Experience with the Conjugate Gradient
Method for Stress Analysis on a Data
Parallel Supercomputer

S. Lennart Johnsson and Kapil Mathur

YALEU/DCS/TR-753
December 1989

Experience with the Conjugate Gradient Method for
Stress Analysis on a Data Parallel Supercomputer

S. Lennart Johnsson*and Kapil K. Mathur
Thinking Machines Corporation
Cambridge, MA 02142
Johnsson@think.com, Mathur@think.com

Abstract

The storage requirements and performance consequences of a few different data
parallel implementations of the finite element method for domains discretized by
three-dimensional brick elements are reviewed. Letting a processor represent a nodal
point per unassembled finite element yields a concurrency that may be one to two
orders of magnitude higher for common elements than if a processor represents an
unassembled nodal point. The former representation also allows for higher order
elements with a limited amount of storage per processor. A totally parallel stiffness
matrix generation algorithm is presented. The equilibrium equations are solved by a
conjugate gradient method with diagonal scaling. The results from several simulations
designed to show the dependence of the number of iterations to convergence upon the
Poisson ratio, the finite element discretization, and the element order are reported.
The domain was discretized by three dimensional Lagrange elements in all cases.
The number of iterations to convergence increases with the Poisson ratio. Increasing
the number of elements in one special dimension increases the number of iterations
to converegnce, linearly. Increasing the element order p in one spatial dimension
increases the number of iterations to convergence as p®, where « is 1.4 - 1.5 for the
model problems.

1 Introduction

Several applications for which the finite element method is a suitable numerical method
are computationally very demanding. Supercomputer performance is desirable. The most
critical resource with respect to performance in supercomputer architectures is the band-
width to storage. The primary storage has for many years been partitioned into so called
storage banks in order to provide the necessary bandwidth. Another important character-
istic of supercomputer architectures is pipelining of instruction and arithmetic units. As

*Also affiliated with the Department of Computer Science, Yale University

the physical dimensions of devices in MOS and bipolar technologies have been approaching
fundamental physical limits, an increasing number of processors has appeared in supercom-
puter systems. With current technologies, future supercomputers with a performance of
a trillion floating-point operations or more must have a large number of processing units
and a large number of storage modules. The distributed memory architectures that have
appeared during the last several years have many of the characteristics that are expected
to be common in supercomputers in the next decade.

Architectures with a large number of processing units require a network with a high
bandwidth to support the data motion required by the computation. High communications
bandwidth is often the perfomance limiting factor in state-of-the-art technologies. Data
placement and data motion are key factors in choosing data structures and algorithms for
distributed memory architectures. With a large number of processing units, load balance
is another important consideration. The desire to maintain locality of reference and a high
degree of concurrency througout the computations has a significant impact upon the choice
of algorithms.

In this paper, we first review some of the technological factors affecting supercomputer
architectures. Then, we use the Connection Machine® system as a model architecture
and discuss some alternative implementations of the finite element method on a massively
parallel architecture. We present a totally parallel algorithm for stiffness matrix generation
(no communication required). A conjugate gradient method is used for the solution of the
equilibrium equations. The communication is local and the load balance is perfect. The
rate of convergence is critical for the competitiveness of the conjugate gradient method
with direct methods. We present some simulation results showing how the number of
iterations to convergence is influenced by the Poisson ratio, the order of the elements for
three dimensional Lagrange elements and the discretization of the domain. A diagonal
preconditioner was used for all simulations.

2 Trends in Supercomputer Architecture

In the next decade, supercomputers are expected to have a performance of at least one
trillion instructions per second, and a primary storage of tens to hundreds of Gbytes [6]. At
this rate of computation and memory size, the operation code, the operand addresses, and
the operands require 300—400 bits for a single instruction. The storage (including registers,
or caches) must deliver 300-400 trillion bits per second, or about 16 million bits per cycle
at a 25 MHz clock rate. This clock rate is somewhat conservative for MOS technologies,
but it cannot be expected to become higher by more than a small constant factor. The
width of the storage needs to be several million bits. Assuming each processor can deliver 50
Mflops/sec [27], 40,000 processors will have a nominal peak capacity of two trillion floating-
point instructions per second. A system of this complexity is entirely feasible to build. In
half micron technology, 40,000 chips with on-chip floating-point units and memory are
projected to have a total of about 64 Gbytes of primary storage. With the required storage
bandwidth and with tens of thousands of processing units, a network is the only feasible

alternative for passing data between processors and storage units. Using a technology that
is an order of magnitude faster than MOS technologies, such as bipolar GaAs technology
(used for the CRAY-3), would still require thousands of processing units for an architecture
with a performance of a trillion floating-point operations per second.

In state-of-the art MOS technologies, 10 - 10* wires fit across a chip. The total data
motion capacity of 40,000 chips is 100 - 1,000 TBytes/sec at 25 MHz clock rate without
sharing of on-chip channels between different data paths. Assuming current standard pack-
aging technologies of 100 - 300 pins per chip, the data motion capacity at the chip boundary
is about 10 TBytes/sec. The data transfer rate on a chip is one to two orders of magni-
tude higher than the transfer rate at the chip boundary. At the board boundary, assuming
connectors with 500 pins, the data motion capacity for a 200 board system is about 0.16
TBytes/sec. The transfer rate at the chip boundary is one to two orders of magnitude
higher than the rate at the board boundary. The transfer rate at the board boundary is
two to three orders of magnitude below the required rate for a system with a performance
in the Tflop/sec range. A sustained performance of this magnitude is not possible with

current packaging technologies without locality of reference. This point is clear from Table
2.

A suitable metric for measuring locality of reference is determined either by the topology
of the data set, or the communications network. In solving partial differential equation,
common distance measures are of the form (Y%, |; — y;l”)ilF , where d is the dimensionality
of the problem domain and p the type of norm. The 2-norm (Euclidean distance) is often
used in the physical domain. The 1-norm measures the distance between two points corre-
sponding to traversals along coordinate axes. This measure is particularly interesting for
Boolean cube networks. In such a network of n dimensions with z and y being processor
addresses, and z; and y;,0 < ¢ < n being the distances (0 or 1) along the coordinate axes,
the 1-norm is equal to the Hamming distance between the two points. The Hamming dis-
tance is equal to the minimum number of communication links a data item must traverse to
move from processor z to processor y in a Boolean cube network. The 1-norm is not ideal
for all networks. In a completely interconnected network, all points are at unit distance
from each other, and the 0-norm is a relevant distance measure.

In Table 2, three frequently used operations are used to illustrate the potential benefits
from exploiting locality of reference. The operations are: matrix multiplication, a 7-point
symmetric difference stencil applied at each node in a three dimensional grid, and butterfly
based computations (FFT, bitonic sort). Applying a symmetric, 7-point difference stencil
at every point in a three dimensional grid with k variables per grid point and 2 operations
per variable, the number of operations per remote reference is r = ;—d(%)% Ford = 3
r = %(1‘—,{-)% Table 1 gives some values of » for different sizes of the local memories. In
Table 1 (and 2), k = 8. If the local variables form matrices and the local operations imply
matrix multiplications, then the number of arithmetic operations per variable is higher.
Several linear algebra operations have a ratio of operations to remote references that can
be modeled by the same expression as was given for the difference molecules, i.e. i(%)%
for suitable values of a, 8 and 4. In the stress analysis case described later, the local
state vectors are of length 3, and the local matrices of size 3 x 24 [23]. For butterfly based

Computation | Registers | 4 Mbit 256 4 Mbit 256
only | chips | chips (board) | Boards

Mtx mpy 0.5 104 1600 | 26000
3-d Relaxation 0.17 4.27 26.7 | 170.7
FFT 1 18.8 28.8 38.8

Table 1: Number of operations per remote reference of a single variable.

Computation | 4 Mbit 256 256
1 proc. | Procs. = | boards =

1 chip Board | Machine

Mtx mpy 1 10 160
3-d relaxation 32 480 24600
FFT 3 1140 160000
no locality 300 76800 | 19660800

Table 2: Number of bits across the chip/board/system boundary per cycle.

algorithms, such as the Fast Fourier Transform (FFT) and sorting, the dependence is of
the form alog(%). For the FFT the ratio is 1.25log,(M/2) real operations per remote
reference using a radix-M algorithm, which is optimum [15]. Exploiting locality reduces
the required communication bandwidth by a factor of 8-100 at the chip boundary for these
computations, a factor of 80-5000 at the board level, and at least a factor of 125 at the I/O
interface. A sustained performance in the Tflops/s range is possible with state-of-the-art
technology only if locality is properly exploited. Table 2 gives the number of bits that
have to cross the chip, board, and system boundaries during a single cycle, assuming the
optimum locality or no locality of reference. It is assumed that each chip has one processing
unit, that a board has 256 processing units, and that all variables are in single precision.

3 Data Parallel Supercomputing

The key characteristics of the architectural model presented in the previous section are
a large number of processing units with local memories and a network interconnecting
these units. Architectures with a large number of processing units are often referred to as
data parallel architectures, as opposed to control parallel architectures. The parallelism in
execution in the former architectures is often determined by the size of the data set, or
the number of processing units, whichever is smaller. In control parallel architectures, the
parallelism is determined by function, rather than by the data set. With thousands, or tens
of thousands of processing units, the detailed management of each individual unit, as in
most traditional programming languages like for instance Fortran 77, becomes unpractical.

A higher level of abstraction becomes necessary. In this section, we use constructs in
the proposed Fotran8X standard to illustrate the value of array constructs. We describe
the Connection Machine architecture as an example of a data parallel architecture. The
Connection Machine was used for the experiments reported in section five.

3.1 Programming model

Objects in data parallel languages are represented by higher level data types such as arrays
in Fortran 8X [25]. In a language with an array syntax, a number of nested loops (often
equal to the number of axes in the array) disappear from the code, compared to a language
without the array syntax. We illustrate this property by two examples. The first example
is the implementation of a 7-point stencil in three dimensions. The second example is taken
from a finite element code for stress analysis.

In the example below, which defines the computation of a 7-point stencil at every point
in a three dimensional grid, the operation csHIFT defines a circular shift. The first argument
is the variable to which the shift is applied, the second defines the axis along which the shift
takes place, and the third argument defines the length and direction of the shift. Since there
is no conditional statement in the code below, it implements periodic boundary conditions.
(Note that there are no explicit loops for the array axes.)

subroutine psolve(phi, omega, inside, n, iter)
real phi(n, n, n), omega(n, n, n), factor
factor = 1.0/6.0
do 100 i=1,iter,1

phi = factor * (

1 CSHIFT(phi, dim=1, shift=-1) +
2 CSHIFT(phi, dim=2, shift=-1) +
3 CSHIFT(phi, dim=3, shift=-1) +
4 CSHIFT(phi, dim=1, shift=+1) +
5 CSHIFT(phi, dim=2, shift=+1) +
6 CSHIFT(phi, dim=3, shift=+1)) +
7 omega

100 continue

return

end

In the finite element example below, the elements are brick elements of first order.
There is one nodal point in each corner of an element. The state is represented by three
displacements, £ = (u,v,w). The local interaction matrix, the elemental stiffness matrix,
is a 3 x 24 matrix, with one row for each of the three components of the local displacement
vector. The code segment also contains one compiler directive, sEriaL, which affects the
data layout. The meaning will be explained later. The code fragment is from the iterative
solver which requires the computation of a matrix vector product. In the particular finite

element code from which the code segment is selected, the elemental stiffness matrices are
not assembled into a global stiffness matrix. Instead, a matrix vector product is performed
for each element, and a total product vector assembled.

CMFS$LAYOUT K(:SERIAL, :SERIAL, ,,), R(:SERIAL,, ,), X(:SERIAL,,,)
REAL K(3,24, 32, 32, 32), R(3,32,32,32), U(3,32,32,32), V(3,32,32,32), W(3,32,32,32), X(24,32,32,32)
CALL ALL-TO-ALL-ELEMENT-BROADCAST(U,V,W,X)
R = 0.0
DO I=1,24

DO J=1,3

B(3,55:)=R(T,)+K@J,1, 5, 5 1) * X, 5 3 2)

END DOJ
END DO1I
(WHERE (.NOT. I-RIGHT-BOUNDARY)) R=R + EOSHIFT(R, 1, 1)
(WHERE (.NOT. I-LEFT-BOUNDARY)) R= EOSHIFT(R, 1, -1)
(WHERE (.NOT. J-RIGHT-BOUNDARY)) R=R + EOSHIFT(R, 2, 1)
(WHERE (.NOT. J-LEFT-BOUNDARY)) R= EOSHIFT(R, 2, -1)
(WHERE (.NOT. K-RIGHT-BOUNDARY)) R=R +4 EOSHIFT(R, 3, 1)
(WHERE (.NOT. K-LEFT-BOUNDARY)) R= EOSHIFT(R, 3, -1)

In the above code segment, I-RIGHT-BOUNDARY, I-LEFT-BOUNDARY, etc. are boolean
arrays which define the right-hand and left-hand boundaries of the finite element mesh.

3.2 The Connection Machine Architecture

The Connection Machine [11] is a data parallel architecture. It has a total primary storage
of 512 Mbytes using 256 kbit memory chips, and 2 Gbytes with 1 Mbit memory chips. The
data transfer rate to storage is approximately 45 Gbytes/s at a clock rate of 7 MHz. The
primary storage has 64k ports and a simple 1-bit processor for each port. The storage per’
processor is 8 kbytes for a total storage of 512 Mbytes and 64k bytes with 1 Mbit memory
chips. The Connection Machine model CM-2 can be equipped with hardware for floating-
point arithmetic. With the floating-point option, 32 Connection Machine processors share a
floating-point unit, which is an industry standard, single chip floating-point multiplier and
adder with a few registers. The peak performance available from the standard instruction
set and the higher level languages is in the range 1.5 Gflops/s - 2.2 Gflops/s. The higher
level languages do not at the present time make efficient use of the registers in the floating-
point unit for operations that vectorize. With optimum use of the registers, a performance
that is one order of magnitude higher is possible. For instance, for large local matrices, a
peak performance in excess of 25 Gflops/s has been measured [20].

The Connection Machine needs a host computer. Currently, three families of host
architectures are supported: the VAX family with the BI-bus, SUN 4, and the Symbolics
3600 series. The Connection Machine memory is mapped into the address space of the
host. The program code resides in the storage of the host. It fetches the instructions, does

Front End Front End Memory

User terminal Computer code data

I

Memory Bus
Instruction
Bus
Data || P P P P P
Processors |] T I ces T
Local M HM HM HM HM
Memories 1 2 3 65535
High-speed Communications Router
Disk Disk Disk Display

Figuie 1: The Connection Machine System

the complete decoding of scalar instructions, and executes them. Instructions to be applied
to variables in the Connection Machine are sent to a microcontroller, which decodes and
executes instructions for the Connection Machine. Variables defined by array constructs
are allocated to the Connection Machine, unless allocation on the front-end is requested.
The architecture is depicted in Figure 1. The Connection Machine can also be equipped
with a secondary storage system known as the data vault. There exist 8 I/O channels, each
with a block transfer rate of up to approximately 30 Mbytes/s. The size of the secondary
storage system is in the range 5 Gbytes to 640 Gbytes. The Connection Machine can also
be equipped with a frame buffer for fast high resolution graphics. An update rate of about
15 frames per second can be achieved.

The Connection Machine processors are organized with 16 processors to a chip, and
the chips interconnected as a 12-dimensional Boolean cube. The communication is bit-
serial and pipelined. Concurrent communication on all ports is possible. Through the
bit-serial pipelined operation of the communication system, remote processor references
require no more time than nearest neighbor references provided there is no contention
for communication channels. For communication in arbitrary patterns, the Connection
Machine is equipped with a router which selects one of the shortest paths between source
and destination, unless all of these paths are occupied. The router has several options for
resolving contention for communication channels.

Array elements in the Connection Machine programming languages are often referred
to as wirtual processors [11, 30]. In general, several virtual processors (array elements)

are mapped to the storage of each physical processor. The number of virtual processors
per physical processor is called the virtual processor ratio [30]. The storage of a physical
processor is divided between as many virtual processors as is given by the virtual processor
ratio. That many virtual processors time-share a physical processor.

3.3 Performance issues

In highly concurrent network architectures, the nominal processing capability is determined
by the processing speed of a single processor and the number of processors. The real pro-
cessing capability is determined by how well the individual processing units can be utilized,
load balance, and how well the network supports the data motion required by the computa-
tion. The capacity available for the data motion is determined by technological constraints,
and the requirements determined by data placement, computational algorithms, and rout-
ing algorithms. Of the various technological constraints that determine the performance
characteristics of an architecture, the ones related to data motion are often the most unfor-
giving with respect to performance. The characteristics with respect to load balance and
communication depend both on the problem and the numerical technique used to solve it.

3.3.1 Data motion and load balance.

Mathematical models such as (partial) differential equations are derived from laws of physics
applied locally. Discrete approximations of continuous operators, such as difference sten-
cils used to approximate (partial) derivatives in finite difference techniques are also local
approximations. Finite elements provide a different local approximation. The difference
stencils in finite difference techniques and the elements in finite element techniques com-
pletely define the spatial data interactions in one step of an ezplicit method for the solution
of the discretized equations. The data interaction is local in the physical domain. The
classical iterative methods for the solution of linear systems of equations only require local
data interaction in the index space used for the solution variables. The conjugate gradient
method requires a global reduction operation for the computation of scaling factors, and a
global copy, or broadcasting, operation for the distribution of these factors in addition to
the same local communication as required by Jacobi’s method. Though each step in the
iterative methods only involves local communication in the physical domain, most prob-
lems require global communication to attain a correct solution. Elliptic problems are of
this type [7]. In explicit methods for solving partial differential equations, and iterative
methods for systems of equations such as Jacobi and the conjugate gradient method, the
entire data set is typically involved in each step, or iteration. The load balance with an
even distribution of data elements to processors is ideal. If the computational domain can
be mapped into processor network preserving locality, then good performance is possible
for explicit techniques for solving partial differential equations, and iterative methods for
linear systems of equations.

Direct methods requires non-local communication in the problem domain during some
computation steps (potentially all steps). Factoring matrices by Gaussian elimination, or

Householder transformations, using rank-1 updates implies distribution of the pivot row
(selected in Gaussian elimination, computed in Householder transformations) to the rows
of the remaining submatrix with non-zero entries in the pivot column, and a dsitribution
of the pivot column to the remaining columns with a non-zero entry in the pivot row. De-
pending on the topology of the graph that the (sparse) matrix represents, and the mapping
of the graph to the processor network, the elimination process may only require local com-
munication, even for networks of bounded degree. In the factorization process a reduction
of the active data set takes place. This property leads to poor load balance. Similarly,
the sequential dependence in the forward and backsubstitution process may lead to poor
load balance. In the case of Gaussian elimination the average processor utilization may be
reduced by a factor of 2 - 3 [17]. Hence, iterative methods often yield a better load balance
than direct methods, though methods such as parallel cyclic reduction [14], or balanced
cyclic reduction [18], may achieve good load balance. Likewise, even though the commu-
nication may be non-local in the computational domain, it may be local in the processor
network.

3.4 Data Allocation

The goal of a good data allocation scheme is to map data into the local memories of the
processors such that the need for communication is minimized. Any interconnection net-
work into which the discretized physical domain can be embedded preserving locality has
the potential for communication efficient implementation of explicit methods for partial
differential equations, or iterative methods for systems of equations. High degree networks
have the potential to offer local communication even when the communication in the phys-
ical domain is non-local. Hence, divide-and-conquer methods for solving linear systems
of equations, such as odd-even cyclic reduction [3], parallel cyclic reduction [14], balanced
cyclic reduction [18], nested dissection [8], and multi-grid methods [2], may still only re-
quire local communication in the processor network. For instance, any regular lattice can
be embedded in a lattice of higher dimensionality preserving locality, but the converse is
not true [29].

3.4.1 Data aggregation

For any data set with more data elements than processors several data elements need to be
assigned to each processor. In consecutive [17] allocation successive data points along an
axis are allocated to the same processor. In cyclic allocation [17] successive data points are
allocated to adjacent processors. A significant difference in performance may result, since
the communication between a processor and its memory is often considerably faster than
communication between processors. For computations in which the interaction between
data elements is equally frequent in all directions, the total amount of communication is
minimized if the data elements assigned to a processor chip forms a single subdomain with
an aspect ratio as close to one as possible [19]. The consecutive allocation scheme reduces
the amount of inter-processor communication for explicit methods, but the cyclic allocation

scheme yields better load balance for direct methods [17, 19].

3.4.2 Encoding of array axes

In the common binary, encoding successive integers may differ in an arbitrary number of
bits. For instance, 63 and 64 differs in 6 bits, and hence are at a Hamming distance of 6
in the Boolean cube. A Gray code by definition has the property that successive integers
differ in precisely one bit. The most frequently used Gray code for the embedding of
arrays in Boolean cubes is a binary-reflected Gray code [17, 22, 28]. This Gray code is
periodic. The code preserves adjacency for any loop (periodic one-dimensional lattice) of
even length, and for loops of odd length one edge in the loop is mapped into a path of
length two [17]. For the embedding of multi-dimensional arrays, each axis may be encoded
by the binary-reflected Gray code. The embedding of an N; X N, X ... X Ny array requires
Y4 . [log, N;] bits. The ezpansion, i.e., the ratio between the consumed address space and
the actual array size, is 9% ims Mlogs N:1 /IL, N;, which may be as high as ~ 2¢ [10, 12]. The
expansion can be reduced by allowing some successive array indices to be encoded at a
Hamming distance of two. The dilation is the maximum Hamming distance between any
pair of adjacent array indices. Every two-dimensional array can be embedded with minimum
expansion and dilation 2 [4]. Minimum expansion dilation 2 embeddings for a large class
of two-dimensional arrays are given in [12], which also provides a technique for reducing
the expansion of higher dimensional arrays. Minimal expansion dilation 7 embeddings are
possible for all three dimensional arrays [5]. Embeddings with dilation 2 for many three
dimensional arrays are given in [13].

3.4.3 The Connection Machine

The address field of the Connection Machine is divided into three parts:
(off-chip|on-chip|memory). The off-chip field consists of 12 bits that encode the Connection
Machine processor chips, the on-chip field encodes the 16 processors on each Connection
Machine processor chip, and the lower order bits encode the memory addresses local to a
processor. The lowest order off-chip bit encodes pairs of processor chips sharing a floating-
point unit. The default data allocation scheme on the Connection Machine first determines
how many data elements need to be stored in each processor for an equal number of elements
per processor, then stores that many successive elements in each processor, consecutive stor-

age [17).

Current implementations of the Connection Machine languages encode each axis of a
multi-dimensional array separately. Each axis is extended to a length that is equal to some
power of two. For an axis length P, [log,P] address bits are assigned to the encoding
of the elements along that axis. The consecutive allocation scheme is used for each axis.
The encoding of the axes in the total address space attempts to configure each part of the
address space (off-chip, on-chip, and memory) to conform with the array. To the extent
possible, all axes have a segment of each address field, and the ratio of the lengths of
segments for different axes is the same as that of the length of the axes.

10

The default allocation of axes to off-chip, on-chip, and memory bits may not always
be the preferred allocation. The different Connection Machine languages provide different
means for user controlled data allocation. In CM-Fortran compiler directives allow a user to
specify an axis as SERIAL, which implies that the axis is allocated to a single processor. In
PARIS (PARallel Instruction Set), the Connection Machine native language, a user has full
control over what dimensions of the address space an axis occupies. But, only consecutive
allocation of data to processors is supported.

If an array has fewer elements than the number of real processors in the configuration,
then the array is extended such that there is one element per real processor. In CM-Fortran
an axis is added to the array with a length equal to the number of instances of the specified
array that matches the number of real processors.

The lattice emulation by a binary-reflected Gray code embedding is part of the standard
programming environment on the Connection Machine system. In CM-Fortran, array axes
are by default encoded in a binary-reflected Gray code for the off-chip segment of the
address field. In the other Connection Machine languages, the Gray code encoding is
invoked by configuring the Connection Machine as a lattice of the appropriate number of
dimensions. The benefit of the lattice emulation feature is twofold: the virtual processors are
assigned to physical processors such that the communication requirements are minimized,
and lattice organized computations are often easier to express using programming constructs
corresponding directly to the operations in the problem domain.

4 The Finite Element Method

4.1 Mathematical model

In stress analysis, the finite element discretization [26, 31] is formulated from a variational
principle representing the statement of virtual work

_ T
0= /;f&Tr(ea)dV + [9¢ du” TdS, (1)

where éu is the virtual displacement field compatible with the virtual strain §e and o is
the Cauchy stress in equilibrium with the applied traction field T. After discretizing the
domain into finite elements, and introducing piecewise interpolation functions, which are
non-zero only in the domain of one finite element, approximations for the displacement
field and the corresponding strain field are obtained as

{u} = [N|{U}, (2)

and

{e} = [N'{U}. (3)
In the above equations, the matrix [N] comprises of a set of interpolation functions and
[N'] is a matrix containing the spatial derivatives of these interpolation functions. The final

11

system of equations that results from the above approximations is of the form

[KKUY = {F}, (4)

where the global stiffness matrix [K] is really a collection of elemental stiffness matrices

(K] =Y [£9]. (5)

1

The evaluation of the elemental stiffness matrices involves computation of interpolation
functions which are local over the domain of a single finite element. The inherent parallelism
in the concurrent generation of the elemental matrices is clear. But, there is also a significant
parallelism in the generation of individual elemental stiffness matrices.

4.2 Data structures

In a data parallel implementation an operation on an array implies that all processors to
which the array is allocated perform the operation (unless the statement is a conditional
statement). For example, if a statement of the form

x = 1.0, (6)

is encountered, then the computing system sets the value of x to 1.0 in all processors. In
the context of the Connection Machine this property is true regardless of the configuration
of the address space, and its encoding. Also, conditional operations apply to the selected
processors regardless of the configuration of the address space and its encoding.

For the finite element method, it is natural to have a processor represent either

e a finite element from the finite element mesh, or

e an unassembled nodal point of the finite element mesh.

For a mesh composed of identical finite elements, the latter choice has several advantages
[23]. The two main advantages are:

1. With n nodal points per element, the degree of concurrency is a factor of n greater
than the degree of concurrency obtained when finite elements are chosen as logic units
of data.

2. the local storage requirement for the elemental stiffness matrix is a factor of (3n+1)
less than the storage requirements for the first choice.

The influence of the amount of local storage and total storage available on the number of

three dimensional Lagrange elements that can be accommodated on a Connection Machine
System with 512 Mbytes of total storage is shown in Table (3) [23, 24]. The choice of the

12

order nodes | virtual | maximum | maximum
per | processor | deg. of | number of
elem. ratio freedom elements
(approx.) | (approx.)
1x1x1 8 8 780,000 260,000
Processor 2X2x%x2 27 4 295,000 32,000
per unassembled | 3 x 3 x 3 64 1 148,000 9,000
node 4x4x4| 125 1 62,000 4,000
Processor
per element, 1x1x1 8 2 390,000 130,000
unsym.
Processor
per element, I1x1x1 8 4 780,000 260,000
sym.)

Table 3: The maximum number of degrees of freedom for three dimensional Lagrange
elements that can be accommodated in 512 Mbytes of storage partitioned into 8 Kbytes
per physical processor.

Virtual processor | Type of communication | Element transfers | Arithmetic
Processor per | Intra-element (all to all) 2(n-1)u (2nu —1)u
unassem. node | Inter-element (assembly) 6u 3u
Processor Intra—element - (2nu — 1)nu
per element | Inter—element (assembly) 6niu 3niu

Table 4: Data element transfers and arithmetic operations per logical unit for Lagrange
elements in three dimensions.

logical unit is clearly dependent on the available local and total storage. Analytic expres-
sions for the storage requirements of two and three dimensional Lagrange and Serendipity
elements can be found in [23]. Table (4) [23, 24] summarizes the communication and arith-
metic requirements for the two choices of the logical unit of data. The ratio of the number
of data element transfers to arithmetic operations per logical unit of data is approximately
the same for the two choices.

The data allocation with a virtual processor representing an unssembled nodal point of
a Lagrange element is illustrated in Figure 2 for Lagrange elements in two dimensions. The
bilinear elements are labeled A, B, C, and D. The mesh has nine nodes labeled one through
nine. Nodal points that are shared between elements are replicated on separate processors.
Only the information about the geometry (the global coordinates) needs to be replicated
on the processors representing the same nodal point. The 3 x 3 layout of nodes is mapped
on to a 4 X 4 lattice of processors. Nodal point labeled five is shared by all four elements
and is consequently placed on four separate processors. In general, every internal grid line
in two dimensions, and every internal surface in three dimensions, is duplicated.

In the implementation from which experimental results are reported below three dimen-
sional Lagrange elements are used, and a virtual processor represents an unassembled nodal
point. A detailed evaluation of benefits and drawbacks can be found in [23]. Each processor

13

A B : 5 & °
i h
5
7 9 Y
Finite Element Mesh . Thﬁ%‘"‘ﬁf{,ﬁ‘ﬁ’éﬁﬂﬁﬁﬁﬁl

Figure 2: Mapping a physical domain composed of rectangular elements to processors. The
processors are represented by dots.

stores the rows of the elemental stiffness matrix corresponding to the unassembled nodal
point represented by the processor, i.e., a u X nu matrix per processor, where u is the
number of degrees of freedom per node and n is the number of nodes per element.

For regular two or three dimensional finite element meshes the lattice emulation fea-
ture of the programming systems on the CM-2 is used advantageously. It simplifies the
programming, and allows for efficient communication.

4.3 Algorithms
4.3.1 Stiffness matrix generation

When one virtual processor of the Connection Machine system represents an unassembled
nodal point, the generation of the elemental stiffness matrix for each element is shared
by n processors. The generation of the entries of the elemental stiffness matrices requires
numerical integration, which is performed by Gauss quadrature. This quadrature can be
carried out without communication by performing it sequentially on each virtual processor

[23]:

for all quadrature points, k
evaluate jacobian and shape function derivatives
at the quadrature point, k.
add contribution of the quadrature point, k,
to the rows of the elemental matrix stored
on the virtual processor.

14

4.3.2 Solution of the equilibrium equations

The equilibrium equations are solved by a conjugate gradient method with diagonal scaling.
The main computational and data communication effort is in the sparse matrix-vector

product of the form
{r} = {8} - [4]{s}, (7

where the coefficient matrix [A] is not explicitly assembled, but is stored as
[4] =3 [49)]. (8)
The sparse matrix—vector product involves:

1. Accumulation of thelocal displacements from the processors representing the unassem-
bled nodes. All processors forming the element require the local displacements from
every other processor in this subset. This communication is a segmented “all-to-all”
broadcast [21], that can be implemented efficiently by nearest neighbor communi-
cation, if the processors are configured as a lattice. After the segmented “all-to-all”
broadcast every processor stores the local displacements for every node on the element
in a vector of length nu.

2. Alocal matrix—vector product [(u X nu) X (nu X 1)] is then performed by every proces-
sor. After this multiplication, every processor contains the unassembled contribution
of the nodal point to the product vector (u x 1).

3. Finally, the product vector is assembled by performing nearest neighbor communica-
tion among processors representing the same nodal point.

For the example two dimensional mesh shown in Figure 2, the three steps above for stress
analysis are:

1. For all elements (A-D) accumulation of the eight displacement components associated
with each element.

2. Multiplication of the two rows of the unassembled stiffness with the accumulated
displacement vector.

3. Assembly over all processors representing replicated nodal points (nodes labeled 2, 4,
5, 6, and 8).

5 Computational experiments

The number of iterations to convergence for the conjugate gradient method depends upon
the condition number of the global stiffness matrix, or the stiffness matrix modified by the

15

Ny, number Conjugate gradient iterations

of elements | po=1|po=2|po=3|pPo=4|po=05
100 100 215 436 652 1083
200 200 442 869 1331 | 2166
300 300 670 1301 | 2003 | 3251
400 400 899 1773 | 2673 | 4319
500 500 1129 | 2167 | 3345 | 5400

Table 5: The number of conjugate gradient iterations for a 10 x 1 X 1 domain discretized

by No x 1 X 1 elements of order po x 1 X 1. Poisson ratio » = 0. Convergence criteria: a
normalized global residual of 5.0 x 1078,

preconditioning matrix for a preconditioned conjugate gradient method. The number of
iterations to convergence for the standard conjugate gradient method is proportional to the
logarithm of the error used as a convergence criteria, and the square root of the condition
number [1]. The relationship between the condition number and the element order for a
few types of planar elements are derived in [1].

In this section we give convergence characteristics for the conjugate gradient method
with a diagonal preconditioner for a number of experiments designed to improve the under-
standing of the relationship between the condition number, the finite element discretization,
the order of the elements, and the boundary conditions for rectangular domains discretized
by three-dimensional Lagrange elements [31]. Two domains are considered: a beam of
dimensions 10 x 1 x 1 discretized by Ny x 1 X 1 elements, and a 10 x 1 x 10 plate dis-
cretized either by Ny X 1 x 16 elements or by 16 x 1 X N, elements. All elements for a given
discretization are of the same order. The order of the elements are specified as pg X p; X pz.

The results from different discretizations of the beam are reported first. Only one
loading case was investigated. Next, the results from varying the discretization of the plate
are reported. A pulling and a bending load was applied to the plate. For both domains a
Poisson ratio of 0, and a ratio of 0.3 were investigated.

5.1 A beam discretized by a linear array of brick elements

The 10 x 1 x 1 domain is discretized by Ny X 1 x 1 elements of order po X 1 x 1. The number
of elements along the first axis is Ny, and the number of elements along each of the second
and third axis is one. All elements are of Lagrange type, and of the same order. The order
of the elements along the first axis is py, and the order along each of the second and third
axes is one. The boundary at zo = 0 is fixed, and a pulling force applied at zo = 10, where
zo is the coordiante value in dimension 0.

Simulation results for a Poisson ratio v = 0 are given in Table 5 for various discretizations
and element order. The number of iterations is equal to Ny for py = 1. The number of
degrees of freedom is 12(poNo + 1). The number of iterations cannot be less than Ny with

16

Node t=30 t=60 t=90 t=120
No—1t+0]0.931x107% [0.931x107% | 0.931x107% 0
No—t+1]0.208x10718 | 0.318x1078 | 0.477x10~8 | 0.477x10~18
No—1t+2]0.533x1078 | 0.105x10~7 | 0.122x10-17 | 0.130x 10~
No—t+3]0.960x1071° | 0.199x10-18 | 0.667x10~% | 0.934x10~18
No—t+4|0.647x107% | 0.694%x10-18 | 0.605x10~2% | 0.383x 1018
No—t+5]0.393%x107° | 0.429x10~1® | 0.431x1078 | 0.763x 1018
No—t+6]0.367x107% | 0.218x10~18 | 0.431x1078 | 0.470x 1018
No—t+7]0.206x1071® | 0.556x10~18 | 0.594x 1018 | 0.928x 1018
No—t+8]0.627x107® | 0.213x10~*® | 0.539x107® | 0.493x 10718
No—t+9]0.369%107% | 0.445x10~28 | 0.666x10-18 | 0.782x10~18

Table 6: Evolution of local residuals for a force applied at time ¢ = 0 at location zo = 10
for the 10 X 1 x 1 domain discretized by Ny x 1 X 1 elements of order 1 x 1 x 1. Poisson
ratio v = 0.

Node t=30 t=60 t=90 t=120
No—t+0[0.537x107% | 0.365x107%* | 0.248x107% ‘ 0
No—1t+10.382x107% | 0.489x107% | 0.507%x107% | 0.466x10~%*
No—1t+2|0.146x107° | 0.118x107% | 0.173%x107%* | 0.294x10~%
No—t+3|0.807x107% | 0.168x107%* | 0.228x107°* | 0.210x10~%*
No—t+40.134x107% | 0.174x107% | 0.138x107% | 0.985x107%
No—t+5]0.158x107% | 0.145x107% | 0.102x107% | 0.145x10~%*
No—t+6]0.159%107% | 0.126x107% | 0.108x10~%* | 0.117x107%
No—1t+47]0.150x107% | 0.109x10~°* | 0.832x107% | 0.743x107°°
No—t+80.134x107% | 0.758x107% | 0.574x107° | 0.892x10~%
No—t+90.109%10-% | 0.268x107% | 0.721x107% | 0.104x10~%

Table 7: Evolution of local residuals for a force applied at time t = 0 at location zo = 10
for the 10 X 1 X 1 domain disretized by Ny x 1 x 1 elements of order 1 x 1 x 1. Poisson
ratio v = 0.3.

17

Po, order of | Total degrees | Conjugate gradient
interpolation | of freedom iterations

1 1452 120

2 2892 260

3 4332 522

4 5772 787

5 7212 1309

Table 8: The number of iterations to convergence for a 120 X 1 X 1 mesh of elements of
order po X 1 X 1. Poisson ratio » = 0. A Pulling load is applied at zo = 10, whereas zo = 0
is fixed. Convergence tolerance: a normalized global residual of < 5.0 x 1078,

the loading applied at one end of the bar discretized with N, elements along the axis along
which the force is applied. The iterative method requires N, steps for the force to propagate
through the structure. The convergence is very rapid once the force has propagated to a
node. The convergence behavior is apparent from considering the local residuals, Table
6. The influence of the value of the Poisson ratio on the convergence behavior is quite
significant. The values of the local residuals for a Poisson ratio of v = 0.3 is shown in
Table 7. The decay of the local residuals is quite slow. Essentially the force propagates
through the structure while a very moderate decay in the error takes place. The error then
decreases slowly and uniformly thoughout the beam, as shown in Figure 3. The number of
iterations to convergence for a convergence criteria of 5.0 x 1078 increases by about 50%.

The global stiffness matrix is block tridiagonal with the nodes shared between two
elements numbered consecutively, and nodes ordered from one end to the other along axis
zero. For first order elements the blocks are 4 x 4 block matrices, with each such block
being a 3 x 3 matrix. The number of blocks is Ny, and the matrix size is 12N, x 12N,.
A block Gaussian elimination solver (12 X 12 blocks) would need Ny (block) forward and
backsubstitution steps. With the force applied at one end only backsubstitution is required.
A parallel direct solver, like a nested dissection solver [8, 16], would compute the solution
in log Ny (block) steps.

For higher order elements the block tridiagonal matrix changes shape such that there
are 4py X 4p, diagonal blocks of 3 x 3 matrices with 4 x 4 3 x 3 blocks coupling between
the diagonal blocks. The number of diagonal blocks is Np. As po increases the dynamic
behavior becomes more important. Table 8 gives the results from some simulations on a
beam discretized by 120 x 1 x 1 elements. Figure 4 shows the same data graphically.

The number of iterations to convergence depends on the interpolation order p, according
to the formulas
N, = Nopi*® forv=0.

N = 1.5Nopp*® for v =10.3.

The exponent is independent of v. A set of simulations was also carried out in which both
Ny and po were varied such that Nopy = const. The dependence on Ny and p, was the

18

0 - Nl l ! 1 L J 1 d ' L -4 D
| |]
1‘0 ;.0 340 40 gO éO 40 gﬂ S;O 100 110 120
104
Legend
-2 A . : 120 iterations
o : 150 iterations
-3 4 o : 180 iterations
4
'5 n ® . . .
-6 | . [] * .
7 o
© o
8 -‘: o) o . . o .]
.9
.10 4
.11 -
124 . o
O : © 5 © o o o ©
.13 4

Nodes (1,0,0)

Figure 3: Local residuals for pulling a beam discretized by 120 x 1 x 1 elements of order

1 x1 x 1. Poisson ratio v = 0.3

19

6000 Legend
o100 x1x1
0:200 x1x1 v
©:300x1x1
5000 - *:400x1x1
M:500x1x1
*
4000
X
o
3000 -
*
X
2000 -] o °
*
M (o] o
1000 - .
*
o]
o L]
X
* o Y
o
0 :)
i i i I 1 Po
0 1 2 3 4 5

Figure 4: The number of iterations to convergence as a function of the order of pg x 1 x 1
elements for a domain discretized by Ny x 1 X 1 elements. Poisson ratio v = 0

20

Ny | po Number of conjugate gradient iterations
1.0x10~° [1.0x 107* [1.0 x 10~° | 5.0 x 10~°

120 | 1 120 120 120 120

60 | 2 122 122 123 125

40 | 3 155 158 161 175

30 | 4 167 169 171 176

24 |5 227 235 239 258

Table 9: Influence of the interpolation order on the convergence behavior of the conjugate
gradient method for Ny X 1 X 1 elements of order py X 1 X 1, Ngpo = const. Poisson ratio
v = 0. Convergence criteria: a normalized global residual of 5.0 x 10~8.

same, Table 9. Changing N, with po such that Nyp, is constant yields a matrix of constant
size, but it becomes increasingly dense as poy increases and N, decreases.

5.2 Multiple elements along two axes.

The 10 x 1 x 10 domain is discretized either by Ny X 1 X 16 elements, or by 16 x 1 x N,
elements. The order of each Lagrange element for the first type of discretization is pox 1x 1,
and for the second type of discretization it is 1 X 1 X p,. With the crossection consisting
of several elements the propagation of the force through the structure accounts only for an
insignificant number of iterations of the total. The dynamic properties in the transverse
directions become significant. We first consider pulling of the plate fixed at zo = 0 by a
distributed force applied at zo = 10, then consider the case of a bending force applied at
the same surface.

5.2.1 Pulling

The number of iterations to convergence for discretizations by Np x 1 x 16 elements of order
1x 1 x1is shown in Table 10 The number of iterations for discretizations 16 x 1 x Nj is
shown in Table 11. Figure 5 shows the convergence behavior for 128 elements along axis
zero or two, and a Poisson ratio of 0. The convergence for the same discretizations, but a
Poisson ratio of 0.3 is shown in Figure 6.

The required number of iterations to convergence depends linearly upon the mesh res-
olution for the axis with the smallest grid point spacing. The side of the brick elements
is the shortest along this axis. The linear dependence holds regardless of which axis has
the smallest grid point spacing, and for both Poisson ratios. The linear dependence upon
the number of elements NV; is expected for a conjugate gradient method with diagonal pre-
conditioner [1, 9]. The constant of proportionality depends upon the accuracy, the axis of
smallest grid point spacing, and the Poisson ratio, as seen from Table 12. The constants of
proportionality in this table are computed for the range 16 < N; < 128.

21

Log |rll2
1 4

L] L]
(]
b L]

0 A Iteration

\ DU DU D W VY VO P S
® 1000 200* 300 400 500 600 700 800 900 1000

2 . 128 x1x16,v=0.
° o: 16 x1x128,rv=0.

Figure 5: Evolution of the the normalized global residuals for pulling on a 10 x 1 x 10 plate

discretized by elements of order 1 x 1 x 1. The face at =9 = 0 is fixed and the load applied
at the face ¢ = 10. Two different discretizations are shown.

22

Log ”7\'“2

1

, . o . , . , , . Iteration
L o 9 o | [I 1 [[| [
100 200 300° 400 500 600 700 800 900 1000
° o
I (]
o o128 x 1 x 16, v =0.3.
¢ ot 16 x1x128, v =0.3.

Figure 6: Evolution of the the normalized global residuals for pulling on a 10 X 1 x 10 plate
discretized by elements of order 1 X 1 x 1. The face at zo = 0 is fixed and the load applied
at the face 2o = 10. Two different discretizations are shown.

23

v_| No [Il > 1.0 | [I7]l. = 10~° | [[7]l, = 107"
1 37 39
2 36 43
4 58 71
0|8 60 72
16 68 91
32 57 124 177
64 107 244 351
128 | 233 492 742
1 45 52
2 54 65
4 67 78
03| 8 19 71 86
16 33 86 115
32 67 151 212
64 150 299 408
128 | 313 600 864

Table 10: The number of conjugate gradient iterations required for the three normalized
global residuals. The mesh discretization is Ny X 1 X 16 and the order of the elements is
1x 1 x 1. The interface at zo = 0 is fixed and a pulling load applied at zo = 10.

The constant of proportionality for the number of iterations to convergence for varying
the discretization along axis 0 increases almost in direct proportion to the logarithm of the
norm of the global residual. However, changing the discretization along axis 2, which is
orthogonal to the axis of the pulling force, increases the number of iterations to convergence
considerably less. Increasing the value of v from 0 to 0.3 increases the number of iterations
to convergence. The increase is approximately 20% for axis zero and 15% along axis two.

In order to investigate the influence of the interpolation order of the elements experi-
ments as reported in Table 13 were performed. In both cases the order and the discretization
were varied such that N;p; = 60.

The dependence of the number of iterations upon the element order can be expressed

as
. 15
N, = c(i,error,v)N;p;

The structure of the global stiffness matrix for the discretizations Ny x 1 X 16 and
16 x 1 x N, for the same values of Ny and N, can be made the same with the exception of
the boundary conditions. But, the values in the corresponding matrix positions are not the
same. The number of iterations required for convergence of the conjugate gradient method
indicates that the condition number for the global stiffness matrix only depends on the
shape of the discretization by a constant factor. Note that for a given value of N, the
aspect ratios of the elements are the same for the two discretizations, but their orientation

24

v_| No [Nl > 1.0 [[[7]l = 107" | [|7]], = 10~
1 16 16
2 40 61
4 57 75
0| 8 61 87
16 68 91
32 120 147
64 226 284
128 447 550
1 11 20 23
2 25 46 91
4 33 69 85
03] 8 34 74 99
16 22 79 115
32 38 142 170
64 262 321
128 515 631

Table 11: The number of conjugate gradient iterations required for the three normalized
global residuals. The mesh discretization is 16 X 1 x N, and the order of the elements is
1x 1 x 1. The interface at zo = 0 is fixed and a pulling load applied at zo = 10.

Direction v=_0 v=0.3
|I7]l2 = 108 | [|7]], = 10-8 | TEE=I= | ||7]], = 105 | ||7|], = 102 | 1Ze=ies
0 38 5.8 1.5 4.6 6.7 1.5
2 3.4 4.1 1.2 3.9 4.6 1.2
Ratio piL: 1 1.12 1.41 1.25 1.18 1.46 1.25

Table 12: Constants of proportionality for the number of conjugate gradient iterations for
the range 16 < N; < 128 of element discretizations.

25

Discretization | Ng x 1 x 16 | 16 x 1 X N,
Interpolation | po x 1 X 16 | 16 X 1 X p,
pi=1 382 302
pi=2 413 348
pi=3 555 495
pi=4 662 515
pi=5 872 726

Table 13: The dependence of the the number of conjugate gradient iterations upon the
element order and discretization for pulling of a plate. Convergence criteria: a normalized
global residual less than 108, Poisson ratio » = 0.3.

of the elements with respect to the force field is different.

5.2.2 Bending

As in the case with a pulling load the 10 x 1 x 10 domain is discretized by No x 1 x 16
elements, or by 16 X 1 x N, elements of order pp X 1 x 1 and 1 X 1 X p,, respectively. For
the study of the dependence of the number of iterations to convergence upon the direction
of discretization the element order was 1 x 1 X 1. The results are given in Tables 14 and
15. In both cases the Poisson ratio » = 0.3.

Unlike with a pulling load, no directional dependence of the number of iterations to
convergence was observed in the bending case. The improvement of the global residual in
the first several iterations is considerably less with the bending load than with the pulling
load. However, the rate of convergence improves as the computations proceed such that the
convergence rate for a bending load may actually be higher than for the pulling load. Hence,
comparing Tables 10 and 15, and Tables 11 and 15, twice as many iterations may be required
before a reduction in the global residual starts to take place, about 50% more iterations
required for a global residual of at most 10~°, but only about 10% more iterations required
for a global residual of at most 1078, The evolution of the normalized global residual is
shown in Figure 7.

For a given value of the global residual the number of iterations depends approximately
linearly upon the number of elements. The constants of proportionality for two different

residuals are given in Table 16. As in the pulling case the constants are computed for
16 < N; < 128.

A few experiments were also made to study the influence of the order of the elements
upon the number of iterations to convergence. Table 17 shows some of these results. The
number of iterations to convergence depends upon the order of the elements as

Ncy ~ Nip}‘s‘

26

No | [|7]l2 > 1.0 [||7]]l. = 10~ | ||7]]. = 10~®
1 36 46 51
2 58 103 111
4 69 120 139
8 87 124 139
16 103 140 155
32 170 231 259
64 315 431 489
128 621 862 969

Table 14: The number of conjugate gradient iterations required for the three normalized
global residuals. The mesh discretization is Ny X 1 x 16 and the order of the elements is
1 x 1 x 1. The interface at o = 0 is fixed and a bending load applied at z, = 10. Poisson

ratio v = 0.3.

N, | [I]l2 > 1.0 | [IF]la = 107 | [|]|, = 107°
1 23 26
2 14 55 62
4 60 100 110
8 83 119 135
16 103 140 155
32 170 232 258
64 313 418 484
128 | 617 857 960

Table 15: The number of conjugate gradient iterations required for the three normalized
global residuals. The mesh discretization is 16 X 1 X N, and the order of the elements is
1x 1 x 1. The interface at zo = 0 is fixed and a bending load applied at z, = 10. Poisson

ratio v = 0.3.

Direction

0/2

Table 16: Constants of proportionality for the number of conjugate gradient iterations as
a function of direction of discretization. Poisson ratio v = 0.3.

[I7[]: = 10~°
7.2

|[7|]2 = 10~°
6.5

27

Log ||r:ll2
1 4

o ° o
° o o o o ° .
0 4 o . Iteration

| SRS Y Y S U D S D
100 200 300 400 500 600_ 700 800 900 1000

(<]

ot 16 x1x128, v =0.3. o

Figure 7: Evolution of the the normalized global residuals for bending a 10 x 1 x 10 plate
discretized by elements of order 1 x 1 x 1. The face at o = 0 is fixed and the load applied
at the face o = 10. Poisson ratio » = 0.3

Discretization | 16 X 1 x No | 16 x 1 X N,
Interpolation | 1x1xpy | 1 X1Xp,
pi=1 671 455
pi=2 784 531
pi=3 965 919
;=4 1153 1104
p;=5 1525 1195

Table 17: The number of conjugate gradient iterations to convergence for a Ny x 1 x 16 and
16 x 1 X N; element discretization of order py x 1 x 1 and 1 x 1 X p, respectively (Nyp, = 60
and N;p, = 60). A bending load is applied at zo = 10, with o = 0 fixed. Convergence
criteria: a normalized global residual less than 103,

28

6 Summary

In implementing the finite element method on a data parallel computer the choice of logical
unit affects both the concurrency and the storage requirement per processor in a significant
way. By representing an unassembled nodal point per element as the logical unit the
concurrency is higher than if a processor represents an unassembled element by a factor
equal to the number of nodes per element. The required storage per processor is less by
the same factor. The data parallel implementation used for the experiments use the nodal
point per processor representation.

The results from the simulations with a pulling force applied to a beam, and a pulling and
a bending force applied to a plate showed that the number of iterations to convergence for a
diagonally scaled conjugate gradient method increases with an increased Poisson ratio. The
number of iterations also increased linearly with the number of elements along the axis with
the smallest grid point spacing. The constant of proportionality depended upon the element
orientation with respect to the force field for pulling of the plate, but was independent of
the orientation for a bending force. The number of iterations also increased in proportion
to the logarithm of the inverse of the normalised global residual. The dependence of the
number of iterations to convergence upon the element order approximately followed the
relationship

Neg = (v, dir)(—log(||r||2)) Np®.

where a was in the range 1.4 — 1.5. These results leads to the conjecture that the condition
number of the global stiffness matrix depends upon the element order p of Lagrange elements
as p?, where d is the number of spatial dimensions.

References

[1] Owe Axelsson and V.A. Barker. Finite Element Solutions of Boundary Value Problems.
Academic Press, 1984.

[2] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics
of Computation, 31:333-390, 1977.

[3] Billy L. Buzbee, Gene H. Golub, and C W. Nielson. On direct methods for solving
Poisson’s equations. SIAM J. Numer. Anal., 7(4):627-656, December 1970.

[4] M.Y. Chan. Dilation-2 embeddings of grids into hypercubes. Technical Report UTDCS
1-88, Computer Science Dept., University of Texas at Dallas, 1988.

[5] M.Y. Chan. Embeddings of 3-dimensional grids into optimal hypercubes. Technical
report, Computer Science Dept., University of Texas at Dallas, 1988. To appear in
the Proceedings of the Fourth Conference on Hypercubes, Concurrent Computers, and
Applications, March, 1989.

29

[6] Monty M. Denneau, Peter H. Hochschild, and Gideon Shichman. The switching net-
work of the TF-1 parallel supercomputer. Supercomputing Magazine, 2(4):7-10, 1988.

[7] W. Morven Gentleman. Some complexity results for matrix computations on parallel
processors. J. ACM, 25(1):112-115, January 1978.

[8] A. George. Nested dissection of a regular finite element mesh. SIAM J. on Numer.
Anal., 10:345-363, 1973.

[9] Anne Greenbaum, Congming Li, and Han Zheng Chao. Parallelizing preconditioned
conjugate gradient algorithms. Technical report, Courant Institute of Mathematical
Sciences, New York University, November 1988.

[10] I. Havel and J. Méravek. B-valuations of graphs. Czech. Math. J., 22:338-351, 1972.
[11] W. Daniel Hillis. The Connection Machine. MIT Press, Cambridge, MA, 1985.

[12] Ching-Tien Ho and S. Lennart Johnsson. On the embedding of arbitrary meshes in
Boolean cubes with expansion two dilation two. In 1987 International Conf. on Parallel
Processing, pages 188-191. IEEE Computer Society, 1987.

[13] Ching-Tien Ho and S. Lennart Johnsson. Embedding meshes in Boolean cubes by
graph decomposition. Journal of Parallel and Distributed Computing, 7(3), December
1989. Technical Report YALEU/DCS/RR-746, Department of Computer Science Yale
University, September 1989. This is a revision of Technical Report YALEU/DCS/RR-
689 March 1989, Technical Report DA89-1, Thinking Machines Corp., September 1989.

[14] Roger W. Hockney and C.R. Jesshope. Parallel Computers. Adam Hilger, 1981.

[15] J.W. Hong and H.T. Kung. I/O complexity: The red-blue pebble game. In Proc. of
the 18th ACM Symposium on the Theory of Computation, pages 326-333. ACM, 1981.

[16] S. Lennart Johnsson. Solving narrow banded systems on ensemble architectures. ACM

TOMS, 11(3):271-288, November 1985.

[17] S. Lennart Johnsson. Communication efficient basic linear algebra computations on
hypercube architectures. J. Parallel Distributed Comput., 4(2):133-172, April 1987.

[18] S. Lennart Johnsson. Solving tridiagonal systems on ensemble architectures. SIAM J.
Sci. Statist. Comput., 8(3):354-392, May 1987.

[19] S. Lennart Johnsson. Optimal Communication in Distributed and Shared Memory
Models of Computation on Network Architectures. Morgan Kaufman, 1989.

[20] S. Lennart Johnsson, Tim Harris, and Kapil K. Mathur. Matrix multiplication on the
Connection Machine. In Supercomputing 89. ACM, November 1989. Department of
Computer Science, Yale University, Technical Report YALEU/DCS/RR-736, Technical
Report NA89-3, Thinking Machines Corp., September 1989.

30

[21] S. Lennart Johnsson and Ching-Tien Ho. Spanning graphs for optimum broadcasting
and personalized communication in hypercubes. IEEE Trans. Computers, 38(9):1249-
1268, September 1989.

[22] S. Lennart Johnsson and Peggy Li. Solutionset for AMA/CS 146. Technical Report
5085:DF:83, California Institute of Technology, May 1983.

[23] S. Lennart Johnsson and Kapil K. Mathur. Data structures and algorithms for the
finite element method on a data parallel supercomputer. International Journal of
Numerical Methods in Engineering, 1989. Department of Computer Science, Yale Uni-
versity, Technical Report YALEU/DCS/RR-743, Technical Report CS89-1, Thinking
Machines Corp., December, 1988.

[24] Kapil K. Mathur and S. Lennart Johnsson. The finite element method on a data parallel
computing system. Int. J. of High-Speed Computing, 1(1):29-44, May 1989. Depart-
ment of Computer Science, Yale University, Technical Report YALEU/DCS/RR-742,
Thinking Machines Corp., Technical Report CS89-2.

[25] Michael Metcalf and John Reid. Fortran 8X Ezplained. Oxford Scientific Publications,
1987.

[26] J. Tinsley Oden and Graham F. Carey. Finite Elements: Mathematical Aspects, vol-
ume IV. Prentice-Hall, 1983.

[27] Tekla S. Perry. Intel’s secret is out. JEEE Spectrum, 26(4):22-28, 1989.

[28] E M. Reingold, J Nievergelt, and N Deo. Combinatorial Algorithms. Prentice-Hall,
Englewood Cliffs. NJ, 1977.

[29] Arnold L. Rosenberg. Preserving proximity in arrays. SIAM J Computing, 4:443-460,
1975.

[30] Thinking Machines Corp. *Lisp Release Notes, 1987.
[31] O.C. Zienkiewicz. The Finite Element Method. McGraw-Hill, 1967.

31

