Requests For Hints That Return No Hints

Dana Angluin*, Yale University
YALEU/DCS/RR-647
September 1988

*Supported by the National Science Foundation, IRI-8718975
Requests For Hints That Return No Hints

Dana Angluin *
Yale University

September 1988

Abstract

We describe a simple algorithm that learns an arbitrary propositional Horn sentence in polynomial time using two types of queries: equivalence queries that return Horn clauses as counter-examples, and "derivation queries" that take a Horn clause and return one of the answers: "not implied", "subsumed", or "implied, but not subsumed". This improves the results in [1] in two respects: Arbitrary, rather than acyclic, propositional Horn sentences are learned, and derivation queries return strictly less information than request for hint queries. However, we argue that the algorithm of [1] is more reasonable in a practical sense.

1 Introduction

We refer the reader to [1] for definitions concerning propositional Horn clauses and sentences. We assume that there is a known set \(V \) of variables, and an unknown propositional Horn sentence \(\phi_* \) over \(V \) to be learned using two types of queries:

1. The input to an *equivalence query* is a propositional Horn sentence over \(V \). The answer is "yes" if \(\phi \) is logically equivalent to \(\phi_* \). Otherwise, the answer is "no" and a Horn clause \(C \) implied by \(\phi_* \) but not by \(\phi \) or vice versa. \(C \) is a *counter-example*.

2. The input to a *derivation query* is a Horn clause \(C \) over \(V \). If \(\phi_* \) does not imply \(C \), the answer is "not implied". If some clause of \(\phi_* \) subsumes \(C \), the answer is "subsumed". If no clause of \(\phi_* \) subsumes \(C \), but \(C \) is implied by \(\phi \), then the answer is "implied, but not subsumed".

Thus, equivalence queries are as in [1], but derivation requests are essentially request for hint queries that do not return a "hint" variable in the third case. The measure \(D(\phi) \) of how far \(\phi \) is from \(\phi_* \) is defined in [1]. The main result is:

Theorem 1 The learning algorithm NIHL takes as input a propositional Horn sentence \(\phi_0 \) and uses equivalence queries and derivation requests to find a Horn sentence equivalent to an unknown propositional Horn sentence \(\phi_* \). It runs in time bounded by a polynomial in the sizes of \(\phi_0 \) and \(\phi_* \) and the number of variables, \(|V| \), and makes at most \(D(\phi_0) + 1 \) equivalence queries.

Supported by NSF grant IRI-8718975
2 The algorithm \textit{NIHL}

The algorithm \textit{NIHL} is based directly on the algorithm \textit{IHL} of [1]. It takes a Horn sentence ϕ over V as input.

The procedure \textit{NIHL}(ϕ)

1. Make an equivalence query with ϕ. If the reply is "yes", output ϕ and halt. Otherwise, the reply is a Horn clause C that is a counterexample.

2. If $\phi \vdash C$ then let C' be the clause returned by \textit{NFind-Incorrect}(C), remove C' from ϕ, and go to step 1.

3. If $\phi \not\vdash C$ then let C' be the clause returned by \textit{NFind-Missing}(C), set $\phi = \phi \land C'$, and go to step 1.

\textbf{NFind-Incorrect.} The procedure \textit{NFind-Incorrect} takes as input a Horn clause C that is implied by ϕ and not by $\phi_* \land \phi$ and returns a clause of ϕ that is not implied by $\phi_* \land \phi$. It runs in time and number of derivation queries bounded by a polynomial in the size of ϕ and the number of variables $|V|$. The method is to find a derivation of C from ϕ and then make derivation queries to test each clause C' of ϕ used in the derivation until one is found that is not implied by $\phi_* \land \phi$. This is essentially the same as the \textit{Find-Incorrect} procedure of [1], except that the notion of a derivation must be expanded to include non-positive clauses.

\textbf{NReduce.} The subprocedure \textit{NReduce}, takes as input a Horn clause C that is subsumed by some clause of $\phi_* \land \phi$ and not implied by ϕ, and returns a clause of $\phi_* \land \phi$ that is not implied by ϕ. The running time and the number of derivation queries used by \textit{NReduce} is bounded by a polynomial in the size of its input clause. The method is a greedy search for a subset C' of the clause C such that some clause of $\phi_* \land \phi$ subsumes C' but this is not true of any clause obtained by dropping one literal from C'. Such a C' is actually a clause of $\phi_* \land \phi$, and is clearly not implied by ϕ.

\textbf{NFind-Missing.} The procedure \textit{NFind-Missing} takes as input a Horn clause C that is implied by $\phi_* \land \phi$, but not by ϕ, and returns a Horn clause C' that is in $\phi_* \land \phi$ but not implied by ϕ. It runs in time and number of derivation queries bounded by a polynomial in the size of ϕ and the number of variables $|V|$.

\textit{NFind-Missing} does a breadth-first search of the consequences of the antecedents of C with respect to ϕ_* to find a Horn clause C' that is subsumed by some clause of $\phi_* \land \phi$ but is not implied by ϕ. It then returns \textit{NReduce}(C'). This breadth-first search makes the algorithm unwieldy in practice; it is now described in more detail.

If A is a set of variables, for each nonnegative integer i we define $Z_i(A)$ as follows. $Z_0(A) = A$. For each positive integer $i+1$, let $Z_{i+1}(A)$ be the set of all elements x in

$$(V \cup \{\bot\}) - (Z_0(A) \cup \ldots \cup Z_i(A))$$

such that some clause of ϕ_* subsumes $(Z_0(A) \cup \ldots \cup Z_i(A) \rightarrow x)$.

2
If \(x \) is in \(Z_i(A) \) then the shortest derivation of \((A \rightarrow x)\) from \(\phi_* \) takes \(i \) steps. Since \(V \cup \{\bot\} \) is finite, from some point on all the sets \(Z_i(A) \) will be empty. The sets \(Z_i(A) \) can be computed from \(A \) using derivation queries as follows. Assuming \(Z_0(A), \ldots, Z_i(A) \) have been computed, for each \(x \) in

\[(V \cup \{\bot\}) - (Z_0(A) \cup \ldots \cup Z_i(A))\]

make a derivation request with the clause

\[(Z_0(A) \cup \ldots \cup Z_i(A) \rightarrow x).\]

Then \(x \) is in \(Z_{i+1}(A) \) if and only if the reply is “subsumed”. This computation can be done in time and number of derivation queries bounded by a polynomial in \(|V| \).

As the sets \(Z_i(A) \) are generated, \textit{NFind-Missing} checks to see whether the clauses

\[C' = (Z_0(A) \cup \ldots \cup Z_i(A) \rightarrow x)\]

that are derived in one step from \(\phi_* \) are implied by \(\phi \). Once such a \(C' \) is found that is not implied by \(\phi \), \textit{NReduce} is called to reduce it to a clause in \(\phi_* \), which is then returned by \textit{NFind-Missing}.

Suppose \textit{NFind-Missing} is called with a Horn clause \(C = (A \rightarrow z) \) such that \(\phi_* \vdash C \) and \(\phi \not\vdash C \). \((z\) may be \(\bot \) or a variable.\) If any value is returned, then \(C' \) is a clause that is not implied by \(\phi \) and is subsumed by some clause of \(\phi_* \), by the definition of \(Z_{i+1}(A) \), so by the correctness of \textit{NReduce}, the value returned will be a clause of \(\phi_* \) that is not implied by \(\phi \).

To see that the procedure must terminate, note that if for all nonnegative integers \(i \), if every \(x \in Z_{i+1} \) is such that

\[C' = (Z_0(A) \cup \ldots \cup Z_i(A) \rightarrow x)\]

is implied by \(\phi \), then every clause with antecedents \(A \) implied by \(\phi_* \) is also implied by \(\phi \), contrary to the input assumption that \(C = (A \rightarrow z) \) is implied by \(\phi_* \) but not by \(\phi \). Hence an appropriate \(i \) and \(x \) must be found. The running time and the number of derivation queries is bounded by a polynomial in the size of \(\phi \) and the number of variables \(|V| \).

Proof of Theorem 1. To see that Theorem 1 is true, it suffices to note that each iteration of the main loop reduces the value of \(D(\phi) \) by at least one, and when \(D(\phi) = 0 \), \(\phi \) must be logically equivalent to \(\phi_* \). Hence, termination with a correct output is guaranteed after at most \(D(\phi_0) \) iterations of the loop, and at most \(D(\phi_0) + 1 \) equivalence queries. The bounds on the time and number of derivation queries of the subprocedures \textit{NFind-Incorrect} and \textit{NFind-Missing} establish the bounds in Theorem 1.

3 Why \textit{NIHL} is more impractical than \textit{IHL}

The chief difference between \textit{IHL} and \textit{NIHL} is in the procedure that takes a clause \(C \) implied by \(\phi_* \) but not by \(\phi \) and returns a clause \(C' \) of \(\phi_* \) that is not implied by \(\phi \). In the case of \textit{IHL}, if the teacher answers requests for hints using one derivation of \(C \) from \(\phi_* \), the number of queries will be bounded by the size of that derivation. In the case of \textit{NIHL}, the queries amount to uncontrolled forward-chaining from the antecedents \(A \) of \(C \) with respect to \(\phi_* \), which does not seem promising. Hence \textit{NIHL} seems to be primarily of theoretical interest.
References