Yale University
Department of Computer Science

How to Create a Failure Tolerant Distributed System!

Jonathan Hochman

YALEU/DCS/TR-799
June 1990

'Submitted in partial fulfillment of the BS/MS degree requirements, Yale University Department of
Computer Science.




How to Create a Failure Tolerant Distributed
System*

Jonathan Hochman

Abstract’

Many distributed systems include a component which can be described
as a transaction system. The problems associated with transaction sys-
tems are a major concern in the field of database design, namely how to
recover transactions which may be interrupted by processor or commu-
nication failures, and how to serialize transactions in order to maintain
desired transaction semantics. This paper introduces a transaction sys-
tem protocol, the Four Phase Protocol, with a recovery mechanism that
works in the presence of unlimited crash failures and message deletion
failures. The Four Phase Protocol concentrates on simulating a failureless
distributed system. Other problems are left to be solved by higher levels.
Serialization, to name one problem, can be solved by carefully designing
transaction requests, as opposed to building a solution into the execution
mechanism.

1 Introduction and Motivation

A transaction is a discussion between two processes which is moderated by some
set of protocols. “Transaction Systems” are an important area of database de-
sign because they are essential for making data more available, and for applica-
tions which are naturally decentralized. Two of the most significant problems
in database design are serializing transactions, and recovering from crashes.

Some transactions may take a long time to complete, and it may be desirable
to have many transactions occurring at once in order to improve transaction
throughput. Unfortunately, some transactions may require a semantics which
forbids other transactions from doing certain things concurrently. For example,
if one transaction is transferring funds in a database of bank accounts, it would
be undesirable to have another transaction concurrently summing up the totals

*Submitted in partial fulfillment of the BS/MS degree requirements, Yale University De-
partment of Computer Science.




in all accounts. The second transaction might come up with the wrong answer.
This problem is especially troublesome in a distributed database where various
portions of the data may be under the control of different manager processes.
Serialization is a way to make transactions look as if they execute in some serial
order, one after the next. Interleaving may occur, but the serialization method
only allows interleavings which do not disturb the property that all transactions
must appear to happen in some consistent serial order.

In developing a new transaction system, serialization of transactions should
not be required. In [3] it was shown that serialization may reduce the availability
of information. In order to serialize transactions, it becomes necessary to restrict
the order in which certain events occur, and this frequently decreases the speed
at which transactions can be processed. Often, one transaction must wait for
another to pass some critical point before proceeding. While serialization may
be desired sometimes, it is not necessarily required at all times. Hence, it should
not be part of the transaction system.

The transaction system should allow for the recovery of state, and continued
processing of transactions in the event that processes crash or messages are lost.
Recovery means reconstructing the local state of a process after it has crashed
and restarted, and seeing that transactions in progress are completed as if the
crash had not occurred. Ideally, any process in the transaction system should
be able to fail at any time, restart, recover, and continue execution without
altering the semantics of any possible transaction.

It is best to address orthogonal problems as separate issues. First, as a basis,
a non-serializing transaction system is presented with a simple recovery algo-
rithm that allows distributed transaction processing to proceed in the presence
of failures. Next, a method for serializing transactions is demonstrated which
can be built implemented on such a transaction system. The result is a clear
and simple model for discussing the design of distributed transaction systems,
including databases.

2 Transaction Systems

The name “Transaction System” should suggest a more general model than
a name like “Database System”. A transaction system is a set of protocols
for running transactions on a group of distributed processes. This includes
distributed databases, centralized databases (one manager process), any client-
server application, and even a hardware device which might be shared by several
processors. The problems associated with transaction systems can and should be
dealt with separately from database problems such as serializing transactions.
A transaction system does not have to provide serialization, and a database
manager need not concern itself with recovery if it is built on a failure tolerant




transaction system.

2.1 Distributed System Model

Assume that a transaction system is pictured as a network of nodes. Each
node has a transaction interpreter, a dataspace for storing data objects, a log
for recording transactions, and possibly a checkpoint structure which is used to
save local state periodically in order to be able to recover state after a crash.
Every node can freely communicate with any other node via channels. A channel
is a reliable two way communication path, such a pair of TCP/IP sockets. A
channel can crash at any time, in which case it may have to be reestablished.
In the process, messages in the channel may be lost. Essentially, deletions can
occur, but reordering and duplication of message is forbidden. Also, there is -
assumed to be a global clock accessible to every node.

A transaction system with multiple processes may have multiple dataspaces,
logs and checkpoints. A distributed database which consisted of a large collec-
tion of data servers and lots of client processes would be an example.

The objects in dataspace may be relations and tuples in the case of a rela-
tional database, or they may be tables, I-nodes or any other structure. Objects
might also be active. One could imagine a database of living objects, such as a
ticking clock, or a coin which randomly flips itself every time someone asks it
for its current value. Such a thing is not required, but would be accepted by
this model.

The log is a special object which can be read or appended to, and which
survives crash failures intact. A file on a disk drive which has read and write
semantics which guarantee that it is not corrupted during a crash meets these
requirements.

A checkpoint structure is like a log in that it must survive crashes, but the
checkpoint is only read and written periodically. The differences and uses of
checkpoints and logs are described in [2].

The transaction interpreter is a control algorithm which links the execution
of transactions to changes in dataspace and the log. Periodically the interpreter
may decide to create a checkpoint. If a node crashes, or a channel goes down,
the interpreter is responsible for restarting whatever transactions were in pro-
cess. The main result of this paper, the Four Phase Protocol, is used by the
interpreter, running on a distributed system which suffers from failures, to sim-
ulate a failureless transaction system. The interpreter contains state because it
knows the exact stage of its transactions in progress.

So in summary, the state elements of a node are its:

1. dataspace




2. log
3. checkpoint

4. transaction interpreter (transactions in progress).

2.2 Types of Transactions

Transactions may be of two different types. First, there are atomic transactions
which are guaranteed to affect the state of only one node, which are executed
on one node in an atomic fashion. Secondly, there are non-atomic transactions
which may consist of a series of atomic transactions and intermediate computa-
tions. These commands generate transactions that affect more than one node,
and these transactions may be interleaved in time with other transactions.

Let us distinguish between atomic transactions by calling them “actions”
while referring to non-atomic transactions as “scripts”.

Definition 1 A transaction is the execution of a script or action. A trans-
action may be initialed by a transaclion request which must specify either an
action, or a scripl, and possibly some parameters which are fized values (call by
value).

Transactions may be nested. A transaction may initiate and receive values
from subordinate transactions. Such transactions are discussed in depth in [7].

Definition 2 An action is an alomic transaction which only depends on the
state of one node, and is ezecuted on that node. All aclions on a single node
are execuled serially on that node. Other aclions may occur asynchronously on
other nodes.

The transaction system is required to serialize actions on each individual
node. This can be done using the traditional methods of serialization. We may
assume that actions are never executed concurrently, that each node has only
one thread of execution which processes actions, or at least it makes things look
that way.

Definition 3 A script is a non-atomic transaction which may affect the state
of many nodes, which is not guaranieed to be ezecuied serially by the transaction
system.




2.3 Primitives, Including “Run”

Primitives are the programs or procedures which may individually, or in ag-
gregate form a transaction. Primitives are the link between transactions, and
alteration of dataspace.

For the purpose of illustrating a transaction system here, the following
atomic transaction (action) primitives are assumed: add, delete, find and match.
Add and delete merely insert or remove a specified object from the dataspace
of a particular node. Find and match both accept a pattern, and return either
one or all objects in a node’s dataspace which match the pattern.

Actions are primitives. There is an additional primitive named run. Run
takes arguments including the specification for a transaction, the name of a
node, and perhaps some other parameters affecting execution such as timeout
values run opens a subordinate transaction as specified, with the indicated node.
This is a mechanism which scripts may use to perform actions on other nodes,
or to call other scripts. Run itself is a script; it is the primitive script.

It is possible to create other primitives. They must be classified as either
actions or scripts, and must adhere to the restrictions presented in this, and the
next section, otherwise the results of this paper may no longer follow.

2.4 Limitations on Scripts

A script may be thought of as any program which includes actions. A script
may also run subordinate transactions, like a program calling a subprogram. A
script is expressly forbidden from gaining any information from any operation
other than by performing an action, or running another script. Information may
be supplied by arguments to the script, but these values must be fixed at the
initiation of the transaction, just like a call-by-value procedure.

Thus a script cannot flip coins or read the system clock. It would be possible,
however, to include an object in dataspace corresponding to the system clock,
or to a flippable coin. The reason for this is to establish accountability. It is
essential to be able to continue a transaction interrupted by a crash, and in
doing so the Four Phase Protocol may rely on tracing the past history of a
transaction, and the only recorded events are actions and scripts. These events
are stored safely on the log, as we will see.

2.5 Actions vs. Scripts

Why do we need both actions and scripts? If an outside user, Sally, runs a script,
she generates a series of actions along with some intermediate computations.
The same outcome could be achieved if Sally executed the actions one by one,




while performing any necessary intermediate computations on a pad of paper, or
such. On the other hand, could she design a system which had lots of scripts, one
for every desired type of transaction, and then skip the idea of having actions?

Actions and scripts are logically different because actions are never executed
concurrently on the same node, while scripts may be interleaved, and may be
executed concurrently. A script is different from a series of actions because once
it is initiated, it is guaranteed to execute all the way to completion. If a user is
initiating a stream of actions, there is no guarantee that he will not stop right
in the middle. A script may leave the system in an transitional state while it is
executing, but since the system has a correct recovery algorithm, the script will
eventually complete, even in the presence of unlimited failures, and the desired
final state will be reached.

Atomic transactions are necessary in any reasonable system. It would be
highly undesirable if delete(X) and find(X) could be interleaved. The result of
find(X) might return total garbage. If interleavings are desired, the object X
can be broken into two pieces, X; and X5 which may be handled concurrently.
On some level though, there is a conceptual atom of data which must be dealt
with in one uninterrupted act, otherwise it would be impossible to have any sort
of consistent transactions. If delete(X) and find(X) occur simultaneously on
the same single object X, then find(X) could return garbage.

3 Definition of Failure Tolerance

The transaction system is processing a stream of transaction requests. We would
like the effect of this stream of requests in the presence of an arbitrary number
of failures, namely nodes crashing and requests being lost, to be consistent with
the effect of the same stream of requests in the absence of failures.

A stream of requests is generated by users outside the control of the trans-
action system, and by processes within the transaction system. The stream is
defined to be a sequence of transaction requests ordered by the time that they
are received by any process in the transaction system. In the event that multiple
requests are received by multiple processes at the same tick in time, they are
ordered in some arbitrary and deterministic fashion.

A stream of requests causes the transaction system to alter its global state.
Two executions of the same stream of requests are consistent if the two out-
comes, the two resultant global states, are the same, or if differences in the
resulting states can be explained by differences in the way scripts are inter-
leaved.

Let us say we have a stream of transactions 7" which consists of the following
transactions, ordered by the global clock time at which they are opened.




A1S51A2A35253A4

All A; are actions, and all S; are scripts. If we take a transaction system in
initial state go and run T from.the initial state z times, we may get z different
final states fi, ..., fz. We desire a transaction system where all f; are consistent.

Definition 4 The global state in a transaction system is a tuple consisting
of the stales of the dataspaces of all nodes.

Definition 5 A transaction stream is a sequence of {ransaction requests,
requests 1o initiate a transaction, ordered by the time which the requests are
opened by nodes in the transaction system. A request is considered 1o be opened
when it is writlen on the log of a node in the transaction system.

Definition 6 An execution path of a transaction stream is the partial order-
ing by global time of actions ezecuted on all the nodes.

The order in which actions are executed on a single node forms a total
order, because they occur serially. Actions executed on different nodes are not
synchronized, so they may be unordered by the execution. Hence, the execution
path of a transaction stream is a partial ordering of actions based on when the
actions are executed.

Every transaction is the execution of either an action or a script. A script
can only affect the global state of the system by the actions which it contains.
Hence the execution path of a transaction stream starting from a given initial
state completely determines the final state.

A stream of transactions can generate many different execution paths be-
cause scripts may be interleaved arbitrarily, although all are assumed to com-
plete by the end of the execution.

Definition 7 Two global states, fi and f2, are consistent if and only if there
exist two ezecution paths, e; and eq, of a single transaction stream, T, starling
from a single initial state q, which respectively yield the final states f1 and f.
We say that fi and f, are consistent final states of stream T run from stale q.

Definition 8 Let the function RESULT(T, D,q) = F where F is the set of
final states reachable by all valid ezecution paths of stream T, on a transaction
system D, starting al stale q.

Definition 9 A transaction system, D, is failure tolerant if and only if for
every possible transaction stream T' and every possible initial state g, the states
in the set F = RESULT(T, D,q) are all consistent with a single state f in F,

when an arbitrary number of failures may be present.




4 The Four-Phase Failure Tolerant Protocol

4.1 Roles of clients and servers

A node can play the role of a client or a server in the execution of a transaction.
A client generates the request to begin a transaction. A server accepts the
request to run a transaction and coordinates execution of the transaction. Every
transaction has a defined return value which the server returns to the client.

Nodes concurrently handle multiple tasks. A node acting as a server may also
send transaction requests to other nodes, in which case it may simultaneously act
as a client. A client may receive requests while it is waiting for a transaction
to complete, and act as a server. Some client nodes may be user programs
which have a null dataspace, a short lifetime, and only exist so that a user
can gain access to the global dataspace of, for instance, a database system.
Such a program is considered to be a node in the transaction system and fully
participates in the protocol. ’

When seeking to initiate a transaction, a client contacts a server and sends in
a transaction request which specifies what kind of transaction is desired. Clients
choose a unique serial number to identify every transaction. This serial number
includes the unique name of the client process. One way to do this would be
for the client to stamp each request with its unique name, the time of day and
a incremental suffix, if more than one transaction request is generated per time
tick.

4.2 Eliminating Message Deletions

In the following protocol, a series of messages are sent between processes en-
gaged in a transaction. If a message is lost, and a process is expecting that
message, it is assumed that there is a timeout period. For each phase of the
protocol, the timeout may be implicitly built into the transaction system, or be
specified explicitly by the transaction request itself. If a process is expecting
communication from another process, we may now assume that the message is
never lost forever, because the receiver will timeout and ask for the message to
be resent.

4.3 Four Phases

The are four phases in the processing of a transaction. It is not significant
whether or not the nodes participating in a transaction, both client and setver,
agree on the phase of the transaction at a particular moment in time.




4.3.1 Opening Phase

During the opening phase, a client requests that a transaction be opened. The
client sends a server a transaction request which specifies the type of transaction
to be performed. The request plus the global dataspace provide all of the
information necessary to complete the transaction. For example, if the client
node is a user program taking input from a keyboard, there is no way for the user
to add any information to a transaction once it is in progress; all contingencies
must be specified in advance.

The transaction request includes a unique serial number generated by the
client. If the client is a server attempting to open a transaction which is subor-
dinate to some script which it is executing, the serial numbers must be chosen
in a special way. When a script generates subordinate transactions, they have
the same serial number as the script along with a unique and deterministically
generated suffix. (e.g. script #yale-345 might generate three actions, numbered
#yale-345-1, #yale-345-2 and #yale-345-3).

The client expects to hear a confirmation from the server that the transaction
has started. If a timeout occurs, the client may resend the request using the
original serial number.

4.3.2 Commitment Phase

When a server receives a transaction request, it must log the request to ensure
that it will be executed, even if failures occur. This is the commitment phase.
Every transaction is logged by its server. This includes both scripts and actions,
not matter how they are initiated. Even actions which are part of scripts, run
on the same nade, are logged.

Once a transaction has been inscribed on the log, it is destined to run to
completion, reguardless of how long it takes. Before writing a transaction re-
quest on its log, the server checks to see if it has made a commitment to execute
any other transaction with the same serial number. It can do this by inspecting
its log to see if any transaction request on the log has the same serial number.
If so, the request is not relogged. If there is an indication on the log that the
request has been completed (closed), its return value is sent back, otherwise,
a message is returned saying that the requested transaction is in progress. If
the serial number does not match any on the log, the request is logged and a
message is returned saying that the transaction is in progress.

Definition 10 Once a transaction request has been written on the server’s log,
a transaction has been opened. The transaction remains open until it is closed.




4.3.3 Execution Phase

The transaction enters the execution phase when the server begins accessing
the global dataspace. During execution, the server performs the desired trans-
action. If it is merely an action, the action is run. If it is a script, a series of
actions or other scripts may be specified, in which case the server may act as a
client and open subordinate transactions. Eventually, the actions needed by the
transaction request may be completed (non-terminating scripts are not ruled
out). At this time the dataspace will no longer be accessed by the transaction.
This is when the transaction enters the closing phase.

Note on nomenclature: A Two-Phase transaction, as widely known, would
have two subphases in its execution phase. This is a completely orthogonal
issue. The Four Phase Transaction protocol is designed to ensure consistent
semantics in the face of failures. Two Phase protocols are designed to ensure
serializability.

4.3.4 Closing Phase

During the closing phase, the server sends the client a return value indicating the
result of the transaction. For example, the return value could be “5”, meaning
that the result of the transaction was 5, or it could be “access-denied” meaning
that some aspect of the transaction required access to information which was
protected. Before sending the return value, the server node writes it on its log
along with the serial number of the transaction. If a client becomes tired of
waiting for the return value, it may resend the request.

Definition 11 A transaction is closed once its return value has been writlen
on the server’s log.

Upon receiving the return value, the client process acknowledges receipt once
it is sure that it will not reexecute the request. Or more formally, a transaction’s
return value may not be purged from the log until any other transaction which
relies on the return value is closed. If transaction i3, either a script or action,
is running subordinate to t;, the return value from ¢ is not acknowledged,
and then purged, until ¢, is closed. Thus, if a node is executing a script, it
should wait until the script is closed before acknowledging return values from
any subordinate transactions involved in the script. Once a return value is
acknowledged, it may be purged from the log of the server node. If a server
does not receive acknowledgement after a reasonable amount of time, it may
resend the return value and serial number.

10




A client may receive a return value before it knows that it has submitted
a transaction. This could happen if a node began a script, crashed, and then
restarted. Subordinate transactions initiated in the first place may run to com-
pletion on other nodes and return values. The client would simply throw these
values away. As we will see, the client’s recovery protocol will set this mess
straight. In the meanwhile, the servers for the subordinate transactions must
keep the return values on their respective logs, for the client has not acknowl-
edged them yet. ’ '

A server node may send acknowledgement of the return value before it is
received. This might be done if a node was executing an orderly permanent
shutdown. It might not want to wait around for all pending requests to complete.
It could acknowledge the closing of all outstanding requests, and shutdown
forever.

4.4 Extraordinary Events

There are a few extraordinary events which requires additional consideration by
the Four Phase Transaction Protocol.

4.4.1 Crash Failures

Assume that some node crashes without warning. After it restarts it must go
through some procedure to ensure that transactions open at the time of the
crash are completed consistently.

First, a recovering node must resume state at the previous checkpoint, and
then execute in order all actions which are written on its log, whether they
are open or closed. Additionally, all open scripts on the log are restarted.
The reason that all scripts aren’t reexecuted is that scripts can only alter the
dataspace via actions, and these script initiated actions are written on the log.
If a script is closed, all of the actions which it generated are logged, and it is
unnecessary to rerun it.

If there are open scripts on the log, they may not have finished executing
before the node crashed; hence, they must be redone The original serial numbers
must be reused to ensure that subordinated transactions included in the scripts
are also reexecuted using the same serial numbers. In this way, if a script
causes a subordinate transaction with another node to be reexecuted, instead
of altering that other dataspace a second time, the reexecution will be detected
since the serial number is the same. The other node will then send back the
return value from the first execution and not actually perform the transaction
a second time.

If a script is interrupted by a crash, it will be restarted at the beginning, and

11




we would like for the actions involved in the script to be executed only once. Be

keeping the old return values, the actions in the script will only be done once, oo
because they will match up with their original serial numbers. See the lemma

in the next section.

4.4.2 Making Checkpoints

Periodically, every node updates its checkpoint structure. This is done by cre-
ating a new checkpoint and deleting the old one. Care must be taken to ensure
that should a crash occur during this operation, that there is still a valid check-
point.

When a checkpoint is made, all closed transactions with acknowledged return
values are purged from the log. A checkpoint is merely a crash-proof represen-
tation of a node’s dataspace at a particular point in time. Making a checkpoint
allows quick recovery, for otherwise every transaction ever run would have to
be stored in the log and re-executed upon restart. The log contains a stream of
transactions executed since the last checkpoint.

5 Semantics of the Four Phase Protocol

The Four Phase protocol uses an imperfect distributed system to simulate one
which does not have any failures. In the abstract, the protocol’s semantics are
that transactions are run on a failureless distributed system. Transactions may
be executed concurrently by servers, although actions are always serialized on
each individual server. Scripts may be interleaved in arbitrary ways, and take
arbitrary amounts of time to complete.

In reality, the protocol would constantly be fighting to compensate and cor-
rect for message deletions and crashing nodes. We would like to know that the
actual semantics of the protocol are equivalent to the abstract semantics which
we desire.

Theorem 1 (Failure Tolerance) The Four Phase Protocol for distributed trans-
action processing is failure tolerant for crash failures, and for message deletion
failures.

Lemma 1 (Repeatability of Scripts) If a script’s ezecution is stopped be-
fore it is completed, it may be restarted al the beginning, and it will perform
exactly the same actions in the same order the second time, with the same se-
rial numbers, that it did the first time up 1o the point where it stopped.

12




Proof of the Repeatability Lemma: The only information available to a
script is data from the global dataspace. It can access this data only via actions
or subordinate transactions. A transaction with a unique serial number is only
executed once. The second time it is attempted, original result is returned, even
if redoing the transaction would have yielded a different result.

The return values of subordinate transactions are not acknowledged as com-
plete until the whole script has finished. The return values are stored in the
log until acknowledgement is received, and acknowledgement cannot be given
by an open transaction. Also, the way serial numbers are assigned ensures that
subordinate transactions receive the same same ones on subsequent executions.

The reexecution of any subordinate transaction, be it action or script, will
be detected by comparing its serial number to those present on the log, and
its initia! return value will be sent back without executing it a second time. A
reexecuting script therefore receives the same results from its subordinate trans-
actions the second time through. Since these are the orly sources of information
to a script, and scripts are deterministic programs, the resulting state must be
the same.

The reexecution of a script does not lead to any changes in dataspace, and
results in a return to the same point in the initial execution path, after which
the script execution proceeds. The only effect of stopping a script in progress
and restarting it under the same serial number, is to delay completion of the
script. O

Proof of the Failure Tolerance Theorem: It must be shown that the Four
Phase Protocol yields consistent results in the presence of an arbitrary number
of message deletions and crash failures.

Deletion Failures: By using timeouts, the protocol ensures that a lost
message is eventually regenerated. Thus, the only effect of lost messages is to
delay the system. Arbitrary delays may occur in an execution, and it will still
be guaranteed to be consistent with another execution that has no delays.

Crash Failures: Assume a node N; has crashed. N; resumes execution
with its log intact, by definition of a log, and with an empty dataspace. The
dataspace immediately before the crash included the data objects in the previous
checkpoint as modified by all actions on the log. In the recovery process, the
previous checkpoint is read into the dataspace. All actions on the log are redone,
so the former state of the dataspace is restored.

The state of the logfile is not altered during a crash. The checkpoint structure
is unaltered. The global clock may advance, but this element of state does not

13




affect the semantics of the transaction system since arbitrary delays are allowed.

No alterations to the log or checkpoint file occur during the recovery process,
consequently, a crash during recovery will only restore the node to its state after
the first crash. So crashes during recovery may be ignored.

The only other state element of a node are its transactions in progress. If
transactions were in progress (open) at the time of the crash, they were written
on the log. Some such transactions may have been actions. The execution of
the actions on recovery, indeed the execution path of the ongoing transaction
stream, remains consistent with an execution without any crashes, if the actions
in progress are restarted in the original order, as they are written on the log.

If there are open scripts at the time of the crash, restarting them upon
recovery will result in a consistent execution of the transaction stream because
the Lemma on Script Repeatability shows that a recovered script execution path
is identical to that of the same script in progress before the crash. Consequently,
the script returns to the same state it was in immediately prior to the crash.
Scripts are allowed to be delayed for arbitrarily long amounts of time. Since
a crash or a delay have the same effect, crashes do not alter the semantics of
script execution.

Since a crashed node can restore its state to one consistent with its state
immediately before the crash, the crash might as well not have happened. All
that a crash does is delay the node. Since delays can occur with or without a
crash, the presence of crashes does not alter the semantics of the protocol in
any way. O

6 Serialization, Synchronization and Deadlock

The transaction system presented here does not serialize transactions or provide
an explicit locking mechanism for synchronizing its distributed processes. Locks
can easily be established by using a convention. Every lock is represented by an
object in dataspace, for example one might be named X. To obtain that lock,
a user or script must successfully delete(X). Delete returns a value indicating
if the object was successfully deleted. To release the lock, the user or script
simply executes Add(X). It takes little imagination to see how an analogous
scheme can be created to implement different levels of locking, such as read-only
locks, or write locks. The computational model provided by scripts, actions and
dataspace is sufficiently rich to support a wide range of algorithms that have
traditionally been built into transaction schedulers.

One way to serialize transactions is to use Two Phase transactions. To
do this, scripts are carefully designed to meet the following criteria. First of
all, every object accessed by a script has an associated lock, and the script

14




always locks the objects it uses. All locks are established in the first subphase
of execution. Then locks are released in the second subphase of execution.
This is guaranteed to serialize all transactions [1, p.50]. The issue of serializing
distributed transactions can be addressed by the way scripts are written, and
does not need to be solved by the transaction system’s protocols.

As with other serializing systems, deadlock is possible. It is possible to write
deadlock avoidance and deadlock recovery algorithms. These must be built into
the scripts or user programs; they are not provided by the transaction system.
For instance, we could use the convention that all locks must be obtained in
lexicographic order. It is known that this will prevent deadlock [6, p. 391].

We see that the Four Phase Protocol has done nothing to solve many difficult
problems of database design and transaction processing. It neither increases
nor decreases the possibility of serializing transactions or avoiding deadlock.
The Four Phase system is just as susceptible to some problems as traditional
systems. What is does do quite dramatically, is to separate the problem of
recovery semantics from these other issues. It makes it possible to design a
distributed system with consistent recovery semantics without worrying about
other things. The solutions for serialization and deadlock management can be
built on top of the Four Phase Protocol.

7 Directions for Further Work

The system presented here is quite simple and I believe that it can be used to
implement a distributed transaction system, such as a distributed database with
many servers. Somebody should implement the Four Phase Protocol using an
existing database system, and create a truly distributed network database, with
multiple servers sharing information, and acting in concept as a single database.
A simple relational database engine such as the one described in [5] would be
sufficient for this purpose. The difficulties in writing suitable scripts should
not be overlooked. How to write scripts which would do interesting and useful
things is certainly an area for further research. The existence of a way to create a
distributed transaction processing system that is completely resistant to certain
kinds of failures is exciting, but it still remains to be seen how to put such a
thing to good use. This work may be exceedingly important if large distributed
computations are desired. In a large enough system, running for a prolonged
period of time, the probability of failures becomes certain. Without failure
tolerance built in, it is impossible to complete large distributed computations
on real world computers!

15




8 Acknowledgements

I would like to thank Michael J. Fischer, my thesis advisor, for his enormous
assistance in the formation of ideas presented here, and for his help in suggesting
many revisions incorporated in this document. Also, I would like to acknowledge
the valuable discussions I had with David Gelernter in the early stages of this
project which helped motivate the final result.

References

[1] Bernstein, P.A., Hadzilacos, V., and Goodman, N. Concurrency Con-
trol and Recovery in Database Sysiems. Addison Wesley, Reading, Mas-
sachusetts, (1987).

[2] Birrell, A.D., Jones, Michael B., Wobber, E.P. A Simple and Efficient Im-
plementation for Small Databases. Digital Systems Research Center, Jan-
uary 1, 1988.

[3] Fischer, M.J., Michael, A. Sacrificing Serializability to Attain High Avail-
ability of Data in an Unreliable Network. In Proc. I1st ACM SIGACT-
SIGMOD Symp. on Principals of Database Systems, pages 70-75. Los An-
geles, March, 1982,

[4] Garcia-Molina, H., Salem, K. System M: A Transaction System for Mem-
ory Resident Data. Princeton University Technical Report CS-TR-195-88.
December 1988.

[5] Hochman, J., Ockerbloom, J. The Yale Database Guide. Yale Computer
Science Computing Facility, unpublished,(1990).

[6] Korth, H.F., Silberschatz, A. Database System Concepts. McGraw-Hill,
New York, (1986).

[7] Rothermel, K., Mohan, C.. ARIES/NT A Recovery Method Based on
Write-Ahead Logging for Nested Transactions. IBM Research Report
J6650, January 18, 1989.

16




	cover 799.pdf
	TR799.pdf



