TIME-HIERARCHY THEOREM

This appendix contains further discussion of the time
hierarchy theorems for oracle machines that were stated in

Chapter 2.

Theorem 2.4.1. Suppose A is a recursive language and tz(n) is a

running time.

t; (@) 1g(t; @)
(1) If 1lim = 0 then

b £, @)
DTIME(t, (n) ,A) £DTIME(t, (n) ,A) .

. tl(n+1)
(2) If 1lim = 0 then NTIME(tZ(n),A)zNTIME(tl(n),A).

T @
We concentrate on the proof for the nondeterministic case.

For the deterministic case, first note that by applying the
construction of [29] to all the tapes of an oracle machine except
the oracle tape, it can be established that DTIME(tl(n),A)g{M(A) :
M is a deterministic oracle machine with 3 tapes that operates in
time linear in tl(n)lg(tl(n))} for any language A. Using changes
similar to those described below, the diagonalization proof of [28]
can then be modified to apply to oracle machines. This yields the

result stated in (1) for any language A (not only recursive A).

The nondeterministic case of Theorem 2.4.1 follows from a
more general result (stated below), a relativized version of the
theorem of Seiferas for Turing acceptors [49, Theorem 13]. The

differences between the proof for Turing machines and that for

A-2

oracle machines will be emphasized in the description of the

proof.

To simplify the proof we consider off-line oracle machines.
These machines differ from (on-line) oracle machines only in
that the input tape serves as a Turing tape; that is, an off-
line oracle machine can read its input tape in both directions
and can write on it. As with off-line Turing machines, the
reading head of the input tape is initially positioned at the left
end of the input. The mechanism for an off-line oracle machine
to query its oracle is the same as for an on-line oracle machine;
in particular, the oracle tape is reset to blanks after an oracle
call. Also as in the on-line case, an off-line oracle machine M
is said to operate in a time bound t(n) if for any oracle se£ A
for M and any input x, every computation of M on x relative to A

has at most t(|x]|) steps.

Theorem A.1. Suppose tz(n) is a running time and A is a recursive
language. Let B = {tlz N>IN :1(n)z n for all n and for some
recursively bounded, strictly increasing function f£,

tl(f(n+1))
1lim = '0}. Then {M(A) : M is a nondeterminstic off-

me ot (£())

line oracle machine that operates in time tz(n)} - {M(A) : M is
a nondeterministic off-line oracle machine that operates in time

tl(n) for some t1€B} is nonempty.

Theorem 2.4.1 (2) is easily derived from this theorem.

First note that for any language A and time bound t(n), NTIME(t(n),A) =

A-3
{M(A) : M is an off-line oracle machine that operates in time
t(n)}. The containment from left to right follows from the definitions.
On the other hand, an off-line oracle machine M can be converted
to an (on-line) oracle machine withoﬁt loss of time, by the

addition of two pushdown stores to act jointly as the input tape

+1
for M. Now if 1lim tl(n) 0 then tlEB for the recursive,
n->o
t,(n)

strictly increasing function f(n) = n; hence Theorem A.1 may be
applied to yield a contradiction if Theorem 2.4.1 (2) is

assumed to be false.

The proof of Theorem A.l has the same structure as the proof
of the corresponding theorem for Turing acceptors [49, p. 23].
For any alphabet £, a particular nondeterminstic oracle machine
U2 is constructed satisfying: (i)’U2 operates in time tz(n); and
(ii) for any recursive language AcI*, UZ(A) is not equal to Ul(A)
for any off-line oracle machine U1 that operates in a time bound
in B. In describing the proof of the relativized version, it will
be assumed that the reader is familiar with Seiferas's proof [49,
pp. 21-28]. The changes necessary are due to the larger alphabet
involved (AcI*) and to additional linear factors in the timing

of the machines.

Suppose M is an off-line oracle machine and C is an
oracle set for M. Extending the notation of [49], for xeM(A)
let TimeM C(x) be the length of a shortest accepting computation
3

of M on x relative to C. For x¢#M(A), let Tim (x) = o
M, C

A-4
i.e., msTimeM A(x) is true for every integer m.
i

The proof uses a "universal simulator" with certain properties,
sO we establish an encoding to describe off-line oracle machines
as strings for input to that machine. Suppose Z={ol,..., Um} v
is an alphabet with {0,1,¢}ci. Let a four-tape off-line oracle

machine M with input alphabet {0,1,¢} and tape alphabet I be

given as a 9-tuple M = (K, {0,1,¢}, I, 8, qgs ps g

yes”’ %o F?

where we assume that the first tape is the input tape and the last
tape is the oracle tape. As usual, K is the set of states of M,
FcK is the set of accepting states, qOEK is the initial state,

q,€K is the query state and q q_ €K are the response states.
? yes, ‘n

o
The four distinguished states (qo, q?,~qyes, qno) are required to
be distinct. The set § of transitions of M is a subset of
[(k-{q,}) x {0,1,¢,B} x (zu{BN)] x

[Rx({0,1,¢,B} x {L,R,C}) x ((zu{B}) x {L,R,CH°]
with the usual interpretation. (B£I is the blank tape symbol; "L",
"R", and "C" instruct the machine to move that head to the left,
to the righf and not at all, respectively.) The string Me{0,1,¢}*
describing M is constructed as follows. Let K be a (finite)
subset of {pl, p2,...} and define Si to be i written in binary.
For 1sjsm, let 3, = 01320 and let B = 010. Let L = 10, R = 01
and C = 00. Suppose t = (q,al,az,a3,a4,p,bl,dl,...,ba,d4) is
a transition in 8 with qu—{q?}, pek, al,bl€{0,l,¢,B}, Byseeesdys
byseewsb,eTu{B}, dj,...,d,€{L,R,C}. Then t = ¢qea ¢...¢a,cpeb ¢d ¢ . b,¢d,¢.

If t

l;...,tr are the transitions of M and fl,...,fp are its accepting

states, then

M= ¢¢¢§0¢c_1?¢§ ¢<'1n°cEl Ercflcfzc fpccc.

yes

Let L: e = M :Misa four-tape off-line oracle machine
4

with input alphabet {0,1,¢} and tape alphabet £}. If eELp c

then Me will denote the off-line oracle machine M such that M =e.

To simplify the notation, for eELA let Time (x) deonte TimeM),
p.c. e,C e,C

i.e., the length of a shortest accepting computation of Me on X re-

lative to ¢ (if one exists).

The set L: c of program codes is easily seen to satisfy the

following conditions, analogs of the conditions in [49].

Conditionyl. Lg'c. is prefix-free and can be recognized in linear
time by a determinstic on-line Turing machine.

Condition 2. There is a nondeterministic off-line oracle machine
Uo suéh that for any CEI*

UO(C) = {ex : eEL:.c., xe{0,1,¢}*, xeMe(C)}

and for any eELs c there is a constant c, such that for any C and x

C(x).

TimeU C(x) < ce'Timee
0’

Condition 3. There is a recursive function fA:Lg c +L§ c such
that for any eEL4 , M spends |e| steps writing e (backwards)
p.c. f4(e)

on its second tape and then acts according to the rules of Me'

Except for references to oracle machines rather than Turing
acceptors, only Condition 1 differs from the statement in [49] :
linear time rather than real-time seems necessary to check that no

transitions begin with the query state. Since the alphabet I is

A-6
fixed, while Uo is simulating a computation of Me on x, it
can use its oracle tape (and three others) just as Me would

during that computation.

Lemma A.2. Suppose M is a four-tape off-line oracle machine

with input alphabet {0,1,¢} and tape alphabet I. Then there is

an index eosL: c such that for any CcI*

M (C) = {xe{0,1,¢}* : e xeM(C)}
ey 0

and there is a constant c such that for any C and x

Timeeo’c(x) <c+ TimeM’C(x). 0

The following lemma, essential to the proof of the theorem,
has a slightly weaker statement for oracle machines than for

Turing acceptors (see [49, Lemma 4]).

Lemma A.3. Let M,,M, be off-line oracle machines with the same

1272
input alphabet. One can construct an off-line oracle machine M
such that (i) for any oracle set C, M(C) = Ml(C)UMz(C); and (ii)

there is a constant d0 such that for any C and x,

Timeu’ch) < do'min {TimeMl’c(x), TimeMz,C(x)}- 0

The linear factor in the timing of M arises from oracle calls

made by M. and M,. The steps of M, and M

1 2 1 2

its oracle can be run by M in "parallel", as with Turing acceptors.

in which neither queries

However, if (say) Mi wishes to query its oracle, the contents of
the tape serving as the oracle tape for Ml must be copied by M onto
its oracle tape before the call can be made. Since the oracle

tape of a machine is reset to blanks after a query, the total length

A-7
of all strings that must be copied by M onto its oracle tape will
be less than twice the number of non-copying (or 'Parallel") steps
M takes; therefore only a linear (rather than Auadratic)‘time

loss results.

The argument of Corollary 2.3.4 can be modified to yield a

final lemma.

Lemma A.4. 1If Ml is an off-line oracle machine then one can
construct a nondeterministic four-tape off-line oracle machine MZ with
the same alphabet such that (i) for any oracle set C for Ml’ MZ(C) =
Ml(C); and (ii) there is a constant c such that for any C and x,

TimeMz’C(x) < c-TimeMl’C(x). O

Both of the following contribute to the linear factor c: the
action of M2 in quessing and writing down an entire computation
of M1 (and then following it); and recoding the extra symbols

used by M, into the original tape alphabet of M

2 1’

We can now proceed with the proof of Theorem A.l1. Suppose
tz(n) is a running time. Let Uo be the universal oracle machine
of Condition 2 above. Let an oracle machine U2 be constructed from
Uo by adding a timer for tz(n)/2; then U, operates in time tz(n).
(The timer cannot run during steps of U2 that are oracle calls,
but during any initial segment of a computation of U0 the number
of steps that are not oracle calls must exceed the number of oracle
calls.) It will be.shown that for any recursive Acl¥, U2(A) cannot

be accepted relative to A by any off-line.oracle machine that operates

in time tl(n) for any tleB.

A-8
Assume to the contrary that tleB and UZ(A) = Ul(A) for Ul
an off-line oracle machine that operates in time tl(n). Let f be

the function that demonstrates that t, is in B:

£, (£(a+1) 1
lim ———=3—=5— = 0. Let U be the oracle machine constructed
t, (£(n))
> 2
from Uo and Ul as in Lemma A.3. Then U(A) = UO(A)UUl(A) = UO(A)

and there is a constant do such that for any eEL:.c. and xe{0,1,¢}*,

TimeU,A(ex) < do'min{TimeUO’A(ex), Timeul’A(ex)}

< do-min{ce'Timee A(x), Time (ex)}.
El

Ul’A

4
Suppose eELp.c. and XEMe(A). If ce-Timee,A(x)Stz(]exl)/Z then
U, accepts ex relative to A, so exeU. (A) and therefore TimeU (ex)
2 1 l,A
Stl(lex]). Hence if ce.Timee’A(x)Stz('exI)/Z then TimeU’A(ex)s

do‘tl(iexl).

The machine U is now used to show that any recursive language
over {0,1} can be accepted relative to A within a fixed recursive
time bound. Combining this with Proposition 2.1.5 (since A is
recursive) we can conclude that for some recursive function h,
NTIME(h(n)) contains all the recursive sets, a contradiction.
Hence UZ(A) cannot be accepted relative to A in time tl(n) and

the theorem is provedf

So suppose Lc{0,1}* is any recursive language and let M be a
Turing acceptor for L that operates in time t(n) for some funning
time t(n). An oracle machine M' is constructed from M and U just

as in [49, p. 24]. M' rejects any input not in L: c <{0,1}%-{¢}*,

A-9 A-10
On an input exck(eeL:.c', xe{0,1}*, k20) M' operates as follows: Claim 3. For every sufficiently long string xeL,
1) if k2t(lx|) then M' acts like M would act on input x; and Time_ ,A(X)Sdli'tl(f“eOXH 1).
2) if k< t(|x]) then M' quesses some value k'>k and then acts like

k' An oracle machine M" can be easily constructed from M_ to
U on ex¢ . e

) accept L relative to A; using Claim 3, Tim (x)<d, -t (f(le x| +
Thus exckEM'(A) if and only if either (1) k2t(!x!) and xeL; or ’ ’ eM"’A 31 0

k' 1)) for any xeL. Since f is bounded above by a recursive function,
(2) k<t(|x]) and there exists k'>k such that x¢ EMe(A). Using

this implies (as in [49, p. 28]) that there is a recursive function
Condition 1 and the fact that t(n) is a running time, there is

k hl such that LENTIMZE(hl(n),A) , leading to the desired contradiction.
some constant d1 such that for ex¢ eM'(A)

4+ lexc® | if et (b))
k
TimeM,,A(EXC) <
kl k'
min {dl- lex¢™ |+ Timey A(exc)} if k<t(lx1).
1 1
k'>k
Applying Lemma A.4 and then Lemma A.2 to M', there is a
program code e and a constant d2 such that
M (A) = {xe® : xe{0.1}%, 120, egxretar’ ()}
0
and for any x€{0,1}* and k20
k k
T:Lmeeo,A(xc)sd2 Timew’A(eoxcz).
The following three claims can be established as in [49, pp.25-28].
Claim 1. For all xe{0,1}* and k=0, xckEMe (A) if and only if xeL.
0
Claim 2. For every sufficiently long string x€L, for every nZleoxl
Time , (xef @7 1e0% b e (£(nt1))
eo,A 371
where d3 = l:lz-(dl + do)-

(In this proof, x is chosen long enough that o -d3-tl(f(n+1))st2(f(n))/2
0

for every nzleox] .)

Appendix B: CHARACTERIZATIONS OF THE DYCK SETS

Two representations of Dyck sets in terms of simpler languages are
given here. First, the Dyck set on two letters is shown to be definable
from the Dyck set on one letter by used of language-theoretic opera-
tions; the method generalizes easily to the Dyck set on k letters for
any k 2 2. Second, the Dyck set on one letter is expressed in terms of
the language L0 = {Onln: n > 0}. In both cases complementation (i.e.,
difference with regular sets) is used as well as some of the AFL opera-
tions; use of complementation is necessary.

For completeness we restate the definition of the Dyck sets. Let

Zl = {al,zl} and 22 = {al, a,, ;1, ;2}. Define the binary relation ~

*

p s uaja; v~ ouv and

on L * as follows: for any u,ve I 131

2
— *
ua,a,v ~ uv. Let ~ denote the reflexive and transitive closure of

*
~; that is, x~y if and only if x =y or for some n > 1 and

* - *,
Zys eees 2 € 22 s X~ z3~z,~ ...~z ~y. Then Dz—{xe 22.
* * *
x ~ e} and Dl ={x ¢ Zl : x ~ e}. Two properties of the Dyck sets
are apparent:
(1) no string in D1 begins with Zl or ends with as and

(2) for i=1,2, forany x and y, if x~y then x ¢ Di if

and only if y € Di'
*

*
Let h: 22 > Zl be the homomorphism determined by defining

Lemma B.1. For any x,y € I

B-2

h(a,) = h(az) = a. and h(;l) = h(gz) = Zl' It is easy to see that

l) 1

h(D,) = D;, so that D, c h—l(Dl); moreover, we will see that the

difference between D2 and h_l(Dl) can be expressed in terms of

. -t 5 * -1 — g+
Notation. Let A = (2 al(5 —h (Dl)al) U
* * 1, = %
(2,72, 2, - h "(Dpa, 2,)).

*
Note that for x e 22 , x¢ A if and only if whenever x = ua v

- — *
for i =1or 2 them veh l(Dl)ai 22 ;5 that is, x ¢ A if and only

if for every occurrence of a, in x there is a "matching" occurrence

i

of -a,.
1

The language A contains the strings which are in h‘-]'(Dl) but
not in D2. To see this, we first prove two lemmas about the language
-1
h (Dl) - A.

* -
5 s if x~y, then xehl(Dl)-A if

and only if y ¢ h_l(Dl) - A.

Proof. ‘Suppose x ~ y. Then by definition, 'x = ua.a.v for some u

]
and v, and y = uv. Then h(x) = h(u)alslh(v) ~ h(u)h(v) = h(y), so

h(x) ¢ D, if and only if h(y) ¢ D It remains to show that x ¢ A if

1
and only if y e A.

1
(1) If xe A then for some i =1 or 2, and some UV, X S ujacvy

-1 - * _ .
and v, é h (Dl)ai I, . Now if u; =u then i=3j and

— -1 *
vy =ave h (Dl) 3 5y therefore Uy # u. Two cases remain:

(i) Iull < |ul: Then u= u,a,u, for some v, and v, =uya.a.v.

Now h(uzaj) = h(uz)al d Dy, so it is mot hard to see that if

-1 — * - — *
uyv € h (Dl)ai 22 then also vy € h l(Dl)ai 22 , a contradiction.

Since y = ulai(uZV)’ y e A.

(ii) lul|> [ul: Then ul=uajaju2 for some u, SO y = uu,av.

-1 - *
Since v, d h (Dl)ai I, Y€ A.

— *
(2) If ye A then y = wavy and vy é h(Dl)ai I, . Again.there

are two cases, |ul| < [ul and]ull > |u]; using arguments similar

to those above, it can be seen that x e A. 0

* -
Lemma B.2. For any x#e in x, , if x e hl(Dl) - A then

2

- *
x = ua.a,v for some u,ve I

134 2 and‘i=lor2.

*
Proof. Suppose X=Xy .X is in % with n 21, x

2 i€ %2

*
l1<i<n., Let f£: 22 + % (where 2 denotes the integers) be the

homomorphism determined by defining f(ai) =1 and f(;i) = -1,

i=1,2, Let m = max {f(xl...xi): 1< 4i<n} and

k

min {j: 1< j<n, f(xl...xj) = m}; that is, k is the leftmost
position in x at which the maximum depth m is achieved. Since

h(x) € D1 and every nonempty string in D, begins with a m > 0.

1 1’
Let u = KpeoX g (that is, if k =1, then u = e). By the choice of

k, f(xl'“xk)? f(u), so % is either a) or a,, say a,. Since

B-4

1 ends with a;,

Vo= K ae X Then x = va X, v and since x ¢ A,

every nonempty string in D k < n, so let

-1 — * _
X4V € h (Dl)al 22 . Since f(xl...xk) =m > f(xl...xk+l), 1

is a "barred" symbol, either ;1 or ;2. But no string in h—]'(Dl)
can begin with a "barred" symbol so in fact Kl = ;1 and
x = uaja,v. 0

Recall that A was defined from h_l(Dl) by use of Boolean
operations and product with regular sets. Thus the following proposi-

from D,.

tion gives a definition of D2 1

Proposition B.3. D, = h—l(Dl) - A.

*
Proof. The proof is by induction on |x| for x ¢ I, . For the basis

2

step, |[x| = 0, note that e e D e e h—l(Dl) but e ¢ A. For the

2’
induction step Lemmas B.1 and B.2 are used along with the fact that when

X~ ¥, stz if and only if yeDZ.

*
Proposition B.3 can be rephrased as follows: a string X e 22 is

in D if and only if

2
(1) hx) e Dl; and

(2) whenever x = ua v (i = 1,2), there is a string

W e h-l(Dl) such that wzi begins v (i.e., is an initial substring

of wv).
Descriptions of D2 similar to this one have been used to construct

automata which accept D2'

Corollary B.4. (i) ([46]) D2 € DSPACE(lg(n)).
(ii) ([31]) D2 can be accepted by a deterministic

two-way one-counter automaton. 0

The automaton given by Ritchie and Springsteel [46] is a device
with two-way (read-only) input and has for storage counters which are
bounded by the length of the input, so there is a 1lg(n) tape-bounded
Turing machine that accepts the same set. The counter of the device
given by Hotz and Messerschmidt [31] is also bounded by the length of
the input. Both automata operate by checking condition (2) above for
each symbol a; (i =1,2) in the input x = ua,v, using a couﬁter to
determine which initial substrings of v are elements of h_l(Dl).

They also check that every symbol ;i in x has a "matching" symbol
a; to its left; it is not hard to sée, however, that if conditions (1)
and (2) are satisfied by x (i.e., if x ¢ h_l(Dl) - A) then x also
satisfies:

(3) whenever x = u;iv (i =1,2) there exists w ¢ h_l(Dl) such
that a,w ends u.

Once it is established that the Dyck set on one letter is a rudi-
mentary relation (see Proposition B.9), Proposition B.3 can be used to
show that the Dyck set on two letters is rudimentary and, hence, every
context-free language is a rudimentary relation. For the purpose of
showing the context-free languages to be rudimentary, other definitiomns

of D, have been given by Jones [34] and Yu [57]. The characterization

2

given by Jones is similar in form to the restatement above of Proposition

*

B.3. For b ¢ I, and w e Zz N
*

currences of the symbol b in w. For w e 22 R

balanced if #_ (w) =#_ and #_ (w) = #_ (w). Then Jones's represen-
— a; a a, a,

let #b(w) denote the number of oc-

define w to be

tation of D2 may be stated as follows:

X € D2 iff (1') x is balanced;

'(2') whenever x = ua v (i =1 or 2) there is a balanced

string w such that’ wzi begins v;b and

(3') whenever x = d;iv (i =1 or 2) there is a balanced

string w such that fagw ends u.

Note that h—l(Dl) and the set of balanced strings are incomparable.

It is not clear whether condition (3') can be omitted. The characteri-
zation of the Dyck sets suggested by Yu can be stated more easily using
langﬁage—theoretic operations; Let fl: 22* - Zl* and f2: 22* - Zl*

be the homomorphisms (similar to the homomorphism h of Proposition

B.3) determined by defining for i = 1,2, fi(ai) =a, fi(zi) = ;i and

— *
fi(aj) = fi(aj) =e for j#1, j=1,2. Define a language K c 22
by

Lk -1 -1 — % * -1 -1 — %
K = 3,a,(£ () n £, (dNa, I," v Iy a,(f7(D)) n £, (@)a; I,

_ el -1 _ -1 -1
Then D2 = [fl (Dl) n f2 (Dl)] K. The language fl (Dl) n f2 (Dl) is

properly contained .both in h_l(Dl) and in the set of balanced strings.
Recognition of D2 using this representation seems to require two coun-
ters.

The operation .of product with regular sets was used to define A

from h—l(Dl). The following lemma shows that closure of a class of
languages under product with regular sets is implied by closure under
intersection with regular sets, inverse homomorphism and length-preser-

ving homomorphism.

*
1 L2 c S and Ll

h

Lemma B.5. Suppose S is an alphabet, L, L

and L2 are regular sets. Then there exist homomorphisms hl, 27

with h1 length-preserving, and a regular set R such that

_ -1
LlLL2 = hl(h2 (L) n R).

*
Proof. Suppose L, Ll’ L, ¢ S are languages as in the statement of

2
the lemma. Let T = {a: a e S} be an alphabet isomorphic to S, with

1,2, 1let Ri = {;1...5;: n>0, ay...a e Li};

SnT-=@. For i
' *
since L1 and L2 1 and RZ' Let Rc (SuT
*

* *
be the regular set R = Rls RZ' Let h1: (SuT > S and

are regular so are R

* *
hz: (SuT) +S be the homomorphisms determined by defining, for

ae S, hl(a) = hl(a) = a, hz(a) = a and h2(a) = e. Note that hl

is a length-preserving homomorphism. Then LlLL2 = hl(h;l(L) nR. 0O

The following fact is easily proven using Proposition B.3 and Lemma

B.5.

Proposition B.6. If (1is a class of languages containing Dl and

closed under intersection, difference with regular sets, inverse homomor-

phism and length-preserving homomorphism, then D, € C. O

2

B-8

Recall that the closure of D, under the AFL operations is the

1

class of nondeterministic one-counter languages [22], which does not
contain D2; hence the operation of complementation is necessary.

Now we turn to the representation of D1 in terms of

*
L. = {0™": n=20}. For we {0,1} let #O(WO denote the number of
occurrences of 0 in w, and #1(w), the number of occurrences of 1

in w. Let L1 ={w e {0,1}*: #O(W) = #l(w)}. We first define D1

from Ll using language operations, in a representation similar to that

of Prop. B.3, and then define L1 from LO'

Let h,: * s {0,1)* be the homomorphism determined by defining

1f ¥
0 and h1(51) = 1, so that x € h;l(Ll) if and only if

h, (a;)

. *
(x) =4#_ (x). Define B ={x<€ I, : for some prefix y of x,
ay a; 1

#a (y) < #E (y)}. Then the language B contains those strings which
1 1

. -1 .
are in h1 (Ll) but not in D;:

_ -1
Proposition B.7. D; = hy (L;) - B. U

The proof of this equality is essentially the same as the proof of
Proposition B.3, using facts about hzl(Ll) - B similar to Lemmas B.1l
and B.2. Proposition 5.7 may be restated as: for x € Zl*’ X € D1 if
and only if

) #al(x) = #ﬁi(X); and

(2) for every prefix y of x, #_ (y) 24#_ (y).
21 it

Corollary B.8. If (is a class of languages containing L, and closed

1
under intersection, difference with regular sets, inverse homomorphism
and length-preserving homomorphism, then Dl (and hence every Dyck set)

is in C.

Proof. Recalling Lemma B.5, it is sufficient to show that B can be
defined from Ll by use of inverse homomorphism, length-preserving
homomorphism and intersection and product with regular sets.

Let hy: (0,1, > (0,1 and hy: (0,1,41" z," be the homo-
morphisms determined by defining hz(O) = 0, hz(l) =1 and hz(é) = e,

and h,(0) = a; and hy(1) = hy(#) = a,. Note that h, is length-pre-

1
serving. Let R be the regular set R = {0,1,¢}* {é}{O,l,f}*.
-1 B *
Then h3(h2 (Ll) nNR) = {xe Zl s #al(x) < #Ei(X)}; hence
- -1 *
B = (h3(h2 ;) n R)) I 0

We will now see that L can be defined from L and regular sets

1 0

by use of inverse homomorphism, length-preserving homomorphism and union
and intersection. The operation of complementation need not be used,

because Ll can be accepted in linear time by a deterministic automaton
with two counters, each of which makes only one turn during ‘any computa-

tion. Therefore there exist two one-turn one-counter languages Li and

LI such that L is the image under a linear-erasing homomorphism of

Li n LI . Recall also that L0 generates the one-turn one-counter lan-—

guages under the AFL operations. The algebraic definition of Ll from

LO (which reduces the linear-erasing homomorphism to a length-preserving

homomorphism) is based on these ideas.

Let ¢ = {e} v {udvéw: u,v,we {0,1}*, #O(U) = #o(vw),
#l(uv) = #l(w) and #O(u) = #l(w) > 1}. Note that if x = ufvéw is

in C1 then #o(x) = #l(x), #o(x) is even, and the two occurrences
of ¢ din x mark the positions in x where half the 0's and half
the 1's in x have occurred. Similarly, let

C, = fubvbw: wv,w e 10,117, # (41 = #(w), # (u)+l = # (@) and

#o(u)+l = #l(W) > 1}. Let g * {0,l,¢}* > {0,1,£}* be the homomorphism

that interchanges 0's and 1's: gl(O) =1, gl(l) =0 and gl(é) = £,
* *

Let Cy=0Cu gl(cl) u C2 u gl(Cz). Let gy {0,1,¢} - {0,1} be

the homomorphism defined by g2(0) =0, gz(l) =1 and gz(é) = e.

Then L1 = gZ(CS)' Since any word in C has at most two occurrences of

3

the symbol ¢, &y is e-limited on C3. The effect of an e-limited

homomorphism can be achieved by use of length-preserving homomorphism,
inverse homomorphism and intersection with a regular set [21, p.44], so
1 and C2 can be formed from »LO.

Cl is the intersection of three one-turn one-counter languages,

it suffices to show that C

each of which checks one of the conditions on the number of symbols in a
word. Let C, = {ufvéw: Fo(w) = #oow) = 1},

Cg = {udvéw: #1(uv) = #1(w) > 1}, and Cg = {udvéw: #O(u) = #1(w) > 1};
v %

hence can be

then C1 = {e} u (C4 nC.n C6)' It is not hard to see that C

5
and C6 are inverse a-transducer mappings [20] of LO’

defined from L0 by use of length-preserving homomorphism, inverse

B-11

homomorphism and intersection with regular sets. We give the definition
only for C4; that for C5 is essentially the same, and that for C

is simpler. Define four homomorphisms as follows:

6

r: 0,L$ > fo,13" £ =0, =1, @ -e

e 10,15 » {0,4)" (0 = 1, (1) =0, 1, = $

ry: (0,144 > {0,1,§)" 13000 =0, (D) =r,H) =e, £, =$
r,: 0,L,4,8% > (0,187 5,0 =0, 1) =1, £ =1,® =4

Let R, and R, be the regular sets:
R = (0"$1%: m,n =1}

R, = {0,11"($}{0,11 (410, 13".

Then

rzl(Lo) nR; = {0M1": 21}

r, t @) 0 R) = (07%0™: n > 1)

3He, @) 0 RD) 0 Ry = tufvv: wvaw e (0,15, #o(@ = #)(w) > 1}
and ‘

£, (e, Gy 0) R = G

o can be formed from L0 is similar.

The preceding discussion is summarized in the following proposition.

The demonstration that C

Proposition B.9. If C 1is a class of languages containing

{0™1™: n 2 0} and closed under intersection, difference with regular

B-12

sets, inverse homomorphism. and length-preserving homomorphism then every

Dyck set is in C. O

Again, the operation of complementation cannot be deleted, since
the closure of L0 under the AFL operations is properly contained in
the family of context-free languages, and hence does not contain the
Dyck sets.

Using the algebraic characterizations of the context-free languages
and of the class NTIME(n), it can be seen that for any class C
satisfying the conditions of Proposition B.9, the context-free languages

are properly contained in (and NTIME(n) is contained in C.

10.

11.

12.

13.

14.

R-1

REFERENCES

A. Aho, J. Hopcroft and J. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

B. Baker and R. Book, Reversal-bounded multipushdown machines, J.
Computer and Systems Science 8(1974), 315-332.

T. Baker, J.‘Gill and R. Solovay, Relativizations of the P =? NP
question, SIAM J. Computing, to appear.

J. H. Bennett, On Spectra, Ph.D. dissertation, Princeton University,
1962.

R. Book, On languages accepted in polynomial time, SIAM J.
Computing 1(1972), 281-287.

R. Book, Comparing complexity classes, J. Computer and Systems
Science 9(1974), 213-229.

R. Book, Translational lemmas, polynomial time and (log n)J—space,
Theoretical Computer Science 1(1975), to appear.

R. Book, On the Chomsky-Schutzenberger Theorem, Technical Report,
Department of Computer Science, Yale University, 1975.

R. Book and S. Greibach, Quasirealtime languages, Math. Systems
Theory 4(1970), 97-111.

R. Book, S. Greibach and B. Wegbreit, Time- and tape-bounded Turing
acceptors and AFLs, J. Computer and Systems Science 4(1970),
606-621.

R. Book, S. Greibach, B. Wegbreit and O. Ibarra, Tape-bounded
Turing acceptors and principal AFLs, J. Computer and Systems
Science 4(1970), 622-625.

R. Book and M. Nivat, Linear languages and the intersection closure
of classes of languages, in preparation.

R. Book, M. Nivat and M. Paterson, Reversal-bounded acceptors and
intersections of linear languages, SIAM J. Computing 3(1974),
283-295.

N. Chomsky and M. P. Schutzenberger, The algebraic theory of
context-free languages, in P. Braffort and D. Hirschberg, eds.,
Computer Programming and Formal Systems, North-Holland, Amsterdam,
1970, 118-161.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

A. Cobham, The intrinsic computational difficulty of functions,
Proc. 1964 Congress for Logic, Math., and Phil. of Science,
North-Holland, Amsterdam, 1964, 24-30.

S. Cook, The complexity of theorem-proving procedures, Proc. Third
ACM Symp. on Theory of Computing (1971), 151-158.

P. Fischer, A. Meyer and A. Rosenberg, Real-time simulation of
multihead tape units, J. ACM 19(1972), 590-607.

S. Ginsburg, The Mathematical Theory of Context-free Languages,
McGraw-Hill, New York, 1966.

S. Ginsburg and S. Greibach, Principal AFL, J. Computer and Systems
Science 4(1970), 308-338.

S. Ginsburg and S. Greibach, Abstract families of languages, Memoir
87, American Mathematical Society, Prov1dence, R. I., 1969, 1-32.

S. Ginsburg, S. Greibach and J. Hopcroft, Pre-AFL, Memoir 87,
American Mathematical Society, Providence, R. I., 1969, 41-51.

S. Greibach, An infinite hierarchy of context-free languages, J.
ACM 16(1969), 91-106.

S. Greibach, Erasing in context-free AFLs, Inf. and Control 31
(1972), 436-465.

S. Greibach, The hardest context-free language, SIAM J. Comguting
2(1973), 304-310.

A. Grzegorczyk, Some classes of recursive functions, Rozprawy
Matematyczne IV(1953), 1-46.

J. Hartmanis, Context-free languages and Turing machine
computations, Proc. Symp. Applied Math. 19(1967), 42-51.

J. Hartmanis and J. Hopcroft, What makes some language theory
problems undecidable, J. Computer and Systems Science 4(1970),
368-376.

J. Hartmanis and R. Stearns, On the computational complexity of
algorithms, Trans. Amer. Math. Soc. 117(1965), 285-306.

F. Hennie and R. Stearns, Two-tape simulation of multitape machines,
J. ACM 13(1966), 533-546.

J. Hopcroft and J. Ullman, Formal Languages and Their Relation to

Automata, Addison-Wesley, Reading, Mass., 1969.

31.

32.
33.
34.

35.
36.

37.
38.

39.
40.
41.
42.
43,

44,

G. Hotz and J. Messerschmidt, Dyck-Sprachen sind in Bandkomplexitat
log n analysierbar, Technical Report, Universitat des Saarlandes,
1975.

0. Ibarra, On two-way multihead automata, J. Computer and Systems
Science 7(1973), 28-36.

N. Jones, Formal Languages and Rudimentary Attributes, Ph.D.
dissertation, University of Western Ontario, London, Canada, 1967.

N. Jones, Context-free languages and rudimentary attributes, Math.

Systems Theory 3(1969), 102-109.

N. Jones, Reducibility among combinatorial problems in log n space,
Proc. Seventh Annual Princeton Conf. on Information Sciences and
Systems (1973).

R. Karp, Reducibility among combinatorial problems, in R. Miller
and J. Thatcher, eds., Complexity of Computer Computations, Plenum
Press, 1972, 85-104.

R. Ladner, On the structure of polynomial time reducibility, J. ACM
22(1975), 155-171.

R. Ladner, N. Lynch and A. Selman, A comparison of polynomial time
reducibilities, Theoretical Computer Science, to appear.

N. Lynch, Relativization of the Theory of Computational Complexity,
Project MAC Technical Report 99, Massachusetts Institute of
Technology, 1972.

A. Meyer and L. Stockmeyer, The equivalence problem for regular
expressions with squaring requires exponential space, Conf. Record
IEEE Thirteenth Annual Symp. on Switching and Automata Theory
(1972), 125-129.

G. Myhill, Linear Bounded Automata, Wright Air Dev. Div. Technical
Note 60-165, 1960.

V. A. Nepomnyashchii, Rudimentary interpretation of two-tape Turing

computation, Kibernetika 6(1970), 29-35. Translated in Cybernetics,
Dec. (1972), 43-50.

E. L. Post, Recursively enumerable sets of positive integers and
their decision problems, in M. Davis, ed., The Undecidable, Raven
Press, Hewlett, New York, 1965, 305-337.

W. V. Quine, Concatenation as a basis for arithmetic, Journal of

Symbolic Logic 11(1946), 105-114.

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

R. Ritchie, Classes of predictably computable functions, Tranms.
Amer. Math. Soc. 106(1963), 139-173.

R. Ritchie and F. Springsteel, Language recognition by marking
automata, Inf. and Control 20(1972), 313-330.

H. Rogers, Theory of Recursive Functions and Effective
Computability, McGraw-Hill, New York, 1967.

W. Savitch, Relationships between nondeterministic and
deterministic tape complexities, J. Computer and Systems Science
4(1970) , 177-192.

J. Seiferas, Nondeterministic Time and Space Complexity Classes,
Project MAC Technical Report 137, Massachusetts Institute of
Technology, 1974.

J. Seiferas, M. Fischer and A. Meyer, Refinements of the
nondeterministic time and space hierarchies, Conf. Record IEEE
Fourteenth Annual Symp. on Switching and Automata Theory (1973),
130-137.]

R. Smullyan, Theory of Formal Systems, Annals of Mathematics
Studies No. 47, Princeton University Press, 1961.

L. Stockmeyer, The Polynomial-Time Hierarchy, IBM Research Report
RC-5379, IBM Thomas J. Watson Research Center, Yorktown Heights,
New York, 1975.

L. Stockmeyer and A. Meyer, Word problems requiring exponential
time, Proc. Fifth ACM Symp. on Theory of Computing (1973), 1-9.

A. Turing, Systems of logic based on ordinals, in M. Davis, ed.,
The Undecidable, Raven Press, Hewlett, New York, 1965, 155-222.

B. Wegbreit, A generator of context-semsitive languages, J.
Computer and Systems Science 3(1969), 456-461.

C. Wrathall, Complete sets and the polynomial hierarchy, in
preparation.

Y. Yu, Rudimentary Relations and Formal Languages, Ph.D.
dissertation, University of California, Berkeley, 1970.

