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Abstract In a multiprocessor with distributed storage the data structures have a
significant impact on the communication complexity. In this paper we present a few algo-
rithms for performing matrix transposition on a Boolean n-cube. One algorithm performs
the transpose in a time proportional to the lower bound both with respect to communica-
tion start-ups and element transfer times. We present algorithms for transposing a matrix
embedded in the cube by a binary encoding, a binary-reflected Gray code encoding of rows
and columns, or combinations of these two encodings. The transposition of a matrix when
several matrix elements are identified to a node by consecutive or cyclic partitioning is also
considered and lower bound algorithms given. Finally, experimental data are provided for
the Intel iPSC and the Connection Machine.

1 Introduction

Matrix transposition is one of the basic operations frequently performed in linear algebra.
It is useful in the solution of systems of linear equations by a variety of techniques. For
instance, it may be beneficial with respect to performance for the solution of tridiagonal
systems of equations on Boolean n-cube configured architectures to move all equations of
a system to one processor and solve it locally instead of using a parallel algorithm such as
cyclic reduction [9]. Tridiagonal systems occur in the Alternating Direction Implicit (ADI)
method and in the solution of Poisson’s problem by the Fourier Analysis Cyclic Reduction
(FACR) method.

In this paper we focus on matrix transposition on Boolean n-cube architectures. The
transpose can be formed recursively as described in [13,1,6,11]. Stone describes a mapping
on to shuffle-exchange networks for the case with one matrix element per node. We consider
the case with multiple matrix elements per node and focus on the pipelining of communi-
cation operations and the optimal use of the communication bandwidth of the Boolean
n-cube. In [6,7] we described and analyzed the complexity of a transpose algorithm for
a two-dimensional mesh and presented a few algorithms for the transposition of matrices
embedded in the cube by binary or Gray code encoding of the row and column indices.
In this paper we present a transpose algorithm that is of lower complexity in the case of
concurrent communication on multiple ports, and present experimental data for the Intel
iPSC and the Connection Machine [2].

We first introduce the notation and data structures used in this study, then present




algorithms for the transpose operation for one-dimensional and two-dimensional partition-
ings. Implementation issues particular to the actual machines used, but important for the
interpretation of the experimental results presented, are addressed after the description of
the algorithms. A summary and conclusion follows.

2 Notation and Definition

In the case of an N = 2" processors Boolean n-cube and a P x Q matrix such that P = 2P,
Q@ = 2% and p + ¢ = n, matrix elements can be assigned to distinct processors without any
waste. One obvious assignment is to embed the matrix by encoding the row and column
indices of matrix elements in binary code. Such an embedding does not preserve proximity.
A binary-reflected Gray code [12] encoding of row and column indices preserves adjacency.
This code is referred to as Gray code in the following and the encoding of ¢ is G(i). The
conversion from one kind of encoding to the other can be accomplished in log N — 1! routing
steps and the paths made edge-disjoint [6].

In the case of P xQ > N multiple matrix elements must be assigned to the same node in
the Boolean cube. For N < max(P, Q) there is a choice between one-dimensional partition-
ing (strip) and two-dimensional partitioning (block). For either kind of partitioning the ma-
trix elements are assigned either cyclicly or consecutively [6,7]. In a one-dimensional cyclic
partitioning column (or row) j is assigned to partition  mod N and in a one-dimensional
consecutive partitioning column j is assigned to partition I.'Jsﬁj with partitions labeled

0,1,...,N — 1. In a cube with N = 2" nodes the n lowest grder bits of the binary en-
coded column (row) index determines the partition to which a column (row) is assigned in
the cyclic partitioning, and analogously, the n highest order bits determines the partition
assignment in the consecutive partitioning, Figure 1. The partitions are assigned to cube
nodes through encoding in binary or Gray code.

In the two-dimensional partitioning we let N, denote the number of partitions in the
row direction and N, the number of partitions in the column direction. The total number
of partitions is N, x N, = N. In the cyclic partitioning matrix element (¢,7) is assigned to
partition (f mod N,,j mod N.) and in the consecutive partitioning it is assigned to parti-
tion (lrw—;i—]" , [T—TVQJ'_]J)’ Figure 2. For a P x Q matrix partitioned by the consecutive strategy

the highest order log N, bits of the matrix row index determines the partition row index.
Analogously, the log N, highest order bits of the matrix column index determines the par-
tition column index. We assume for simplicity that N, = 2" and N, = 2°. In cyclic storage,
the last several bits of the matrix row and column indices determine the assignment to a
partition. The partitions are assigned to nodes in the cube by encoding the row and column
indices of a partition in binary code or Gray code.

For the architecture we assume that it has packet oriented communication with a com-
munications overhead 7, a transmission time per element t,, and a maximum packet size
of B, elements. This model applies for the Intel iPSC. For a bit-serial architecture, such
as the Connection Machine, the overhead can be made additive by pipelining. With the
operating system for the Intel iPSC on which our experiments were carried out 7 & 5ms,
t. ~ lusec/byte and B,, = 1k bytes. For the algorithm description and analysis we con-
sider two cases with respect to communication capabilities: communication restricted to

!Throughout this paper log N = log, N
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Figure 1: Cyclic and Consecutive one-dimensional partitioning.
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Figure 2: Cyclic and Consecutive two-dimensional partitioning.




one port at a time, one-port communication, and concurrent communication on all ports,
n-port communication. The former is a good approximation of the capabilities of the Intel
iPSC.

We assume that n = r + ¢ and write the processor address as (ra,—ira,_z...ragca._q
cac—2...cap) or (ra||ca), where ra = (ra,—1 ra,—3...rag), ca = (cac-1cac—3...cap) and ‘||’ is
the concatenation operator of two binary numbers.

3 One-Dimensional Matrix Partitioning

3.1 Consecutive and Cyclic Storage

The transposition of a matrix from consecutive row to consecutive column partitioning
has the same communication pattern as transposition from cyclic row to cyclic column
partitioning. If P,Q > N each node needs to send data to all other nodes. For P < N or
Q < N a subset of the nodes are either recipients or senders of data. Conversion between
consecutive row and cyclic row (or column) partitioning also implies that all nodes send
unique information to all other nodes, if @ > N? for column partitioning, and P > N? for
row partitioning. Consecutive partitioning is made on the log N highest order bits, cyclic
partitioning on the log N lowest order bits of the row or column indices. Clearly, if less than
2log N bits are required for the encoding of row or column indices data is not sent from each
node to every other node in the conversion. The amount of data sent from any node to any
other node is P-WQ in either of the two matrix transpose operations, or the cyclic/consecutive
partitioning conversion.

Proposition 1 Conversion between any two of the following siz embeddings

1. consecutive row storage.

2. consecutive column storage.
8. cyclic row storage.

4. cyclic column storage.

5. combination of consecutive row and cyclic row storage.

D

. combination of consecutive column and cyclic column storage.

18 equivalent to all-to-all personalized communication [1 0], if P > N? for row partitioning,
or Q > N? for column partitioning.

For the transpose of a matrix partitioned consecutively by columns the partition as-
signment is changed from the log N highest order bits of the column index encoding to the
log N highest order bits of the row index encoding. For cyclic partitioning it is instead the
lowest order log N bits of the row and column indices that are of interest. For conversions
between cyclic and consecutive partitioning only one index (row or column) is involved. It
follows that if either the maximum row or column index requires less than log N bits for
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its encoding (or both), then the matrix transpose operation corresponds to a few distinct
one-to-all personalized communications[10].

3.2 Binary and Gray Code Embeddings

The six partitionings in proposition 1 can be used in connection with either Gray code
encoding or binary code encoding. There is a total of 12 matrix embeddings obtainable
through the combination of one-dimensional partitioning strategies and encodings in the
Boolean cube; namely, consecutive or cyclic partitioning or a combination of the two, row
or column partitioning, binary or Gray code encoding. Most conversions between any two
of the 12 storage methods are equivalent in terms of the global communication. 2

3.3 Generic Algorithms

If there are data elements for every processing node both before and after the data rear-
rangement, then the communication is all-to-all personalized communication. In the case
where only a few processing nodes contain data before or after the transformation it is of
the form many-to-all or all-to-many personalized communication. In the extreme case it is

one-to-all personalized communication. These forms of communication are studied in detail
in [3,10].

3.3.1 One-to-All Personalized Communication

One-to-all personalized communication can be performed in lower bound time by routing
according to a Spanning Binomial Tree (SBT) with one-port communication [3]. Before
the communication the source node holds all PQ data elements. After the communication,
every processor holds %,Q data elements. The communication time is Tyin = (1— %)Pth +

r([f—,g] +min(n,log|’%§"§’|)—l), which is minimized for B > £2. T, = (1- %) PQtc+nr.

With n-port communication routing according to a SBT is no longer optimal. The
lower bound for concurrent communication is T = %(1 - 'JI\T)Pth + n7. One nearly optimal
(truly optimal for n prime) routing strategy is to use a Spanning Balanced n-Tree (SBnT)
[3,10,5]. The routing time is T ~ Y%, (1 (7) 52t + [1(7) ;n—Q—N]r) =Tw~1(1- %)PQt.+
E?___l([%(?)%]r, which has a minimum of Tp; = 1(1 - £)PQt. + nr for By, > \/g'%%
The speed-up of the transmission time of SBnT routing over SBT routing is a factor of n /2.
The maximum packet size is reduced approximately by a factor of n.

An alternative routing for n-port communication, is to divide the data set (%,Q) for each
node into n equal parts (if BNQ- mod n = 0) and route the parts according to SBT’s rotated,
or reflected, with respect to each other, or a combination thereof. The minimum time for
one-to-all personalized communication using n distinctly rotated spanning binomial trees
isT = %(1 - 'JI\T)Pth + nr [3], i.e., the same complexity as that of the lower bound. The

lower bound is achieved for B,, > max (?)%1—;\9,2 my/2EL 1 < i<

T n3/2 )

Zexcept the conversions between binary code and Gray code encoding in which both use the same parti-
tioning scheme in the same direction.




For Bﬁ- = k < n the SBnT routing has a lower time complexity for element transfers. For
-1
k SBT’s the transfer time for optimally rotated spanning binomial trees is (2" —1) 23%%: %,th
and for optimally reflected and rotated spanning binomial trees the minimum transfer time
-1
ith t icati Il ports is (2 — 1) 25 "+1PQ,
with concurrent communication on all ports is ( )—;;FJ_I'— ~N-te

3.3.2 All-to-All Personalized Communication

For all-to-all personalized communication a simple exchange algorithm scanning through
the dimensions of the cube attains the lower bound, Tyin = 2n(€ﬁ-tc + 7), for one-port
communication [10]. In each communication % elements are transfered. The exchange
algorithm routes elements from a node to all other nodes according to a SBT. With n-port
communication pipelining can be employed in the exchange algorithm, but the algorithm so
modified is suboptimal. However, routing based on spanning balanced n-trees, or rotated
spanning binomial trees, attains the lower bound, Ty, = %‘vltc + nr, ignoring lower order
terms [10].

For the exchange algorithm [7] presented next it is assumed that the matrix is partitioned
consecutively by rows and that processor 1 initially holds the elements of the #** block row.
After the transpose operation it shall hold the elements of the it block column. Note that
the number of rows in a block row is different from the number of columns in a block column,
unless P = Q. However, the number of elements in a block row and a block column are the
same. For the transpose operation the block row of each processor is partitioned by columns
into N equally sized blocks. The transpose is formed by processor ¢ exchanging its ** block
with the t** block of processor j. The data array in each processor holding the elements
of a block row is two-dimensional, unless the number of rows is equal to the number of
processors, and the local data array after the transposition is also two-dimensional, unless
the number of columns is less than or equal to the number of processors. To complete the
transposition after the interprocessor communication is completed, this two-dimensional
data array can be transposed further locally, explicitly, or implicitly by indirect addressing.

/* An Ezchange Algorithm: */
for 7 := n — 1 downto 0 do
if (bit j of my-addr = 0) then
exchange blocks %N to N — 1 of my blocked array
with my neighbor in dimension j

else
exchange blocks 0 to %N — 1 of my blocked array
with my neighbor in dimension j
endif;
shuffle my blocked array;

enddo

The loop can also be performed with the loop index running in the opposite order, but
then the first operation in the loop shall be an unshuffle operation, which replaces the shuffle
operation at the end of the loop.




/* A SBaT Algorithm: */
/* Let the format of msg be (source-addr, relative-addr, data). */
for all 5§ # myaddr do
form msg for processor j = (myaddr, myaddr & j & 00..01,0..0, data)
and append to output-buf [b] where b is the base of myaddr @ j.
loop n times
send concurrently for all n output ports.
receive concurrently for all n input ports.
for each 7do,0< j<n
for each msg of input-buf [j] do
if relative-addr = 0 then
put the data into the source-addrt® block of the target array

else
form relative-addr := relative-addr @ (0..01,0..0) in
the msg and append to output-buf [p], where p is
the bit position of relative-addr which is the
nearest 1-bit to the left of the 7** bit cyclically.
/* Note: s bit is always O here. */
endif
enddo
enddo
endloop

For both the SBT and SBnT algorithms presented above it is assumed that the partitions
are embedded in the cube by a binary encoding. For Gray code encoding of partitions and
binary encoding locally, we can first perform a transformation locally such that block 1 is
moved to block location G(t), then carry out the above algorithms. The two operations can
also be combined as described in the next section for two-dimensional partitioning.

4 Two-Dimensional Partitioning

4.1 Relationships Between Different Data Structures and Their Encod-
ings

As with one-dimensional partitioning there is a multitude of cases. If there is no particular
reason for identifying a particular processor with a particular partition, then renaming of
the processors suffices to realize the transpose. The processors that were assigned to column
partitions will be assigned to row partitions after such a relabelling.

With the same number of partitions in the row and column directions, the transpose
operation of a matrix partitioned by the consecutive strategy in both dimensions implies
the same interprocessor communication as if the partitioning is made cyclicly in both di-
mensions (or by the same combination in both dimensions). An exchange of data takes
place between distinct pairs of partitions. What matrix elements are exchanged depends
on the partitioning strategy, as is easily seen if the concatenated bitfields of the matrix row
and column indices is partitioned with the first (or last) log N, = log N, bits of the row
and column halves of the index field making up the partition address. In [6,7] we show that
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transposition of a matrix with partitions embedded in the cube by a binary code or Gray
code encoding implies the same communication.

If the number of row and column partitions are different, then the transpose operation
is no longer a pure exchange operation between a pair of processors. Some one-to-many
and many-to-one communications are necessary. For example, assume that there are two
row partitions and four column partitions. Then some partitions exchange data with one
other partition, and some partitions with two other partitions. If virtual partitions are
introduced in the row direction such that there are equally many row partitions, then the
transpose operation becomes equivalent to the canonical case having as many row as column
partitions. The number of virtual partitions is 2108 ¥r=1ogNe|  With virtual partitions one
dimension is “collapsed” to a certain degree.

Conversion between cyclic storage and consecutive storage in the row or column di-
rection is equivalent to a number (N, or N,) of independent one-dimensional conversions.
Conversion in both dimensions is equivalent to all-to-all personalized communication, if
Q > N?Z and P > N?2. In the two-dimensional conversion the assignment of matrix rows
to partitions is changed from being determined by the last log N, bits of the matrix row
index to the first log N, bits, or vice versa, and the column assignment is changed similarly
according to the last and first log N, bits of the matrix column index. The source cube node
address is defined by the concatenated last log N, bits of the row index and log N, bits of
the column index, and the destination address by the concatenated first log N, bits of the
matrix row index and log N, bits of the column index. Clearly, by a suitable permutation
of the bits in the concatenated row and column index encoding the two-dimensional conver-
sion is equivalent to a one-dimensional conversion on a cube with log N, + log N, = log N
dimensions. Conversion of storage form and transposition can be combined with no increase
in communication complexity [4].

4.2 Algorithms

We consider the transposition operation for binary encoding first. Define tr(¢) to be the
function which maps the address of partition ¢ = (ral|ca) to the address of the transposed
partition, i.e., tr(f) = (cal||ra). Let D(s) = |ra @ cal, i.e., the value of D(¢) is equal to the
number of bits that differ in ra and ca. The distance between ¢ and tr(:) is 2D(i). We
assume that there are equally many row and column partitions.

The Single path Recursive Transpose (SRT) algorithm [7] uses one path from node ¢
to tr(7). Paths for different ¢ are edge-disjoint, and pipelining of communications can be
employed to reduce the communication complexity. The Dual paths Recursive Transpose
(DRT) algorithm is a straightforward improvement of the SRT algorithm in that two di-
rected edge-disjoint paths are established from each source node to its corresponding des-
tination node. In the Multiple paths Recursive Transpose (MRT) algorithm, we partition
all the nodes into sets having equivalent properties with respect to an operator. In [4] we
show that the paths of any two nodes in different sets are edge-disjoint, and prove that all
the nodes in the same set share the same set of edges, but use them during different cycles.



4.3 The Single Path Recursive Transpose (SRT) Algorithm

The Single path Recursive Transpose (SRT) algorithm [7] for a two-dimensional, consecu-
tively partitioned matrix, exchanges data between the upper right P/2 X Q/2 submatrix
(ra n_1=0,can_y= = 1) and the lower left submatrix (ra a1=1can_;= 0) in two steps.

The transpose operatlon is completed by recursively applymg the operation to each of the
four submatrices. The implied routing corresponds to directed edge-disjoint paths [6] from
each node ¢ to tr(¢). This path only goes through the appropriate dimensions of the cube
corresponding to the bits of the source node address ¢ that need to be complemented to
become the destination node address tr(¢). The routing order for the dimensions is the
same for all nodes, for instance highest to lowest order for both row and column encoding,
ie. , T@2_1,€a2_1,T@%_3,Cazn_3,...,Ta0,cdo. The length of the path of node i is 2D(1).

The first packet for each node on the anti-diagonal arrives after n routing steps and addi-
tional packets every cycle thereafter. The total number of routing steps is [ BN S| +n—1.
The nodes which are not on the anti-diagonal can either finish the transposition early in
a “greedy” manner, or synchronize with the anti-diagonal nodes, i.e., the packet with the
same ordinal number of all the nodes uses the same dimension (or 1dles) during the same
step. The total transposition time T is ( BN Tn— 1)(Bmt. + 1') The optimal packet size,

By, is and the minimum time, Tyiy, = —c‘?-tc +V(n-1)r 2,
P N n— l te

4.4 The Dual Paths Recursive Transpose (DRT) Algorithm

The SRT algorithm can be improved by establishing two directed edge-disjoint paths be-
tween ¢ and tr(s) for all . In addition to the path used in the SRT algorithm, a second
path is defined by permuting row and column dimensions pairwise to yield a routing or-
der selected from can_j, ran_y, can_g, ras_s, ..,Cao, raq. The two directed paths are
edge-disjoint (as observed in [8] for the solution of tridiagonal systems on Boolean cubes).
Moreover, the two directed paths for any i are edge-disjoint with respect to all paths for
other ¢. This second path can be used to reduce the time for data transfer by splitting the
set of data i into two equal parts. The path lengths are already minimal in the SRT
algorithm.

4.5 The Multiple Paths Recursive Transpose (MRT) Algorithm

For the Multiple paths Recursive Transpose (MRT) algorithm we define 2D(7) paths, labeled
0,1,...,2D(5) — 1, between nodes ¢ and tr(¢). The paths differ in the order in which the
d1mens1ons are routed All paths have the same length. Let AD(§)-1 XD (i)-25--+» 0, Bp(i)-1,
BD(i)-25--» Bo be the sequence of dimensions that need to be routed in descending order.
We describe a pair of paths as a sequence of dimensions.

®(p+D(i)- l)modD(z)nB(p+D(z) l)modD(:))a(p+D(|) —2)modD(s)» ﬂ(p+D(s) —2)modD(3)>
«»Qp, Bp. 0<p< D(s

ﬁ(]+D(l) l)mOdD(t),a(J-l-D(‘l) —1)modD(z)> /3(1+D(1) —2)mod D(%) » ¥(j+D(i)—2)mod D(¢)»
->Bi,aj.  j=p—D(),D(5) < p < 2D(3).

path p =

For example, if 1 = (1001||0100), then ra = 1001,ca = 0100, D({) = 3 and tr(s) =
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(cal|ra) = (0100]|1001). The distance between i and tr(t) is 6. The 6 paths are defined as
follows.

path 0=17,3,6,2,4,0. path 3=3,7,2,6,0,4.
path 1 =4,0,7,3,6, 2. path 4=0,4,3,7,2,6.
path 2 =6,2,4,0,7,3. path 5=2,6,0,4,3,7.

Path O starts from the source node (10010100) and goes through nodes (00010100),
(00011100), (01011100), (01011000), (01001000) and reaches the destination node (01001001).
Path p can be derived by a right rotation of two steps of path (p — 1) mod D(s),if 0 < p <
D(3). For D(i) < p < 2D(i), path p can be derived by a right rotation of two steps of
path ((p— 1) mod D(7)) + D(s) and also by permuting row and column dimensions pairwise
of path (p — 1) mod D(7). Note that path O is the same as the path defined in the SRT
algorithm. Paths 0 and D(s) are the two paths defined for node ¢ in the DRT algorithm.

For the routing, the data from node 1 is split into 4D(¢) packets of size rﬁ?ﬂ each.
The packets are sent during the first two cycles. The first 2D(¢) packets will arrive at the
destination node, tr(¢), after 2D(7) cycles, and the second set during the next cycle. The
total transpose time is [4].

P 3 P c.
_ [ )+ (5 5Re it g > FRE
37+ %%th otherwise.

The transpose time decreases as a function of D(5) for 1 < D(s) < /£% and increases

for /£ < D(i). The transpose time for D(i) = 1 and D(i) = EQi. are the same.

The maximal packet size is f—:—g—. The maximal packet size can be reduced either without

affecting the total transpose time (if 5 > %%Q) or the total transpose time reduced by
splitting the data into ’-ﬁ;jj * 4D(4) packets. In fact, the data sent from node ¢ can

be split into 4kD(¢) packets instead of 4D(i) packets. The whole routing completes in
2kD(t) + 1 cycles. Hence, T = (2kD(s) + 1)(r + Irgﬁw)’ 1 < D(¥) < 2. The optimal k is

vV %%5171?5 and Thin = (/7 +4/ P—qu% 2. Notice that Tpn is valid only when k > 1, which
implies 4/ %% > n.
Theorem 1 The total matriz transpose time by the MRT algorithm 1s
(n+1)r+ "T'?}%,th ifn> PTVQ% approzimately;
(F+3)r+ %%tc if\/%%—:ﬁ <n< \/% approzimately and § is even;
(3+2)r+ ﬁ%%?—tc if\/% <n< %%tﬂ approzimately and % is odd;
PQt. . PQt.
(V7 +v3%) fn <ok
and the mazimal packet size is
I-W(%%ﬁ] for even % and n > /5%,

B = [m};—%ﬁ] for 0dd % and n > /£,

PQr PQt,
2Nt, for n <\ 537

T =
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Figure 3: Transpose of a matrix stored by binary code encoding of row index and Gray
code encoding of column index.

Proposition 2 The matriz transposition time T > nr + %tc.

Proof: The minimum number of communications is determined by the longest path.
Nodes on the main anti-diagonal are at distance n. For a lower bound on the required
time for data transfer consider the upper right v/N/2 x v/N/2 submatrix. There are N/4
nodes. Each node has to send %?— data to some node outside the submatrix. There are two
dimensions per node that connects to nodes outside of the submatrix, i.e., a total of 2N /4

links. Hence, the data transfer requires a time of at least %%—tc. |

The transposition algorithm above can be applied also if both row and column indices
are encoded in Gray code. In the binary encoded case matrix element (1,7) is stored in
processor i||j and matrix element (,1) in processor j||i. The two dimensional transpose
algorithms described above defines a permutation between processor ra||ca and processor
ca|lra, YO < ra < P,ca < Q. For Gray code encoding of row and column indices, matrix
element (¢, 5) is stored in processor G(1)||G(5) and matrix element (7, ) is stored in processor
G(7)||G(5). It follows that the permutation will transpose the matrix.

If row and column indices are encoded in the same way, the transpose algorithm only
depends on the processor addresses, not on the row and column indices of the matrix
elements in the processors. For N < PQ, the argument applies to matrix blocks instead of
matrix elements.

It is also possible to combine matrix transposition with Gray code to binary code con-
version without increasing the communication time [4]. The data movement for mixed
encoding is illustrated in Figure 3.
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Matrix transpose, with buffering, 1-dim part. Matrix transpose, without buffering, 1—dim part.
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Figure 4: Measured times on the Intel iPSC for the transpose of a matrix, one-dimensional
partitioning, encoded in binary code.

5 Experiments

5.1 One-Dimensional Partitioning

The Intel iPSC effectively allows only one-port communication. Hence, we implemented
the one-dimensional transpose using the exchange algorithm. However, our implementation
deviates from the above description in that we do not perform the shuffle operations explic-
itly, since the copying time on the Intel iPSC is significant. Copying 1024 single precision
floating-point numbers (4 kbytes) takes about 37 msec according to our measurements.
Instead, we logically partition the local array into 2/ same-sized blocks during step 5. The
odd or even blocks can either be sent directly to minimize the copy time, or copied into
a buffer to reduce the number of start-ups. Figure 4 presents the measurements for un-
buffered and buffered communication for rearrangement of cyclic to consecutive partitioning
(one-dimensional local arrays).

The complexity of the unbuffered communication is easily found tobe T = n%tc+ (N+
[ﬁ%,qﬁ] min(n,logz[ﬁgﬁ]) - %)21’. With buffered communication, messages may ini-
tially be larger than the buffer size, in which case they are sent directly. Small messages are
buffered and the time for communication is T = nElt, + (min(n, log[ %Qﬁ])[ 2—%] +

. . P P P
min(N, Bc%?’w) — min(N, BI:,SV) + rzB,SN] max(0,n — log[B—m?m]))% + £2 max(0,n -

log| E}igw])tcopy, where Bcopy is the array size beyond which it is preferable to send without
copying into a buffer. The complexity of the unbuffered communication grows linearly in
the number of processors, i.e., exponentially in the number of cube dimensions, as shown
in Figure 4. The buffered communication grows linearly in the number of cube dimen-
sions. For a low growth rate it is important to have a large buffer, to reduce the number
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Measured optimal buffering length = 64

Figure 5: Performance measurements for optimum buffer size on the Intel iPSC.

of start-ups, and fast copy. With the times for copy of floating-point numbers and commu-
nication start-ups on the Intel iPSC the copy of 64 single-precision floating-point numbers
(256 bytes) takes approximately the same time as one communication start-up, Figure 5. It
is beneficial to send blocks of length at least 64 floating-point numbers without buffering.
Figure 6 shows the improvement in performance with optimum buffering compared to the
unbuffered communication. Note that for sufficiently small cubes (or large data sets) the
time required by the two schemes coincide.

5.2 Two-Dimensional Partitioning

5.2.1 The Intel iPSC

We have implemented algorithm SRT as a step by step procedure. On the Intel iPSC it is
necessary to rearrange two-dimensional arrays into one-dimensional arrays before sending.
Since the copy time is significant we arrive at an estimate for the time of a block transpose
of T = (B&t. + [ —B%Qﬁ]r)n + 252 t.0py. The growth rate is proportional to the number
of matrix elements. There is an exponential decay as well as a linear increase in T as a
function of the number of cube dimensions. Figure 7 shows measured values for the copy
time, the communication time and the total time for a 2-cube and a 6-cube. As expected,
the copy time for the 6-cube is lower than that for the 2-cube. Also, the communication
time is essentially determined by the number of start-ups, which for the 6-cube remains the
same for PQ < 64 kbytes.

Figure 8(a) shows the total transpose time as a function of the number of cube dimen-
sions and matrix size. For small matrices the number of communication start-ups dominates
and the total time increases with the number of cube dimensions, but as the matrix size
increases the transpose time decreases with increased cube size.
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Figure 6: The effect of optimum buffering on performance for matrix transpose on the Intel

iPSC.
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Matrix transpose, 2—dim partitioning, 2—cube Matrix transpose, 2—dim partitioning, 6—cube
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Figure 7: Performance measurements for matrix block transpose on the Intel iPSC.
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Figure 8: Measured times for block matrix transpose on the Intel iPSC using the SRT
algorithm without pipelining (a) and using routing logic (b).

On the Intel iPSC it is also possible to carry out the transpose operation by a direct send
to the final destination. Figure 8(b) gives the times measured for matrix transpose using
the routing logic alone. As the cube size increases the recursive block transpose algorithm
yields a significantly better performance than the transpose time offered by the routing
logic.

5.2.2 The Connection Machine

We have also implemented matrix transposition on the Connection Machine. It has a
bit-serial, pipelined communication system. The recursive algorithm does not exploit this
feature, but the routing logic does. Figure 9 shows the transpose time using the routing
logic. Each processor holds one matrix element (32-bits). Figure 10 shows the transpose
times for various number of matrix elements per processor, and for various number of
processors. Figure 11 shows the transpose times for two fixed sized matrices on various
sizes of the Connection Machine.

6 Comparison and Conclusion

It is of interest to compare the times for matrix transpose based on a one-dimensional
partitioning and a two-dimensional partitioning.
T2d = PQ mt

PQ
et [BmN]T)n +t2y

copy
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Figure 9: Matrix transpose on the Connection Machine. One element per processor.

Matrix transpose on the Connection Machine
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Figure 10: Matrix transpose on the Connection Machine. Multiple elements per processor.

16




Matrix transpose on the Connection Machine
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Figure 11: Matrix transpose on the Connection Machine as a function of the machine size.

. PQ PQ . PQ . PQ
1d __ —_ ) - [
T¢ = (mm(n,log[BmN])[2B N] + min(N, BcopyN) min(N, BN
PQ
0
+ [ max(0,n — log] cmNmz
PQ. L PQ
+n N t.+ N max(0,n — log[BcopyN])tcop,
For log 'B_QJV > n and log B—Q— > n there is no buffering of communication for the strip

transpose, i.e., no copy and a lower communication complexity than for the block transpose.
The block transpose always needs an initial and final copy. If the local data structures for
the strip transpose are two-dimensional arrays, the same copy operations may be required
for both the strip and the block transpose. But, the conclusion remains that for problems
which are large relative to the size of the cube, the one-dimensional partitioning is most
efficient with respect to performance.

For a cube with a size approaching the size of the matrix the copy time for the one-
dimensional partitioning grows, and so does the number of start-ups. Both eventually may
be higher than that for the two-dimensional transpose. We conclude that for sufficiently
large cubes the block transpose is preferable for the Intel iPSC. Figure 12 gives the experi-
mental evidence for this conclusion.

Note that if the copy time can be ignored, then the one-dimensional partitioning always
yields a better performance than a two-dimensional partitioning for one-port communica-
tion.

With n-port communication the transfer time for the two-dimensional partitioning de-
creases exponentially in the number of cube dimensions, but for the optimum packet size
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Figure 12: Comparison of matrix transposition of one- and two-dimensionally partitioned
matrices on the Intel iPSC.

the number of start-ups is higher than for the one-dimensional partitioning.

PQ
Tr}'gn = ﬁtc + nr

and

(n+ )7+ %%tc ifn >4/ I—JJ%J approximately;

T2 (F+3)r+ %‘—"fg%tc if %‘:ﬁ <n< \/% approximately and % is even;
min
3+2)r+ ﬁ%I—JNth if \/—I;%tf <n< \/f% approximately and % is odd;

VTHVER? e <y /3R

and the maximal packet size is

fﬁ%ﬂ for even 3 and n > P'E'QN:£3
B= [—‘Q—Nf,’,_,_z)] for odd % and n > %;

POT PQt,
2Nt for n < V 2n7 -

For n > %?}”—, the one-dimensional partitioning always yields a lower complexity than
the two-dimensional partitioning. The difference is about one start-up time unless the cube

is very small. For \/%%—i—” <n< \/&NQ?, the break even point (ignoring copy) can be

computed to be
N=c

log? r
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where % <c<landr= ﬂiic-. For n < 1—;—%, the one-dimensional partitioning always
yields a lower complexity than the two-dimensional partitioning.

In summary, if the copy time is ignored and communication is restricted to one port at a
time, then the one-dimensional partitioning always yields a lower complexity than the two-
dimensional partitioning. If the copy time is included then the two-dimensional partitioning
yields a lower complexity for a sufficiently large cube. With concurrent communication on
all ports the Spanning Balanced n-Tree(SBnT) routing can be used for the one-dimensional
partitioning, and the copy times for one and two-dimensional partitioning should be com-
parable. The one-dimensional partitioning yields a lower complexity for a cube dimension

. s PQt PQt
n satisfying n > —qu—iorns\/ﬁqff.

In comparing the Intel iPSC with the Connection Machine we conclude that the latter
performs a transpose about two orders of magnitude faster.
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