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Abstract

LogiCalc: An Environment For

Interactive Proof Development

Denys Duchier
Yale University
1991

LogiCalc facilitates theorem-proving work with typical predicate-calculus formaliza-
tions of Al problems. It follows the LCF model: goals are analysed top-down by
refining them into plans and subgoals. Proofs are synthesized bottom-up by execut-
ing the plans’ validations. LogiCalc is based on a system of Natural Deduction for
the sequent calculus, with a double twist: (1) formulae are skolemized by default and
unification is built into the logic, (2) assumption sets are implemented with an ATMS.
The underlying graph helps make the most of every answer: (1) goals are grouped
in equivalence classes and thus share their answers, (2) related classes are linked to-
gether and communicate their answers to one another. Refinements often reduire
premises. A transparent DWIM detaching mechanims allows the use of a subformula
of an assertion as a premise. The system automatically determines the auxiliary
goals required to infer it and adds them to the resulting plan; mismatches contribute
equality goals. Proofs are generalized by a technique related to Explanation-Based
- Generalization, but operating on a reification of the logic. Finally, proof summaries
can be automatically generated for publication in IATEX. Heuristics determine how
to compress/omit/in-line uninteresting parts. The thesis also contributes an axiom-

atization of Qualitative Physics.



LogiCalc: An Environment For

Interactive Proof Development

A Dissertation
Presented to the Faculty of the Graduate School
of
Yale University
in Candidacy for the Degree of
Doctor of Philosophy

by
Denys Duchier
December 1991




© Copyright by Denys Duchier 1992
All Rights Reserved




To my brother, in Africa




Acknowledgements

Hervé Gallaire gave me the opportunity to work at CGE’s Al lab and helped me get
started in this field.

From my advisor, Drew McDermott, I learned so much that any attempt to acknowl-
edge my intellectual debt to him can only be inadequate. I thank him for seeing
me through all these years, for putting up with the slow pace of my writing, and
for always being there to give me the benefit of his erudition and of his remarkable

insight, or to share in a great hack.

I thank my readers P. Anandan and L. Henschen for their patience and for having
sustained the extraordinary fortitude required by their task. I am also grateful to

Larry Birnbaum for remaining supportive throughout the years.

Many people helped make my protracted stay at Yale an enjoyable experieﬁce. Steve
Hanks and Jim Firby provided moral support and generated some fascinating discus-
sions in what had to be AI’s coolest office. Jim Firby and Brad Alpert introduced me
to the joys of rock climbing. Andrew Gelsey was the perfect officemate, knowledgeable

and intellectually challenging.

Elisabeth Rogers and Dominique Julien made my life interesting, if sometimes con-
fusing. Randy Sepe helped me survive the final months of writing. He showed me
that heavy metal and music theory are not mutually exclusive, and was always a
source of challenging contradictions. [ must also extend my thanks to my friends at
the Moon, the lunatics who kept me sane: to Darren Sutphin for some great partxes,

and to Deborah Lovejoy for being the best dancer in town.

Finally, T am grateful to my sister Agnes for not finishing her doctoral work before I

did mine. I would never have heard the end of that one!




Contents

1 Introduction

1.1 Motivations and Requirements . o
1.2 Preview of the System . . . .. ... ... ... .. ... .. ..., .
1.3 A Session with LOGICALC . . ... .. .. ... ... ... ......
1.4 Organization of the Thesis . . . . . ... ................

2 Overview

2.1 Introduction . . . ... ... . ... ...
2.2 Skolemization . . . . ... .. ... ... ... ...
2.2.1 Introduction . . . . .. ... ... ...
2.2.2 Predicate Calculus Databases . . ... ... ... . ... .. .
2.2.3 Skolemization of Axioms . . . . .. .. ... ... ... ... .
2.2.4 Skolemizationof Goals . . . . ... .. ... .. .. . ... .
2.3 Fundamental Concepts . . . .. .. .. ... .. ... .. .. ... ..




11

2.5

2.6

CONTENTS

23.1 Goalsand Answers . . ... ... ... ... .. ... ... .. 53
2.3.2 Assumption Sets . ... .. ... ... ... ... ... ... . 53
2.3.3 Plans and Validations . .. .. ............ . ... . 54
234 Proofs . . ... ..., 55
235 GoalClasses . . . ... ... .. ... ... ... 56
Principles of Operation . . . . ... .. .. ... ...... . ..... 58
2.4.1 Initiatinga Session . ... ... .. ... ...... ... ... 58
242 SolvingaGoal .. ......... .. .. .. .. .. .. ... 59
243 CreatingPlans . . .. ... ... ... ... ... .. ... .. 60
2.4.4 InitializingaPlan . . ... ... ... . ... .. .. ... . . 65
2.4.5 Informing the User of the Results . . . . ... ... .. .. . . 67
24.6 Followingan Answer . . . ... .. ......... . ... .. 68
2.4.7 Concluding FromaPlan . . ... ... ..... ... ... . . 69
248 Creatinga New Proof . .............. .. ... . . 70
Exceptions to Skolemization . . ... ... ... ... ... .. . 71
2.5.1 Lambda Expressions . ... ............. ... . . 71
2.5.2  Skolemization of Lambda Expressions . . . . .. .. ... ... 72
Extensions to Unification . . . . ... ... ... .. .. . .. . .. 74
2.6.1 Quantified Formulae and Lambda Expressions . . ... .. .. 75




CONTENTS

2.6.2 Segment Variables .. ... ... ..
2.7 Database Management . ... ... ... ..
2.7.1 Indexation and Retrieval . . . . . . .

3 Logical System

3.1 Introduction . .. ... ............
3.2 Classical Formulation . . . .. ... .....
3.2.1 The Languageof F= . ... ... ..
3.2.2 Substitutions . . ... ... ... ..
3.2.3 Axiomatic Structure of F= . . . . . .
324 Proofs ... ..............
3.25 MajorResults . . . ... .......
3.3 LOGICALC’s Axioms. . .. ..........
3.4 LOGICALC’s Inference Rules . . .. ... ..
3.5 Skolemizing Axioms . . . . ... .......
3.6 Inference Rule for Skolemization . . . . . . .
3.7 Inference Rule for Quantification . .. ...
3.8 Soundness and Completeness. . . . .. . ..

111




iv

CONTENTS

3.9 Lambda Expressions . . . ... ... ... ... ... ... ... .. . 104
3.9.1 Comprehension Axioms. . . .. .. ... .. ... ...... . 105
3.9.2  Rules for Reduction and Abstraction . . .. ...... .. .. 106
3.93 Russell'sParadox . . ... ... ... ... ..., .. .... 107

3.10 Unification and Substitutions . . . ... . ... ... ... ... . . . 109
A Graph Editor for Theorem Proving 113
4.1 Introduction . . . . . S K 113
42 WalkMode . . .. .. ... ... ... 116
43 Display. . . .. .. 118
4.4 Abbreviations . . . .. ... 121
4.4.1 Definitions in NUPRL . . . . ... ... ... ... ... .. .. 121
442 Skolem Terms . . . ... ............ ... .. .. .. 122
4.4.3 Short and Long Forms . . ... ... ...... ... . ... . 123
444 InputForms ... ........ ..., ... . ... . .. .. . 126
4.4.5 Generalized Abbreviations . . . ... ... ... .. . .. 128
4.4.6 Implementation . . .. ... ... ... . .. ... . .. . 130

4.5 Commands . ............... .. .. ... ... .. .. .. 133

4.5.1 Command Line Structure . .. .......... .. . . 133




CONTENTS

v

4.5.2 Macro Commands. . . . .. ................... 135
4.5.3 Recalling An Earlier Command . . .. ............. 138
4.5.4 Command Processing . . . . ... ... ............. 139

46 Help . . ... .. 142
4.6.1 Implementation . . .. ... .. .. ... ..., . ... ... 145

5 Implementation 151
5.1 Sequents and Assumption Sets . . . . .. .. .. ... ... ... ... 151
5.2 Goalsand Goal Classes . . . . ... ................... 154
5.2.1 GoalsinBrief . . . ... ... e e 154
5.22 GoalClasses . . . . ... ... ... ... ... ... 155
3.2.3 Goals Revisited . . . . ... ... ... ... ... . .. .. .. 159

53 Plans. .. ... 161
5.3.1 Validations . . ... ... ... ... .. .. ... ... .. .. 162
5.3.2 Successor Plans . . ... ... ... ... ... ... ... .. . 164
5.3.3 Implementation . . . ... ... ... ... ... ... ... . . 165
9.3.4 [Inmitialization. . . . ... ... ... 166
9.3.5 PushingaPlan .. ... ... .. ... ... ... . .. .. .. 168
5.3.6 Producing a Plan’s Conclusion . . . . ... ........ ... 169




vi

CONTENTS

537 A Goal's Links - . oo\ 170

54 Proofs . .. ... 171
5.4.1 Where Proofs Come From . ... ... ... .......... 171
5.4.2  Proof Generalization . ... .. .. ... .. . ..., . ... . 176
5.4.3 Asserting Proofs in the Database . .. ... .... ... .. . 177
5.4.4 Implementation . . . .. ... ... ... ... . ..., ... . 178

5.5 Answers .. .... e e e e e e e e e e e e e e e e e e 181
Plan Generators 185
6.1 Introduction . . . ... .. ... ... ... 185
6.2 User Level Syntax and Notation . . . . . . .. ... ... ... . . . . 187
6.2.1 Premise Parameters. . . . . .. ... ... ... ... ... .. 189
6.2.2 Subterm Parameters . .. ... .......... .. ... . . 194

6.3 Parsing The Command Line . . ... ... ... ... .. ... ... . . 198
6.4 Designing A Plan Description . . . ... ... ... ... . . ... . . 200
6.4.1 Premise Description Language . . . . . ... .. ... ... . . 200
6.4.2 Validation Hooks . . .. ... ... ... .. . .. . .. .. . . 204
643 Examples . .. ........ ... .. ... ... .. ... .. 207

6.5 Converting A Plan Description To A Plan Object . . . ... ... .. 211




CONTENTS vii
6.5.1 Automatic Expansion. . .. ... ... ........ S 212
6.5.2 Computing The Validation . . . . . .. ... ... ... .... 213
6.5.3 Constructing The Plan Object . . . . . . .. . . .. .. .... 214

6.6 Available Plan Generators . . . .. ... ... ............. 215
6.6.1 Expand . ... ... ... ... 215
6.6.2 Deduction Theorem . . . . . .. .. ... ... ......... 217
6.6.3 Modus Ponens. . . ... ....... ... . ... ..., ... 220
6.64 Modus Tollens. . . .. ... ... ... ... .......... 221
6.6.5 Resolution . . .. ........ ... ... ... .. ... ... 222
6.66 Lemma. ... .......... ... ... ... .. ... ... 223
6.6.7 Substitution . . .. ... ... 224
6.6.8 Contradiction . . . ... .. ... .. .. ... ... ... ... 224
6.6.9 Equality .. ........... ... .. .. .. .. ... ... 225
6.6.10 Case . . ...... ... ... 226
6.6.11 Reduction . . ... ... ... ... ... ... . ..... 230
6.6.12 Abstraction . . .. ... .. ... ... .. .. .. .. ... .. 231
6.6.13 Skolemize . .. .. ... ... .. ... .. .. ... . ... .. 234
6.6.14 Quantify . . . ... .......... ... .. ... ... 236



viii - CONTENTS

7 Validations and Detachments
7.1 Introduction . . . .. ... ...
7.2 Resolution and Natural Deduction . . . . . ... ... ... .. . .. .
7.2.1 Non-Clausal Resolution. . . .. .. .. ... ... ... .. ..
7.2.2  Translating Proofs to Natural Deduction . . ... ... .. ..
7.2.3 Conclusions for LOGICALC . . . .. .. ....... ... .. . .
7.3 Premises and Validations . . . . .. ... ... .. . .. ... .. .
7.3.1 The Point of Validations . . . ... .. ......... .. ..
7.3.2  Representation of Validations . . ... ... ... ... . . . .
7.3.3 Premises and Detachments . . . . ... ... ... .. . . .
7.4 The Detaching Procedure . .. .. ... ... ... . B
7.4.1 Detachment Records . . ............... . . ..
7.4.2  The Detaching Algorithm . ... ....... . .. . .. .
7.43 Converting a Detachment into a Premise . . . . ... ... . .
7.4.4  Converting a Detachment into a Proof . .. .. .. ... .
7.5 Detaching Modulo Equalities. . . . ... ... ... . . P
7.5.1 E-Resolution . .......... ... ... .. .. .. .
7.5.2 Congruence Closure. . . .. .. ...... .. .. . . . . _
7.5.3 Extensions to Handle Mismatches . . . . .. ... ... ..
7.6 Conclusion . . ............ .. ... .. . . .. ...

239

245
245
246
248
250
253
254
255
256
259

261




CONTENTS

8 Automatic Generalization

8.1 Introduction . . .............. ... .. .. .. ... ...,
8.2 Explanation-Based Generalization . . . . . . ... ...........
8.3 Application to Proof Generalization . . . . ... ... ... ......
8.4 A Reified Sequent Logic For Horn Clauses . . . .. ... ... ....
8.5 LOGICALC’s Generalization Procedure . . . . . ... ... P
8.5.1 Reified Representation . . . .. ... ... ... ........
8.6 The Regression Algorithm . . . ... ... ... ............
8.6.1 Regressing A Proof . .. .....................
86.2 Punting . ... ... ... ... ... ..
8.6.3 Regressing A Tautology . . ... ... ... .. ... .....
8.6.4 Where Automatic Generalization Fits . . . . . . .. ... ...
8.7 Regressors . . . .. .. ..,

8.8 Discussion Of Problems .

.........................

8.8.1 Disappearing Terms . . .. ... ... ... ... ..... ..

- 8.8.2 Built-In Theories

.........................

8.8.3 Regressors vs. Inference Rules . . . . . ... ... ... ... .

8.8.4 Regression vs. Inferencing . . . . ... ... .. ... . ....

8.9 Generalization In Action

8.10 Comparison With ONTIC

.........................

.........................

X

271

271

273

276

278

283

283

287

287

289

290

291

292

295

295

297



X CONTENTS
9 Proof Editing And Formatting 305
9.1 Introduction . . . .. ... .. ... . .. ... ... 305
9.2 The Proof Editor . . . ... ... ... ... ... . ... . ... ... 308
9.21 The Notionof Users . ... ................... 310

9.2.2 The Notion of Visibility . .. ... .. ... ...... ... . 310

9.2.3 Editing Operations . . . . ... .. ... ............ 312

9.3 Construction of a Proof View . . ... .. ... ... ... ... . . 314
9.3.1 Data-Structures . . . ... ... .. ... ... 314

9.3.2 [Initialization. . . . ... ... ... . ... ... ... ... 317

9.3.3 Computing a Line’s Visibility . . . ... .. .. ... ... . . 318

9.4 Generatiﬁg aSummary . . ... 321
9.4.1 The Format of a Summary . . . .. ... ... . ... ... . 322

9.4.2 Implementation . . . ... ... ... ... .. .. . .. .. .. 326

943 Example .. .. ............. . . . e e e e e 330

9.5 Conclusion . . . .. ... . ... 333
10 An Axiomatization of Qualitative Physics 335
10.1 Qualitative Simulation . . .. ... ... ... . ... ... ... 336

10.2 Situations




CONTENTS xi

10.3

Quantities . . . . . ... 343
10.3.1 Landmarks . . ... ... ... . ... . ... .. .. ..... 343
10.3.2 Qualitative States . . . . . . .. ... ... ... ... 345
10.3.3 Values of Quantities . . ... ... 0L oL 345
10.4 Fluents and The Situation Calculus . . . . .. ... .. ... ..... 347
10.5 Transitions. . . . . . . . . ... 349
10.6 Qualitative State Changes . . . . ... ... ... ... .. ...... 351
10.7 Constraints . . ... .. S 356
10.8 Corresponding Values . . . . . ... ... ... ... .. ........ 357
10.9 Situated Arithmetic. . . . ... .. ... ... ... ... ... . ... 359
lO.IOSitAuated Inference Rules . . . . .. ... ... ... ... ....... 360
10.10.1 Situated Negation . . . . . . .. .. .. ... .. ... ..... 361
10.10.2 Timeless Truths . . . . . ... ... ... ... ... ...... 362
10.10.3 Situated Equality Substitution . . . . . . .. .. .. ... ... 364
10.10.4 Situated Symmetry . . . . . .. ... ... 365
10.10.5 Generalization . . . . .. ... .. S 366
10.11The U-Tube Problem . . . . . ... .. ... ... .. ... . ... .. 367
10.11.1 Axiomatization . . .. ... ... ... .. o 368

10.11.2 Proof Outline . . . . .. .. .. ... ... ... ... .. .. . 369



xii -

10.11.3 Proof Summary . . ... ... ... ..

10.12The Case of The Leaking Tank

10.12.1 Reachable Situations . . .. .. .. ..

10.12.8 Proof Commentary . .. ... ... ..

10.13Conclusion . . . . . . . ... .

11 Conclusion

11.1 Summary Of The System . . . . . ... .. ..
11.2 Related Work . . ... .. ... ... . ... .
113 Future Work . . . . .. ... ... ... ... .

114 Conclusion . . ... .. .. e e e e e e e

Bibliography

........

.........

........

CONTENTS

431




CONTENTS

A The Language
A.l1 Terms and Propositions . . .. ... ..................
A2 Read Macros . ... ... ... ... .. ...
A3 Syntax Macros . .. ... ... ... ... ..
A4 Types . . ...
A.4.1 TypeDesignators . . . ... ...................

A.5 TypeDeclarations. . . . . ... ... ... ... ... ...... ...

A.5.2 Local Type Declarations . . .. .. ...............
A.5.3 Controliing Type Constraints . . . . o
A.5.4 Quantifying Over Types . . . . .. ... ... ... ......
A.5.5 Type Declarations And La,mbda,' Expressions . . . ... . ...
A.6 Constraints In Binding Lists . . . . .. ... ..............

A7 Axioms AndRules . . ............ .. ... .. . ... .. .

B Find Mode
B.1 GenericFindMode .. ... ........... L
B.2 FormulaFindMode . . . . ... ....... ... ... . .. ... .
B.3 Subterm Find Mode . .. ............ ... ... . ... .. .

B.4 Target FindMode. . . . . ... ... ... .. ... ... . ... . . .

xiii

449

449

450

453

453

454

456

456

457

457

459

459

460

461

465



xiv

CONTENTS




Chapter 1
Introduction

Mathematical proofs, as they are traditionally presented in textbooks, borrow a great
deal of their elegance and apparent sirﬁplicity from the fact that they are neither com-
pletely formal nor do they spell out all the details, relying on the reader’s intelligence
to supply, reconstruct, or grasp the obviousness of what was left unspoken. In the
past thirty years, computer-aided experimentation with formal systems has provided

us with a better appreciation of just how much is usually left out.

Proving theorems formally involves a lot of bookkeeping, which can be a dauntingly
tedious and error-prone task, if carried out by hand. Fortunately, it can be entirely
taken over by the computer. However, the problem’of discovering the proof remains
and is not so easily dismissed; especially now that it is compounded with the necessity
to spell out every detail. Consequently, considerable amounts of time and ingenuity
ha,v;e been invested in the development of techniques to automate and otherwise fa-

cilitate the search for and derivation of proofs.

A large spectrum of approaches have been attempted; from resolution to interactive
proof editors. Since general techniques tend to perform poorly in the absence of

problem- or domain-specific instructions to direct the search, there has been renewed

1



2 CHAPTER 1. INTRODUCTION

interest in interactive systems. Today, the availability of fast personal workstations

makes such systems practical and attractive.

In this thesis, I propose a framework for interactive proof derivation based on graph
editing and Natural Deduction. I also introduce several techniques which make such
an approach practical rather than merely feasible. In particular, I wish to encourage

an exploratory attitude in the user.

In contrast with the traditional stance which regards theorem proving as essentially
an exercise in deduction—automated or otherwise—I believe that it is an activity
with many facets, and that an interactive environment designed for it should reflect
this plurality and provide adequate support in an integrated fashion. In particular,
it should facilitate the process of initial formalization, of proof derivation, and also

of proof editing and publication.

While conducting this research, I developed a rather large LISP program called LOG-
ICALC, which implements the techniques presented in this thesis. Concurrently, I
evaluated these ideas on a number of practical projects ranging from toy-sized prob-
lems, such as the derivation of a solution for a homework examined at the end of the
present chapter, to far more ambitious undertakings in a formal theory of Kuipers-

style qualitative physics described in Chapter 10.

1.1 Motivations and Requirements

The original motivation for the LOoGICALC project was to develop a tool to assist our
group in conducting research with, and proving theorems in, typical predicate cal-
culus formalizations of Al problems; including, but not limited to, spatial reasoning,
qualitative physics [Kui86], circumscription [e.g. Yale shooting problem]|, situation

calculus and planning, etc..
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Since the emphasis was on practical applications to formal AI research, LOGICALC was
designed to facilitate precisely this type of work. In particular, we wanted to retain
the simplicity afforded by the quantifier-free predicate calculus, and also the power-
ful convenience of unification. The reason for the former is that the quantifier-free
predicate calculus is often exactly the right level of abstraction for many problems,
and that it is a representation with which AI researchers are familiar. As for unifica-
tion, it too is a familiar operation—perhaps the mechanism of choice in a significant
fraction of Al programs—and is the expected mode of operation when dealing with

the quantifier-free predicate calculus.

As a consequence, unlike NUPRL [C*86], this project has not attempted to be foun-
dational. Rather, the intent was to arrive at a satisfactory compromise between

adequate formality and manifest ease of use, helpfulness, and perspicuity.

A major requirement was that the system should lend itself not only to proof checking
but to proof discovery as well. In fact, I have tried to encourage an exploratory style
of proof whereby it is not necessary for the user to form a clear a-priori idea of how the
proof should develop [although it is always an advantage to have such a guide], but
will let him experiment, perform interactive searches, and allow the evolving context

to suggest new or continued directions for the proof under construction.

The interface should make it easy to bring the user’s knowledge to bear on the task
at hand. For instance, when the user knows that a particular theorem can be proven
using axiom .4, he should be able to say so simply and let the program figure out, and
take care of, the inferential details. This thesis proposes a “detaching” mechanism

which precisely fills this office.

Research in theorem proving has often taken the narrow view that proof derivation,
in particular the automation thereof, is the only important problem in the field. Such
a view is about as misguided as considering optimizing compilers to be the only

important problem in the field of programming. The reality is that, when doing re-
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search with logical formalisms, perhaps more so in Al, a lot of time must be spent
on developing the axiomatization and getting it right. Attempting to prove theorems
about and within the domain under consideration is an integral part of the process
of formalization. It is not uncommon, while carrying out a proof, to discover that
additional axioms are needed, or that an alternative representation would make the
process easier. Thus the axiomatization as well as the ontology may be revised as a
result of exploring the proof space. Therefore the system should allow rapid prototyp-
ing and, in so far as it is possible, should accommodate changes to the axiomatization

on the fly.

The argument presented in the preceding paragraph is further evidence that interac-
tive exploration of the proof space is an essential requirement, and also that proofs
must be available for inspection. Which brings me to my last point: the researcher’s
task typically does not end when a proof has been derived; a representation must
often be produced, e.g. for reference or inclusion in a paper. A unified environment
for theorem proving ought to address this need too, and provide facilities to edit a

proof and assist in its publication.

1.2 Preview of the System

LOGICALC offers a goal/plan based approach to incremental proof refinement. Each
goal may have more than one plan attached to it. Thus the user can keep track of

several alternative proof attempts at the same time.

A goal is a sequent of the form A = p, where p is the conclusion to be derived and
A is the assumption set. A proof of this goal not only includes the corresponding
instance of its sequent, but also captures the complete proof tree which validates the

conclusion.
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Assumptions and goals are skolemized, by default, thereby making quantifier-ma-
nipulation rules unnecessary and allowing unification to be used as the fundamental
operation. Thus, the simplicity of quantifier-free predicate calculus may be retained,
and the user will manipulate a familiar representation. However, it is possible to
control the skolemizing behavior, and explicit quantification and skolemization rules

are also available.

The primary mode of interaction with LOGICALC is through plan generators. A plan
generator produces a set of plans on the basis of the current goal, as well as premises
and parameters specified by the user. These plans will be filed under the current goal
and represent admissible refinements, or alternative proof attempts. The idea of a

plan generator is related to that of a tactic in LCF.

Whereas plan geﬁerators serve to refine the conclusion part of a goal sequent, inference
generators operate on the assumption set and may augment it with new conclusions

derived by forward inferencing rather than backward refinement.

The supporting framework is that of a graph of goals, plans, and proofs which is
maintained and managed by the system. It is this structure which permits LOGICALC
to address certain issues of subsumption in interesting ways: as we shall see, the
system recognizes duplicate goals (modulo alphabetic renaming) and will establish
an equivalence class to centralize bookkeeping for all of them so that they may share
their answers. Also, links are maintained between similar equivalence classes; where
‘similar’ is taken to mean more, or less, specific, and specificity is determined by
relative instantiation and difference in the number of assumptions. Whenever an
answer is found, not only is it recorded with the particular class it pertains to, but
it is also broadcast along its links, and thus propagates to similar classes which can

then decide whether the new answer can be adapted to benefit them too.

Naturally, interaction with this structural framework is implemented through a graph

editor. The editor is specified in an object-oriented fashion: each type of node in the
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graph provides its own display procedure and its own command processor. From the
point of view of the user, the interface is very similar to a line oriented shell such as
is commonly found in the UNIX world, e.g. CSH. The major distinction is that the set

of available commands varies from one type of node to another.

The user is expected to begin by loading in an axiomatization of the domain of
interest, then state a theorem to be proven, at which point the actual session begins.
The user is presented with a goal representing the target theorem, and should invoke
a plan generator to refine this goal into a plan with subgoals, and proceed in the
same manner with the plan’s steps until all leaf goals have been matched to axioms

or assumptions.

As I mentioned earlier, plan generators often expect premises and parameters to
further specify the refinement to be performed, e.g. Modus Ponens expects a major
pfemise in the form of an implication. Typically a premise is the name of an axiom or
an assumption. However, LOGICALC generalizes this notion and provides a uniform
and powerful extension through the “detaching” mechanism. Thus premises can
be hypothetical, or they can be subformulae of assertions extracted by a procedure
reminiscent of Unit Non-Clausal E-Resolution; in the latter case, additional subgoals
may be required. Interactive broWsing and selection of candidate detachments can be

requested from the command line and will trigger activation of “Find Mode.”

Since propositions are typically converted to their skolemized version, skolem terms
occur frequently. They are well-known for possessing rather infelicitous representa-
tions. For the convenience of the user, an abbreviation scheme has been designed
which considerably clarifies and simplifies both input and output. In this regime, a
skolem term with function foo will ordinarily print as !'.foo. This scheme was ex-

tended to allow arbitrary abbreviations of terms, as well as of interactive commands.

Since a proof contains a full trace of the deductive process that resulted in its deriva-

tion, it was possible to implement a mechanism for automatic generalization of con-
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clusions in a manner that is related to Explanation-Based Generalization, but carries
it further. This feature is particularly useful to counteract the over-specializing effects

due to wanton skolemization.

The availability of proofs as self-contained objects also made it possible to produce
textual, Natural Deduction-like representations for them. A specialized proof editor
was implemented to facilitate the process of proof editing and publication. TgX
output can automatically be prepared in this manner for inclusion in a document to

be typeset.

LOGICALC was evaluated on various formal AI problems. Chapter 10 presents the
result of my research on a first-order axiomatization of a Kuipers-style approach to
qualitative physics. In the next section, I include an annoted transcript of a session
with LOGICALC which illustrates, on a realistic example, how a user typically interacts
with this program, and hopefully will give the reader a feel for the system. The chapter

concludes with an outline of the thesis.

1.3 A Session with LOGICALC

This section contains an annotated session with LOGICALC, and serves as a gentle in-
troduction to the system as well as an illustration of the more basic ways of interacting

with it. The proof was derived as a solution for a class assignment.

LOGICALC has the ability to output text with visual enhancements for various kinds
of devices, including TgX.! By merely setting TERM* to tex, I was able to use my
transcript to produce slides, a hand-out, as well as the annotated version which

follows.

The text of the assignment is included here for reference:

In so far as TEX can be construed as a device.
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homeworlk
1. Express the following facts in predicate calculus, using a
concise, clear vocabulary of predicates:

e If z is a part of y, and y is a part of 2, then z is a
part of z.

e If a creature has a thumb on its left hand, it has a thumb on its right hand,
and vice versa.

e Every hand is either left or right, but not both.
e A thumb belongs to exactly one hand.

2. We wish to prove the following two statements:

e A creature with just one hand has no thumbs.

e If a creature has any thumbs, it has two distinct thumbs.

What fact must be added to the list above for these two statements to be
provable?

3. Pick one of the two, and give a formal proof, using either the tableau method,
natural deduction, or resolution.

Below I include the axiomatization actually used in the solution. It is a straightfor-
ward restatement of the terms of the problem in a notational variant of first-order
logic. Note that creature-thumb is an additional fact added as an answer to ques-
tion 2: it states that if a creature has a thumb, then it must have a hand to which
the thumb is attached (think of it as a weak statement to the effect that all parts of

a creature must be connected).-

(IN-PACKAGE ’NISP) asxiomatizatiomn
(DEPENDS-ON NISP)

(DEFDUCKTYPE creature ob j)
(DEFDUCKTYPE hand obj)
(DEFDUCKTYPE thumb obj)
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(DEFPRED (PART ?X ?Y - obj))
(DEFPRED (LEFT 7?H - hand))
(DEFPRED (RIGHT ?H - hand))

(AXIOM TRANSITIVITY
(FORALL (X Y Z - part)
(IF (AND (PART X Y) (PART Y Z)) (PART X 2))))

(AXIOM THUMBS
(FORALL (C - creature ONE-HAND - hand ONE-THUMB - thumb)
(IF (AND (PART ONE-THUMB ONE-HAND) (PART ONE-HAND C))
(EXISTS (OTHER-HAND - hand OTHER-THUMB - thumb)
(AND (PART OTHER-THUMB OTHER-HAND)
(PART OTHER-HAND C)
(IF (LEFT ONE-HAND) (RIGHT OTHER-HAND))
(IF (RIGHT ONE-HAND) (LEFT OTHER-HAND)))))))

(AXIOM LEFT-OR-RIGHT
(FORALL (H - hand)
(AND (OR (LEFT H) (RIGHT H))
(NOT (AND (LEFT H) (RIGHT H))))))

(AXIOM ONE-EAND-PER-THUMB
(FORALL (T - thumb)
(EXISTS (HAND-OF-THUMB - hand)
(AND (PART T HAND-OF-THUMB)
(FORALL (H - hand)
(IF (PART T H) (= HAND-OF-THUMB H)))))))

(AXIOM CREATURE-THUMB
(FORALL (C - creature T - thumb)
(IF (PART T C)
(EXISTS (ONE-HAND - hand)
(AND (PART T ONE-HAND) (PART ONE-HAND C))))))

Question 3 of the problem set offered a choice of 2 propositions for which a formal

proof should be attempted. I selected the second one:
If a creature has any thumbs, it has two distinct thumbs.

The corresponding proposition, expressed in first-order logic, is:
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(FORALL (C - creature ONE-THUMB - thumb)
(IF (PART ONE-THUMB C)
(EXISTS (OTHER-THUMB - thumb)
(AND (PART OTHER-THUMB C) (NOT (= ONE-THUMB OTHER-THUMB))))))

I will presently outline a sketch of the proof so that the reader may know what to

expect and better follow the forthcoming account of this interaction as it proceeds.

1. First, we shall begin by assuming that creature C has ONE-THUMB; thus reflecting
the presupposition “if a creature has any thumbs...” Our ob jective will be to
find (or show the existence of) an OTHER-THUMB such that it is a part of creature
C and is distinct from ONE-THUMB. -

2. By axiom CREATURE-THUMB, we know that there is a hand connecting creature
C to its thumb ONE-THUMB. '

3. By axiom THUMBS, we know that, if there is a hand connecting a creature to
a thumb on one side, then there there is a hand connecting the creature to a

thumb on the other side.

4. Since it is not specified on which side the hand connecting creature C to ONE-
THUMB is attached, we must perform a case analysis to conclude that there is a

hand on the opposite side connecting creature C to another thumb.

5. Finally, we show that, if both thumbs were equal, then both hands would be
equal too. However, since these hands are on opposite sides, they must be

distinct. Therefore, by contradiction, the thumbs must be distinct,.

Let’s assume that the axiomatization presented earlier has been loaded into the Lisp
image. To initiate the session, we now invoke LOGICALC and state the theorem to be

proven. The system responds by presenting us with a view of the top level goal.
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> (LOGICALC) transcript
Theorem to be proven? (FORALL (C - creature ONE-THUMB - thumb)
(IF (PART ONE-THUMB C)
(EXISTS (OTHER-THUMSB - thumb)
(AND (PART OTHER-THUMB C)
(NOT (= ONE-THUMB OTHER-THUMB))))))
Return variables: ?0THER-THUMB
Which ones are you interested in? -ALL
Goal View <class CLASS.1> (top goal)
Find: (OTHER-THUMB) in:
(IF (AND (IS CREATURE !.C[6])
(IS THUMB !.ONE-THUMB([7])
(PART !.ONE-THUMB[7] !.c[6]))
(AND (IS THUMB ?0THER-THUMB)
(PART ?0THER-THUMB !.C[6])
(NOT (= !.ONE-THUMB(7] ?7OTHER-THUMB))))
(no assumptions)
(no answers)
(no local plans)
(no class plans)

We enter the target theorem as a fully quantified formula. Note that each variable is
followed by a type declaration, with the character ‘-’ acting as a separator. Thus C was
declared to be a creature and ONE-THUMB a thumb (see DEFDUCKTYPE speéiﬁcations
in axiomatization). After reading in this formula, the system applied skolemization
to it and packaged the resulting expression as a goal. A view of this goal is displayed

to the user.

The prefix ‘!.” is a notational convention to indicate a skolem term. !.C is a new
skolem term which stands for an arbitrary and anonymous creature. The display
actually shows !.C[6] where 6 is the skolem term’s “id.” Every time the system
invents a new skolem term, it makes up a new id for it using a monotbnically increasing
global counter; this is why ! .ONE-THUMB has id 7. You may read !.C[6] as Cg. The
id is always printed the first time a skolem term is seen; however it is generally
omitted on subsequent occasions, as long as the skolem term’s name by itself (e.g. C)

is unambiguous.

The prefix ‘7’ is the traditional notational convention to indicate a free variable; e.g.
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7OTHER-THUMB is a free variable to be subsequently instantiated in our search for a
proof—we are looking for a term to serve as a value for 20THER-THUMB and for which

the corresponding instance of the goal obtains.

Note that all type declarations have been transformed into propositions of the form

(IS (type) (object)) and appropriately inserted in the formula.

The fact that the goal is in the form of an implication suggests that we proceed by
invoking the Deduction Theorem: let us assume the implication’s antecedent and

attempt to prove its consequent under the resulting additional assumptions.

(0] w> DEDUCTION transcript

There is 1 fate
1 (PLAN):
PLAN --- (IF-INTRQ)
1 ((IS CREATURE !.C)
(IS THUMB !.ONE-THUMB)
(PART !.ONE-THUMB !.C)
=> (IS THUMB ?0THER-THUMB))
2 (l...1 => (PART ?7O0THER-THUMB !.C))
3 (l...] => (NOT (= !.ONE-THUMB ?0THER-THUMB)))
Make it local? YES
Move to it? YES

Plan View <class CLASS.1>
Documentation: "w> +PLAN DEDUCTION-THEOREM"
Supergoal:
(IF (AND (IS CREATURE !.C) (IS THUMB !.ONE-THUMB) (PART !.ONE-THUMB 1.C))
(AND (IS THUMB ?0THER-THUMB)
(PART ?0THER-THUMB 1.¢)
(NOT (= !.ONE-THUMB ?0THER-THUMB) ) ))
Will find:
OTHER-THUMB = ?0THER-THUMB
Steps:
1 ((IS CREATURE !.C)
(IS THUMB !.ONE-THUMB)
(PART ! .ONE-THUMB !.C)
=> (IS THUMB ?0THER-THUMB)) -- (no local pPlans, no class plans, 1 answer)
2 (l...1 => (PART ?0THER-THUMB !.C)) -- (no local plans, no class plans, 1 answer)
3 (l...] => (NOT (= !.ONE-THUMB ?0THER-THUMB))) -- (no local Plans, no class plans, no answe
(no successors) '
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The deduction command is interpreted as a request to refine the current goal accord-
ing to the Deduction Theorem. In response, a plan is constructed and proposed to the
user. From proofs of the steps, we expect a proof of the original goal to be derivable
according to the plan’s validation (not shown here)—a validation is a description of

a sequence of inferences expressed in terms of available inference rules.

In the resulting plan, the system automatically expanded the consequent into 3 steps,

one for each conjunct. Each step is displayed in a sequent-like format:
Assumptions = Goal

The elision | . . . | means to repeat the preceding set of assumptions. Thus the system

avoids cluttering the display with redundant repetitions.

Note that steps 1 and 2 each have one answer already associated with them. The
reason is that, whenever a new goal is created, the system attempts to find easy
answers to it; in particular, it checks whether it is a tautology—which neither of
them are, here—-'and whether it unifies with some axiom or assumption—which they

both do: step 1 unifies with the second assumption, and step 2 with the third one.

Unfortunately, neither of these answers is satisfactory since they both involve ! . ONE-
THUMB when we really meant to find another thumb. Therefore, we shall have to
disregard them and proceed to look for other answers. At this point, we must select
a step to work on. Since it is unlikely that we can proceed easily with either step 1
or step 3 without first instantiating ?0THER-THUMB, it is probably a better idea to try
our luck with step 2. We simply type 2 to LOGICALC’s shell, and the view is moved

to the node representing step 2.

(1] w> 2 transcript
Goal View <class CLASS.3> '

Find: (OTHER-THUMB) in:
(PART ?0THER-THUMB !.C)
Assumptions:
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(IS CREATURE !.C) -- !:IS278

(IS THUMB !.ONE-THUMB) -- !:IS279

(PART !.ONE-THUMB !.C) -- !:PART280
Answers: ,

1 OTHER-THUMB = !, ONE-THUMB
Supergoal:

(IF (AND (IS CREATURE !.C) (IS THUMB !.ONE-THUMB) (PART !.ONE-THUMB 1.¢))
(AND (IS THUMB ?0THER-THUMB)
(PART ?0THER-THUMB !.C)
(NOT (= !.ONE-THUMB ?0THER-THUMB))))
(no local plans)
(no class plans)

We want to find the creature’s other thumb, i.e. the thumb on the side opposite
! .ONE-THUMB. Clearly, we must use axiom THUMBS; however, THUMBS does not men-
tion a proposition of the form “thumb is part of creature” but it does mention the
two simpler propositions “thumb is part of hand” and “hand is part of creature.”
Therefore, before we can use axiom THUMBS, we must invoke the axiom of transitivity

of parts in order to decompose the goal into these simpler components.

(2] w> USE TRANSITIVITY transcript

There is 1 fate

1 (PLAN):
PLAN --- (MODUS-PONENS)
1 (PART ?0THER-THUMB ?Y.1)
2 (PART ?Y.1 !.C)

Make it local? YES

Move to it? YES

Plan View <class CLASS.3>
Documentation: "w> +PLAN RESOLUTION TRANSITIVITY"
Supergoal:
(PART ?0THER-THUMB !.C)
Will find:
OTHER-THUMB = ?0THER-THUMB
Steps:

1 (PART ?0THER-THUMB ?Y.1) -- (no local plans, no class plans, 1 answer)
2 (PART ?Y.1 !.C) -- (no local planms, 1 class plan, 1 answer)
(no successors) :

We have reduced the problem of finding a thumb that is a part of creature !.C to
that of finding a hand ?Y.1 that is part of !.C and such that the thumb is part of it.
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We can now move to either step and attempt to proceed using axiom THUMBS as we

originally intended. Since step 2 is the more instantiated, it will presumably result

in greater directionality and specificity.

[3] w> 2
Goal View <class CLASS.3>
Find: (Y.1) in:
(PART ?Y.1 !.C)
Assumptions:
(IS CREATURE !.C) -- !:IS278
(IS THUMB !.ONE-THUMB) -- !:IS279
(PART !.ONE-THUMB !.C) -- !:PART280
Answers:
1 Y.1 = !  ONE-THUMB
Supergoal:
(PART ?0THER-THUMB !.C)
(no local plans)
(1 class plan)

[4] w> USE THUMBS

There is 1 fate
1 (PLAN):
PLAN --- (TAUT-TRANS)
1 (IS HAND ?ONE-HAND.1)
2 (IS THUMB ?ONE-THUMB.1)
3 (PART ?0NE-THUMB.1 ?ONE-HAND.1)
4 (PART ?0NE-HAND.1 !.C)
Make it local? YES
Move to it? YES

Plan View <class CLASS.3>
Documentation: "w> +PLAN RESOLUTION THUMBS"
Supergoal: :
(PART ?Y.1 !.C)
Will find:

Y.1 = | .OTHER-HAND([2] (?ONE-HAND.1 !.C)

Steps:
[-[1 (IS CREATURE !.C)]

transcript

2 (IS HAND ?0NE-HAND.1) -- (no local plans, no class plans, no answers)
3 (IS THUMB ?0NE-THUMB.1) -- (no local plans, no class plans, 1 answer)

4 (PART ?0NE-THUMB.1 ?ONE-HAND.1) -- (no local plans, no class plans, 1 answer)
5 (PART ?70NE-HAND.1 !.C) -- (no local plans, 2 class plans, 1 answer)

(no successors)

In this view, ?Y.1 is the “other” hand, ?ONE-THUMB. 1 stands for the given thumb
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(i.e. ! .ONE-THUMB), and 7ONE-HAND. 1 is the “first” hand that connects 70NE-THUMB. 1
(which we will promptly instantiate with !. ONE-THUMB) to creature !.C. Step 3
already has an answer which presumably results from unification with the assumption
!:18279 that ! .ONE-THUMB is a thumb. We ought to use that answer, thereby further

instantiating this plan in the desired direction.

(5] w> 3 transcript
Goal View <class CLASS.2>
Find: (ONE-THUMB.1) in:
(IS THUMB ?ONE-THUMB.1)
Assumptions:
(IS CREATURE !.C) -- 1:IS278
(IS THUMB !.ONE-THUMB) -- !:IS279
(PART !.ONE-THUMB !.C) -- !:PART280
Answers:
1 ONE-THUMB.1 = ! ONE-THUMB
Supergoal:
(PART ?Y.1 1.C)
(no local plans)
(no class plans)

[6] w> FOLLOW

When an answer to a goal is “followed,” a “successor” is created to the plan where
the goal appears as a step. The successor plan looks just like the original plan, except
that the goal whose answer was followed is marked as “solved” (indicated by brackets

in the display), and the answer’s substitution was applied to all the remaining steps.

Plan View <class CLASS.3> transcript
Documentation: ">w> +PLAN RESOLUTION THUMBS"
Supergoal:
(PART ?Y.1 !.C)
Will find:
Y.1 = ! .OTHER-HAND (?ONE-HAND.2)
Steps:
-1 (IS CREATURE !.C)]
2 (IS HAND ?ONE-HAND.2) -- (no local plans, no class plans, no answers)
(3 (IS THUMB ?ONE-THUMB)]
4 (PART !.ONE-THUMB ?ONE-HAND.2) -- (no local pPlans, no class plans, 1 answer)
5 (PART ?7O0NE-HAND.2 !.C) -- (no local plans, 3 class plans, 1 answer)
(no successors)
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Note that the variable denoting the “first” hand was renamed from ?ONE-HAND.1
to ?ONE-HAND.2. Our objective will be to derive an instantiation for this variable.
Axiom CREATURE-THUMB states that, if a creature has a thumb, then there exists a
hand that connects the creature to its thumb. This last observation suggest that we

move to step 5 and tentatively apply the aforementioned axiom.

[71 > 5 transcript
Goal View <class CLASS.3>
Find: (ONE-HAND.2) in:
(PART ?0NE-HAND.2 !.C)
Assumptions:
(IS CREATURE !.C) -- !:IS278
(IS THUMB !.ONE-THUMB) -- !:IS279
(PART !.ONE-THUMB !.C) -- !:PART280
Answers:
1 ONE-HAND.2 = !, ONE-THUMB
Supergoal:
(PART ?Y.1 1.C)
(no local plans)
(3 class plans)

(8] w> USE CREATURE-THUMB

There are 2 fates
1 (PLAN):
PLAN --- (TAUT-TRANS)
1 (IS THUMB ?T.1)
2 (PART 7?T.1 !'.C)
Make it local? NO
2 (CONCLUSION):
ONE-HAND.2 = ! .ONE-HAND[5](!.C ! .ONE-THUMB)
Move to one of them? Type no.: 2

As expected, using axiom CREATURE-THUMB resulted in the creation of a two-step plan
expressing the need to find a thumb ?T. 1 that is part of creature ! .C. Both steps have
answers found by unification with an assumption, and both answers have compatible
(in fact, identical) substitutions: They both assign ! . ONE-THUMB to ?T. 1. The system
notices the answers can be merged, thereby producing a substitution which satisfies
all the plan’s steps, and proceeds to derive the corresponding conclusion which it then

displays as fate 2.
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In the proposed conclusion, the “first” hand is denoted by skolem term ! . ONE-HAND [5]
(!.C !.ONE-THUMB) which is a function of both the creature and the “first” thumb as
reflected by the list of arguments following ! . ONE-HAND. We select fate 2 by typing 2
to the prompt, thus following the conclusion, and are presented with a new successor

plan.

Plan View <class CLASS.3> transcript
Documentation: ">>w> +PLAN RESOLUTION THUMBS"
Supergoal:
(PART ?Y.1 !.C)
Will find:
Y.1 = ! .OTHER-HAND[2] (!.ONE-HAND !.C)
Steps:
I-[1 (IS CREATURE !.C)]
2 (IS HAND !.ONE-HAND) -- (no local plans, no class plans, no answers)
[3 (IS THUMB ?0ONE-THUMB)]
4 (PART !.ONE-THUMB !.ONE-HAND) -- (no local Plans, no class plans, no answers)
[5 (PART ?ONE-HAND !.C)]
(no successors)

The brackets indicate those steps which have been solved. Also, the arguments to
! .ONE-HAND, which were displayed earlier when !.ONE-HAND was first introduced,

have been omitted here along with the “id” since the name by itself is unambiguous.

All that remains to be done in this plan is to show that !.ONE-HAND is a hand
[step 2] and that !.ONE-THUMB is a part of it [step 4]. Remember that !.0ONE-HAND
was introduced by our use of axiom CREATURE-THUMB. Since, the latter “defines” the
former, it is most likely that other properties of ! .ONE-HAND will also be found there,
e.g. its type, because théy must have been expressed originally within the scope of the
quantifier that introduced !.ONE-HAND. In fact, a cursory glance at the text of the
axiom confirms that the properties expressed by both remaining steps are explicitly
asserted. Therefore, we should be able to use the axiom again to quickly dispatch

these two steps.

[9] w> 2 transcript
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Goal View <class CLASS.9>
Prove
(IS HAND !.ONE-HAND)
Assumptions:
(IS CREATURE !.C) -- !:IS278
(IS THUMB !.ONE-THUMB) -- !:IS279
(PART !.ONE-THUMB !.C) -- !:PART280
(no answers)
Supergoal:

(PART ?Y.1 !.C)
(no local plans)
(no class plans)

[10] w> USE -SKOLEM

The idiom “use -skolem” means: find all assertions mentioning any of the skolem
terms that appear in the goal, and attempt to solve the goal using them. The great
advantage of this idiom is that the user does not have to remember or find out where
the skolem terms originated; the system will make this determination for him. I
have found this feature to be extremely useful in practice, often solving the goal in a

seemingly magical way.

There is 1 fate ' transcript
1 (CONCLUSION): Yes

Move to it? YES

Goal View <class CLASS.10>
Prove
(PART ! .ONE-THUMB ! .ONE-HAND)
Assumptions:
(IS CREATURE !.C) -- !:IS278
(IS THUMB !.ONE-THUMB) -- !:IS279
(PART !.ONE-THUMB !.C) -- !:PART280
(no answers)
Supergoal:

(PART ?Y.1 !.C)
(no local plans)
(no class plans)

We just solved step 2, and only step 4 remains. Therefore, the system anticipates

the user, and moves the focus directly to the sole remaining step instead of to the
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successor plan where step 4 is the only unsolved step. Once again, we invoke the

convenient idiom introduced above.

[11] w> USE -SKOLEM transcript

There is 1 fate
1 (CONCLUSION): Yes
‘Move to it? YES

Goal View <class CLASS.13>
Find: (OTHER-THUMB) in:
(PART ?0THER-THUMB ! .OTHER-HAND)

Assumptions:
(IS CREATURE !.C) —-- !:IS278
(IS THUMB !.ONE-THUMB) —-- !:IS279

(PART !.ONE-THUMB !.C) -- !:PART280
(no answers)
Supergoal:
(PART ?0THER-THUMB !.C)
(no local plans)
(no class plans)

As expected, an answer is immediately found, which we proceed to follow. Since
step 4 was the last remaining step in the plan originally created on page 15, the
plan’s validation is executed to produce a conclusion. A validation is a description of

how to derive a plan’s conclusion from proofs of its steps, using inference rules.

This new conclusion is an answer to the plan’s supergoal (see page 15). This su-
pergoal appeared as step 2 in the plan displayed on page 14. Therefore, following
the conclusion creates a successor plan with a single remaining step (where ?Y.1 is
instantiated with !.0THER-HAND), and the system moves us directly to that step. It
is a view of that step which is displayed above. !.0THER-HAND is the “other” hand

and was introduced by our use of axiom THUMBS on page 15.

(12] w> USE THUMBS? transcript

There are 3 fates

’I could have typed “USE -SKOLEM”
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1 (PLAN):

PLAN --- (TAUT-TRANS)
(IS CREATURE !.OTHER-HAND)
(IS HAND ?70NE-HAND.3)
(IS THUMB ?0NE-THUMB.2)
(PART ?0NE-THUMB.2 ?ONE-HAND.3)
(PART ?7ONE-HAND.3 !.OTHER-HAND)
Make it local? YES3
2 (PLAN):

PLAN --- (TAUT-TRANS)

1 (IS THUMB ?70NE-THUMB.3)

2 (PART ?0NE-THUMB.3 !.ONE-HAND)
Make it local? YES
3 (CONCLUSION):

OTHER-THUMB = ! OTHER-THUMB[3](!.ONE-HAND !.C)
Move to one of them? Type no.: 3

O W N -

Plan View <class CLASS.1>
‘Documentation: "“>w> +PLAN DEDUCTION-THEOREM"
Supergoal:

(IF (AND (IS CREATURE '.C) (IS THUMB !.ONE-THUMB) (PART !.ONE-THUMB !.C))
(AND (IS THUMB ?0THER-THUMB)
(PART ?0THER-THUMB !.C)
(NOT (= !.ONE-THUMB 70THER-THUMB))))
Will find:
OTHER-THUMB = !.OTHER-THUMB
Steps:
1 ((IS CREATURE !.C)
(IS THUMB !.ONE-THUMB)
(PART !.ONE-THUMB !.C)
=> (IS THUMB !.OTHER-THUMB)) -- (no local plans, no class plans, no answers)
[2 (l...] => (PART ?0THER-THUMB !.C))]
3 (l...1 => (NOT (= !.ONE-THUMB !.OTHER-THUMB))) -- (no local plans, no class plans,
(no successors)

An answer was found and we decided to follow it by typing the corresponding fate
number (i.e. 3) to the prompt. No unsolved step remains in the superplan and its
validation is executed, thereby producing an answer to step 2 of the original plan (see
page 12). Following this answer creates a successor plan and moves the focus to it.

It is a view of this successor which we see above.

Now that 0THER-THUMB has been instantiated with ! .0THER-THUMB, we can expedite

31 answered YES because at this point it is still unclear that one of the 3 fates is in fact the de-
sired conclusion. .
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step 1 with another “use -skolem.”

[13] w> 1 transcript
Goal View <class CLASS.18>
Prove
(IS THUMB ! .OTHER-THUMB)
Assumptions:
(IS CREATURE !.C) -- !:IS278
(IS THUMB !.ONE-THUMB) -~ !:IS279
(PART !.ONE-THUMB !.C) -~ !:PART280
(no answers)
Supergoal:

(IF (AND (IS CREATURE !.C) (IS THUMB !.ONE-THUMB) (PART !.ONE-THUMB !.C))
(AND (IS THUMB ?0THER-THUMB)
(PART ?0THER-THUMB !.C) ,
(NOT (= !.ONE-THUMB ?0THER-THUMB))))
(no local plans)
(no class plans)

[14] w> USE -SKOLEM
There is 1 fate

1 (CONCLUSION): Yes
Move to it? YES

Goal View <class CLASS.17>
Prove
(NOT (= !.ONE-THUMB ! .OTHER-THUMB))
Assumptions:
(IS CREATURE !.C) -- !:IS278
(IS THUMB !.ONE-THUMB) -- !:IS279
(PART !.ONE-THUMB !.C) -~ !:PART280
(no answers)
Supergoal:

(IF (AND (IS CREATURE !.C) (IS THUMB !.ONE-THUMB) (PART ! .ONE-THUMB !.C))
(AND (IS THUMB ?0THER-THUMB)
(PART ?0THER-THUMB !.C)
(NOT (= !.ONE-THUMB ?0THER-THUMB))))
(no local plans)
(no class plans)

This is a view of step 3 which is the only remaining subgoal in this proof. The
fact that the goal has the form of an inequality suggests that we attempt a proof
by contradiction: assuming that the two thumbs ! .ONE-THUMB and ! . OTHER-THUMB

are identical, we will prove that the two hands must be identical as well (by axiom
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ONE-HAND-PER-THUMB) and consequently must be on the same side; but we know that

they are on oppposite sides by construction (cf. axiom THUMBS). Hence a contradiction.

[15] w> CONTRADICTION (LEFT !.ONE-HAND) transcript

There is 1 fate
1 (PLAN):
PLAN --- (NOT-INTRO)
1 ((IS CREATURE !.C)
(IS THUMB !.ONE-THUMB)
(PART !.ONE-THUMB !.C)
(= !.ONE-THUMB !.OTHER-THUMB)
=> (LEFT !.ONE-HAND))
2 (l...l => (NOT (LEFT !.ONE-HAND)))
Make it local? YES
Move to it? YES

Plan View <class CLASS.17>
Documentation: "w> +PLAN CONTRADICTION (LEFT !.ONE-HAND)"
Supergoal:
(NOT (= !.ONE-THUMB !.OTHER-THUMB))
Steps:

1 ((IS CREATURE !.C)
(IS THUMB !.ONE-THUMB)
(PART !.ONE-THUMB !.C)
(= !'.ONE-THUMB !.OTHER-THUMB)
=> (LEFT !.ONE-HAND)) -- (no local plans, no class plans, no answers)

2 (l...] => (NOT (LEFT !.ONE-HAND))) -- (no local plans, no class plans, no answers)
(no successors)

The plan is to show that, assuming that ! .ONE-THUMB and ! .0THER-THUMB (the two
thumbs) are identical, then it follows that ! .ONE-HAND (the first hand) both is and is

not on the left side.

[16] w> 1 . transcript

Goal View <class CLASS.19>
Prove
(LEFT !.ONE-HAND)
Assumptions:
= ! .ONE-THUMB ! .OTHER-THUMB) -- !:=305
(no answers)
Supergoal:
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(NOT (= !.ONE-THUMB !.OTHER-THUMB))
(no local plans)
(no class plans)

First, we are going to prove as a lemma that the first hand is identical to the other
hand (under the assumption that the first thumb is identical to the other thumb).
Proving this lemma explicitly ahead of time is not strictly necessary since it would
naturally occur as a subgoal when required, but it simplifies the exposition and makes

the proof easier to follow.4

[17] w> LEMMA (= |.ONE-HAND |.OTHER-HAND) transcript

There is 1 fate

1 (PLAN):
PLAN --- (TAUT-TRANS)
1 (= !.ONE-HAND !,OTHER-HAND)
2 (LEFT !.ONE-HAND)

Make it local? YES

Move to it? YES

Plan View <class CLASS.19> :
Documentation: "w> +PLAN LEMMA (= !.ONE-HAND !.OTHER-HAND)"
Supergoal:
(LEFT !.ONE-HAND)
Steps:
1 (= !.ONE-HAND !.OTHER-HAND) -- (no local Plans, no class plans, no answers)

2 (LEFT !.ONE-HAND) -- (no local plans, 1 class plan, no answers)
(no successors)

[18] w> 1
Goal View <class CLASS.21>
Prove
(= !.ONE-HAND !.OTHER-HAND)
Assumptions:
= ! . ONE-THUMB !.OTHER-THUMB) -- !:=305
(no answers)
Supergoal:

(LEFT !.ONE-HAND)
(no local plans)
(no class plans)

*besides, it simply occurred to me at this point in the proof that it might be a good idea to have
this lemma around.
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Obviously, in order to prove this proposition, we shall need axiom ONE-HAND-PER-
THUMB; not only is it the only one concerned with unicity, but it is also the only one
that has an equality sign in it. I could choose to illustrate the use of the equality

command and type something like:
equality !.one-hand - one-hand-per-thumb

This would “detach” an equality formula of the form (= !.ONE-HAND (term)) from
axiom ONE-HAND-PER-THUMB and would use it to substitute occurrences of term
! .ONE-HAND with (term). Instead, I would rather illustrate another useful feature of
LOGICALC’s interface, which is the ability to perform approximate unification (near
matches). For those terms that do not unify where they should, explicit subgoals are

inserted to prove them equal.

Thanks to this feature, I will be able to continue invoking the simpler ‘use’ command
and let the system figure out exactly what equality substitutions are required. I will

also explicitly limit the number of allowed mismatches to no more than 1.

What I expect to happen is this: the system will try to “detach” the current goal’s
equality from axiom ONE-HAND-PER-THUMB. However, this cannot succeed with regular
unification because the equality formula occurring in said axiom has one operand
which is a free variable (which would be fine) and the other which is a skolem that
unifies with neither the first nor the other hand. Therefore, we ought to permit
1 mismatch. The rest of the proof will involve proving that both hands are equal to

this new term.

(19] w> USE -MISMATCH® 1 ONE-HAND-PER-THUMB transcript

There are 2 fates
1 (PLAN):

5

-mismatch 1 can be abbreviated -m 1 or just +m.
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PLAN --- (EQUALITY)
1 = | .ONE-HAND !.HAND-OF-THUMB[4](?T.2))
2 (IS THUMB ?T.2)
3 (IS BARD !.OTHER-HAND)
4 (PART ?T.2 !.OTHER-HAND)
Make it local? YES
2 (PLAN):
PLAN --- (EQUALITY)
1 (= !.OTHER-HAND !.HAND-OF-THUMB([4](?T.3))
2 (IS THUMB 7T.3)
3  (PART 7?T.3 !.ONE-HAND)
Make it local? YES
Move to one of them? Type no.: 2

Plan View <class CLASS.21>
Documentation: "w> +PLAN RESOLUTION -MISMATCH 1 ONE-HAND-PER-THUMB"
Supergoal:

(= !.ONE-HAND !.OTHER-HAND)
Steps: .

1 (= !.OTHER-HAND ! HAND-OF-THUMB(?T.3)) -- (no local plans, no class plans, no answers)
2 (IS THUMB ?T.3) -- (no local plans, no class plans, 2 answers)

[-[3 ((IS CREATURE !.C)

(IS THUMB !.ONE-THUMB)
(PART !.ONE-THUMB !.C)
=> (IS HAND !.ONE-HAND))]
4 (PART ?T.3 !.ONE-HAND) -- (no local plans, no class plans, 1 answer)
(no successors) ‘

Obviously, step 4 already has the answer that the first thumb is a part of the first
hand. It is probably a good idea to follow this answer, thereby further instantiating

our plan.

[20] w> 4 transcript

Goal View <class CLASS.28>
Find: (T.3) in:
(PART ?T.3 !.ONE-HAND)

Assumptions:

= ! .ONE-THUMB !.OTHER-THUMB) -- !:=305
Answers:

1 T.3 = | .ONE-THUMB
Supergoal:

(= !.ONE-HAND !.OTHER-HAND)
(no local plans)
(no class plans)
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[21] w> FOLLOW

Goal View <class CLASS.30>
Prove
(= !.OTHER-HAND !.HAND-OF-THUMB[4](!.ONE-THUMB))
Assumptions:
(= !.ONE-THUMB !.OTHER-THUMB) -- !:=305
(no answers) ’
Supergoal:

(= !.ONE-HAND !.OTHER-HAND)
(no local plans)
(no class plans)

Following the answer instantiated ?T.3 with ! .ONE-THUMB. Step 2 became the goal to
prove that ! .ONE-THUMB is a thumb, which was already known to be true. Therefore,
the successor plan’s only remaining unsolved step was step 1. The system moved us

directly to it.

We shall simply repeat the “mismatch” trick to complete the transitive substitution.

[22] w> USE -MISMATCH 1 ONE-HAND-PER-THUMB transcript

There are 2 fates
1 (PLAN):
PLAN --- (EQUALITY)
1 (= !.OTHER-HAND !.HAND-OF-THUMB[4](?T.4))
2 (IS THUMB 7T.4)
3 (IS HAND !.HAND-OF-THUMB[4](!.ONE-THUMB))
4 (PART ?T.4 ! .HAND-OF-THUMB)
Make it local? YES
2 (PLAN):
PLAN --- (SYMMETRY)
1 (IS HAND !.OTHER-HAND)
2 (PART !.ONE-THUMB !.OTHER-HAND)
Make it local? YES
Move to one of them? Type no.: 2

Plan View <class CLASS.30>
Documentation: "w> +PLAN RESOLUTION -MISMATCH 1 ONE-HAND-PER-THUMB"
Supergoal:
(= !.OTHER-HAND !.HAND-OF-THUMB)
Steps:
[-[1 ((IS CREATURE !.C)
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(IS THUMB !.ONE-THUMB)
(PART !.ONE-THUMB !.C)
=> (IS THUMB !.ONE-THUMB))]
2 (IS HAND !.OTHER-HAND) -- (no local plans, no class plans, no answers)
3 (PART !.ONE-THUMB !.OTHER-HAND) -- (no local plans, no class plans, no answers)
(no successors)

Step 2 should be easily handled with a “use -skolem” and, since we assumed that

both thumbs were equal, a quick substitution of thumbs should take case of step 3.

(23] w> 2 ‘ transcript

Goal View <class CLASS.24> I
Prove : ) ¥
(IS HAND !.OTHER-HAND)
Assumptions:
= ! . ONE-THUMB !.OTHER-THUMB) -- !:=305
(no answers)
Supergoal:
(= !.OTHER-HAND !.HAND-OF-THUMB)
(no local plans)
(no class plans)

[24] w> USE -SKOLEM

There is 1 fate
1 (CONCLUSION): Yes
Move to it? YES

Goal View <class CLASS.33>
Prove
(PART !.ONE~TEUMB !.OTHER-HAND)
Assumptions:
= ! .ONE-THUMB !.OTHER-THUMB) -- !:=305
(no answers)
Supergoal:

= ! . OTHER-HAND !.HAND-OF-THUMB)
(no local plans)
(no class plans)

(28] w> EQUALITY 1 - -LOCAL

There is 1 fate
1 (CONCLUSION): Yes
Move to it? YES
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Goal View <class CLASS.19>
Prove
(LEFT !.ONE-HAND)
Assumptions:
(= !.ONE-THUMB !.OTHER-THUMB) -- !:=305
(no answers)
Supergoal:
(LEFT !.ONE-HAND)
(no local plans)
(1 class plan)

Command 25 uses the “~local” designator which indicates that only local assump-
tions should be considered as premises for the requested refinement. Here, the only

local assumption is that both thumbs are identical.

We are now done proving as a lemma that, under the assumption that both thumbs
are equal, then both hands are equal too. We should proceed with the first half of

the contradiction; and we shall do so by case analysis:

1. Axiom LEFT-OR-RIGHT expresses the fact that a hand is either on the left side
or on the right side (but not both). This disjunction will constitute the starting

point of our analysis. Hence the following two cases.

2. Either the first hand is on the left side, in which case the current goal (i.e. that
! .ONE-HAND is a left hand) is trivially true.

3. Or it is on the right side; from which axiom THUMBS allows us to deduce that
the other hand is on the left side. However, since both thumbs are equal by
assumption, then both hands must be equal too, and it follows by equality
substitution, from the conclusion that the other hand is on the left side, that

the first hand is also on the left side.

(26] w> CASE (OR (LEFT !.ONE-HAND) (RIGHT !.ONE-HAND)) transcript

There is 1 fate
1 (PLAN):
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PLAN --- (CASE)
1 (OR (LEFT !.ONE-HAND) (RIGHT ! ONE—HAND))
2 ((IS CREATURE !.C)
(IS THUMB !.ONE-THUMB)
(PART !.ONE-THUMB !.C)
(= !.ONE-THUMB !.OTHER-THUMB)
(RIGHT !.ONE-HAND)
(NOT (LEFT !.ONE-HAND))
=> (LEFT !.ONE-HAND))
Make it local? YES
Move to it? YES

Plan View <class CLASS.19>
Documentation: "w> +PLAN CASE (OR (LEFT !.ONE-HAND) (RIGHT !.ONE-HAND))"
Supergoal:
(LEFT !.ONE-HAND)
Steps:
1 (OR (LEFT !.ONE-HAND) (RIGHT !.ONE-HAND)) -- (no local plans, no class plans, no answers)
|=-[2 ((IS CREATURE 1.0)
(IS THUMB !.ONE-THUMB)
(PART !.ONE-THUMB !.C)
(= !.ONE-THUMB ! .OTHER-THUMB)
(LEFT !.ONE-HAND)
=> (LEFT !.ONE-HAND))]
3 ((Is CREATURE !.C)
(IS THUMB !.ONE-THUMB)
(PART !.ONE-THUMB !.C)
(= !.ONE-THUMB !.OTHER-THUMB)
(RIGHT !.ONE-HAND)
(NOT (LEFT ! .ONE-HAND))
=> (LEFT !.ONE-HAND)) -- (no local plans, no class plans, no answers)
(no successors)

I expect to be able to easily dispatch step 1 with axiom LEFT-O0R-RIGHT, and step 2

is already solved because it is the trivial case as explained earlier.

(271 w> 1 transcript
Goal View <class CLASS.37>

Prove

(OR (LEFT !.ONE-HAND) (RIGHT !.ONE-HAND))
Assumptions:

= ! .ONE-THUMB !.OTHER-THUMB) -- !:=305
(no answers)
Supergoal:

(LEFT !.ONE-HAND)
(no local plans)




1.3. A SESSION WITH LOGICALC 31

(no class plans)
[28] w> USE LEFT-OR-RIGHT

There is 1 fate
1 (CONCLUSION): Yes
Move to it? YES

Goal View <class CLASS.39>

Prove
(LEFT !.ONE-HAND)

Assumptions:
(RIGHT !.ONE-HAND) -- !:RIGHT331
(NOT (LEFT !.ONE-HAND)) -- !:NOT332

(no answers)

Supergoal:

(LEFT !.ONE-HAND)
(no local plans)
(no class plans)

Only the non-trivial case was left, and the system moved us directly to it. As an-
nounced earlier, we shall first use axiom THUMBS to refine this goal into a new one to
show that the other hand is on the right side. Then using our lemma that the two
hands are equal, we should be able to perform an equality substitution and match the
first local assumption !:RIGHT331. However, we can take advantage of the equality

of the two hands right now, by allowing 1 mismatch in our projected refinement.

[29] w> USE -MISMATCH 1 THUMBS , transcript

There is 1 fate
1 (CONCLUSION): Yes
Move to it? YES

This was one case where the system magically solved everything for us. Of course,
it is not magical at all: there is simply enough information for the system to realize

that all necessary subgoals are either trivial or have already been solved previously.

We must proceed with the alternative branch of the proof by contradiction which we

initiated on page 23. We could follow the same procedure as before, but we shall see
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that won’t be necessary because one of the side effects of the case analysis we carried

out earlier was to derive the conclusion that the other hand is on the right side.

All we need to do is to first convert the goal of proving that the first hand is not on the
left side into the goal of showing that it is on the right side—this we can accomplish
using axiom LEFT-O0R-RIGHT—followed by an equality substitution replacing the first
hand by the other hand, finally resulting in a goal (the other hand is on the right side)

“which, as anticipated, matches a conclusion derived during the earlier case analysis.

Goal View <class CLASS.20> transcript
Prove
(NOT (LEFT !.ONE-HAND))
Assumptions:
= | .ONE-THUMB !.OTHER-THUMB) -- !:=305
(no answers)
Supergoal:

(NOT (= !.ONE-THUMB !.OTHER-THUMB))
(no local plans)
(no class plans)

(30] w> USE LEFT-OR-RIGHT

There is 1 fate
1 (PLAN):
PLAN --- (MODUS-PONENS)
1 (RIGHT !.ONE-HAND)
Make it local? YES
Move to it? YES

Goal View <class CLASS.46>
Prove
(RIGHT !.ONE-HAND)
Assumptions:
(= !.ONE-THUMB ! .OTHER-THUMB) -- !:=305
(no answers) )
Supergoal:

(NOT (LEFT !.ONE-HAND))
(no local plans)
(no class plans)

(31] w> USE -MISMATCH 1 THUMBS

There is 1 fate
1 (CONCLUSION):'Yés
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Move to it? YES

Answer to top Goal
1 (goal): (IF (AND (IS CREATURE !.C)
(IS THUMB !.ONE-THUMB)
(PART !.ONE-THUMB !.C))
(AND (IS THUMB ?0THER-THUMB)
(PART ?70THER-THUMB !.C)
(NOT (= !.ONE-THUMB ?0THER-THUMB))))
OTHER-THUMB = !, OTHER-THUMB
(no fates)

The proof is now complete. We can request LOGICALC to show us a view of the top

most inference.

[32] w> PROOF : transcript

Proof
Conclusion:
(IF (AND (IS CREATURE ?Y) (IS THUMB ?X) (PART ?X ?Y))
(AND (IS THUMB !.OTHER-THUMB([3](!.ONE-HAND[5](?Y ?X) ?Y))
(PART !.OTHER-THUMB[3](!.ONE-HAND[5](?Y ?X) ?Y) ?Y)
(NOT (= !.ONE-THUMB !.OTHER-THUMB))))
(no local assumptions)
Validation:
(IF-INTRO (1 2) ())
follows from:
1 (AND (IS CREATURE !.C) (IS THUMB !.ONE-THUMB) (PART !.ONE-THUMB !.C))
2 (AND (IS THUMB !.OTHER-THUMB[3](!.ONE-EAND[5](!.C !.ONE-THUMB) !.C))
(PART !.OTHER-THUMB[3](!.ONE-HAND[5](!.C !.ONE-THUMB) !.C) !.C)
(NOT (= !.ONE-THUMB
! .OTHER-THUMB[3] (! .ONE-HAND[8](!.C ! .ONE-THUMB) !.C))))

The surprising feature of this proof’s conclusion is that, where we were expecting to
see the creature !.C and its thumb !.ONE-THUMB, we find instead, and respectively,
the variables ?Y and ?X. This is the result of LOGICALC’s automatic generalization
facility. Since this last conclusion discharges all assumptions about the creature and

its thumb, LOGICALC was able to generalize over them.

Line no. 1 is the assumption being discharged, while line no. 2 is the conclusion which

was derived under this assumption. We could manually explore the proof tree, but
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this would not be very enlightening. Instead, I shall illustrate another feature of

LOGICALC: the proof editor.

[33] w> EDIT transcript
Proof View
12 (LEFT !.OTHER-HAND) [THUMBS 1 2 !:RIGHT331]
13 (LEFT !.ONE-HAND) [11 12]
14 (IF (AND (RIGHT !.ONE-HAND) (NOT (LEFT ?X))) (LEFT !.ONE-HAND)) [!:RIGHT331 !:NOT332 13]
15 (LEFT !.ONE-HAND) [6 7 14]
16 (RIGHT !.OTHER-HAND) [THUMBS 1 2 15]
17 (RIGHT !.ONE-HAND) [11 16]
18 (NOT (LEFT !.ONE-HAND)) [LEFT-OR-RIGHT 17]
19 (NOT (= !.ONE-THUMB !.OTHER-THUMB)) [15 18]

=>20 (IF (AND (IS CREATURE ?Y) (IS THUMB ?X) (PART ?X 7Y)) (AND (IS THUM... [':PART280 5 19] "

The view is now that of a very abbreviated Natural Deduction-like presentation of
the proof. Each line is numbered and represents a conclusion. Only a small window
of lines (12 through 20) is displayed by default. Various editing operations could
be performed such as hiding lines, in-lining certain conclusions, inserting comments,
etc... but the default presentation is usually satisfactory. This presentation maybe
requested with a “DUMP” command. I produced the hand-out by asking for a IATEX
dump to file “proof.tex.” With the aid of the FLOAT command, I also slightly
improved the legibility of the proof summary by moving a couple of lines closer to

the point where they are used.

[34] w> / FLOAT 127 6 / UPDATE transcript
]

[35] w> DUMP -DOCUMENT -TEX “proof.tex”

The resulting code was included in this document and produces the following format-
ted proof. First comes a reference list of all abbreviations mentioned in the proof.
Second is an alphabetically ordered list of all axioms used in the proof. Finally we
have the proof proper. Each line is numbered as is traditional for Natural Deduction
proofs. Assumptions are not lines in the proof and therefore are not numbered; like

axioms they are referred to by name. Each line’s indentation reflects the level of
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assumptions it depends on. Whenever new assumptions must be introduced a line of

the form:
Assume H, =a; ay...a; + H,,

defines a new assumption set named H, which supplements the assumptions made by
H,, with the additional a, through a;. Each a; is then defined by producing its name
followed by its formula. When the same assumption set must be mentioned again at
a subsequent point in the proof, the word “Assume” is replaced with “Assuming,”

and the definitions of the a;’s are omitted.

The justification for each line is not always expressed in terms of the specific infer-
ence rule responsible for the corresponding conclusion; instead, it often says “from
(these premises) conclude,” where (these premises) are names of axioms or assump-
tions or line numbers denoting the corresponding conclusions. The reason for this
deliberate vagueness is twofold: firstly, omitting such details makes the proof eas-
ier to read; specifying too much would detract from the frequent obviousness of the
inference steps, and there is already typically so much to read that brevity must
be a major concern. Secondly, not all conclusions are displayed as lines. Many in-
ferences are too obvious to warrant a numbered line in the proof; instead they are
often in-lined in (these premises), i.e. where they would otherwise be mentioned by
line number, the names or line numbers of their respective justifying premises are
inserted instead. This may sound somewhat confusing but it really tends to produce

justifications which are intuitively easy to understand.

ABBREVIATIONS

! . ONE-THUMB (SK ONE-THUMB 7)
1.C (SK C 6)
! .OTEER-HAND [2] (?ONE-HAND 7C)
= (SK OTHER-HAND 2 ?0NE-HAND ?7C) -- THUMBS
! .OTHER-THUMB [3] (7ONE-HAND 7C)
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= (SK OTHER-THUMB 3 7ONE-HAND ?C)
! .ONE-HAND[S] (?C ?T)

= (SK ONE-HAND 5 7C ?T)
.ONE-HAND[B](!.C !.ONE-THUMB)

= (SK ONE-HAND 5§ !.C ! ONE-THUMB)
.OTHER-THUMB [3] (! .ONE-HAND !.C)

= (SK OTHER-THUMB 3 ! ,ONE-HAND !.C)
.OTHER-HAND[2] (! .ONE~HAND !.C)

= (SK OTHER-HAND 2 !.ONE-HAND !.C)
.HAND-OF-THUMB [4] (?T)

= (SK HAND-OF-THUMB 4 ?7T)
.HAND-OF-THUMB [4] (! . ONE-THUMB)

= (SK HAND-QOF-THUMB 4 !.ONE-THUMB)
-OTHER-THUMB[3] (! .ORE-HAND[5] (?Y ?X) ?Y)

= (SK OTHER-THUMB 3 !.ONE-EARD(?X ?Y) ?Y)

AXIOMS

CREATURE-THUMB

1. INTRODUCTION

THUMBS
CREATURE-THUMB
CREATURE-THU&B
THUMBS

THUMBS
ONE-HAND-PER-THUMB
ONE-HAND-PER-THUMB

THUMBS

(IF (AND (IS CREATURE ?C) (IS THUMB ?T) (PART ?T ?C))

(AND (IS HAND !.ONE-HAND[5](?C ?T))
(PART ?T !.ONE-HAND[5](?C ?T))
(PART !.ONE-HAND[5](?C ?T) ?7¢C)))

LEFT-OR-RIGHT
(IF (IS HAND ?7H)

(AND (OR (LEFT ?H) (RIGHT ?H)) (NOT (AND (LEFT ?H) (RIGHT ?7H)))))

ONE-HAND-PER-THUMB
(IF (IS THUMB 7?T)
(AND (IS HAND !.HAND-OF-THUMB([4] (?T))
(PART ?T !.HAND-OF-THUMB([4] (?T))
(IF (AND (IS HAND ?H) (PART ?T 7H))
(= ! .HAND-OF-THUMB[4] (?T) ?7H))))
THUMBS (IF (AND (IS CREATURE ?C)
(IS HAND ?0NE-HAND)
(IS THUMB ?0ONE-THUMB)
(PART ?ONE-THUMB ?ONE-HAND)
(PART ?0ONE-HAND 7C))
(IS HAND !.OTHER-HAND[2] (?ONE-HAND ?C))
(Is THUMB !.OTHER-THUMB[3] (7ONE-HAND 7C))
(PART !.OTHER-THUMB[3] (?0ONE-HAND 7C)
! .OTHER-HAND [2] (?ONE-HAND ?7C))
(PART !.OTHER-HAND([2] (?ONE-HAND 7C) ?C)

(AND

(IF (LEFT ?ONE-HAND) (RIGHT !.0THER—HAND[2](?ONE-HAND 7C)))
(IF (RIGHT ?ONE-HAND) (LEFT ! .OTHER~-HAND [2] (?ONE-HAND 7C)))))




1.3. A SESSION WITH LOGICALC

TRANSITIVITY
(IF (AND (PART ?X ?Y) (PART ?Y ?Z)) (PART ?X ?72Z))
PROOF
Assume H1 = !:PART280
1:IS278
(IS CREATURE !.C)
1:IS279
(IS THUMB !.ONE-THUMB)
' :PART280

(PART !.ONE-THUMB !.C)

1 From CREATURE-THUMB !:PART280 Obviously:
(PART !.ONE-THUMB !.ONE-HAND[5](!.C ! .ONE-THUMB))
2 From CREATURE-THUMB !:PART280 Obviously:
(PART !.ONE-HAND !.C)
3 From THUMBS 1 2 Obviously:
(PART !.OTHER-THUMB([3] (!.ONE-HAND !.C) !'.OTHER-HAND[2] ('!.ONE-HAND 1.C))
4 From THUMBS 1 2 Obviously:
(PART !.OTHER-HAND !.C)
5 From TRANSITIVITY and 3 4 Conclude:
(PART !.OTHER-THUMB !.C) -
Assume H2 = !:=305 + H1
1:=305 (= !.ONE~THUMB !.OTHER-THUMB)
6 By equality substitution of !:=305 in 3 Conclude:
(PART !.ONE-THUMB ! .OTHER-HAND)
7 From ONE-HAND-PER-THUMB and 6 Conclude:
= ! .HAND-OF-THUMB [4] (! .ONE-THUMB) !.OTHER-HAND)
8 From ONE-HAND-PER-THUMB and 1 Conclude:
Hi = !':PART280 I
(= '.HAND-OF-THUMB ! .ONE-HAND)
Assuming H2 = !:=305 + H1
9 By equality substitution of 7 in 8 Conclude:
(= ! .ONE-HAND -! .OTHER-HAND)
10 From LEFT-OR-RIGHT Obviously:

H1 = !:PART280 I

37
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(OR (LEFT !.ONE-HAND) (RIGHT !.ONE-HAND))

Assuming H2 = !:=305 + H1

11 Discharging Obviously:

(IF (LEFT ?X) (LEFT ?X))

Assume H4¢ = !:RIGHT331 !:NOT332 + H2
! :RIGHT331
(RIGHT !.ONE-HAND)
1:NOT332
(NOT (LEFT !.ONE-HAND))
12 From THUMBS 1 2 and !:RIGHT331 Conclude:
(LEFT !.OTHER-HAND)

13 By equality substitution of 9 in 12 Conclude:

(LEFT !.ONE~HAND)

14 From 13 Discharging !:RIGHT331 !:NOT332 Conclude:
H2 = 1:=305 H1 I

(IF (AND (RIGHT !.ONE-HAND) (NOT (LEFT ?X))) (LEFT ! .ONE-HAND))

15

By case analysis 10 11 14 Conclude:
(LEFT !.ONE-HAND)

16

From THUMBS 1 2 and 15 Conclude:
(RIGHT !.OTHER-HAND)

17

By equality substitution of 9 in 16 Conclude:
(RIGHT !.ONE-HAND)

18

From LEFT-OR-RIGHT and 17 Conclude:
(NOT (LEFT !.ONE-HAND))

19

By contradiction 15 18 Conclude:
H1 = !:PART280 F
(NOT (= !.ONE-THUMB ! .OTHER-THUMB) )

20 From 5 19 Discharging !:PART280 Conclude:
HO +
(IF (AND (IS CREATURE ?Y) (IS THUMB ?X) (PART ?X ?7Y))
(AND (IS THUMB !.OTHER-THUMB([3](!.ONE-HAND[5] (7Y ?X) 7Y))$
(PART !.OTHER-THUMB([3] (!.ONE-HAND([5](?Y ?X) ?Y) ?Y)

(NOT (= !.ONE-THUMB !.OTHER-THUMB))))

®Proofs of uninteresting facts are suppressed from the summary. A formula predicating the type
of an object is considered uninteresting. For more information, see Chapter 9.
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1.4 Organization of the Thesis

Chapter 2 provides a synthetic overview of the system, covering all major aspects,
features, and mechanisms, but mostly in a superficial manner. These subjects will
be fully developed in subsequent chapters. Chapter 3 is a formal exposition of the
logic. Chapter 4 describes the graph editor and general principles of the command
shell. Chapter 5 is a fairly detailed presentation of the framework’s implementation,
in terms of data-structures and the bookkeeping operations managing the graph.
Chapter 6 discusses plan generators and plan generation. Chapter 7 explains the
“detaching” mechanism and provides high-level descriptions of the algorithms in a
functional programming style with pattern matching. Chapter 8 describes the mech-
anism for automatic generalization of conclusions, and investigates its relation to
Explanation-Based Generalization. Chapter 9 presents the proof editor as well as its
formatting conventions and default heuristics, and explains how to prepare a proof
for publication, in particular for inclusion in a TEX or IATEX document. In practice,
little editing is necessary as the default heuristics give surprisingly good results. Chap-
ter 10 presents an axiomatization of Kuipers-style qualitative physics which served
as the major source of realistic problems for the testing and evaluation of LOGICALC.
Finally, Chapter 11 Concludes this dissertation with a recapitulation of the system
and its constributions, a discussion of related work, an implementation of tactics and
tacticals in our framework; and some suggestions for further research. Appendix A

* briefly discusses the language for writing axiomatizations, while Appendix B describes
Find Mode.






Chapter 2

Overview

LOGICALC follows the LCF paradigm [Mil79a, Pau87]: goals are analySed top-down,
by refining them into plans and subgoals, until all leaves have been identified with
axioms or assumptions. Proofs are synthesized bottom-up by executing the plans’

validations.

The process of analysis is carried out interactively through a graph editor. The user
navigates and extends a graph of goals, plans, and proofs, until a satisfactory answer

has been synthesized for the top-goal (i.e. the theorem to bebproven).

In this chapter, I will first discuss skolemization and axiomatic definitions. Secondly,
I will infroduce the conceptual entities of the framework, such as goals and plans.
Thirdly, I will outline the principles of operation and give the reader a sense of how
the various mechanisms, described in the remainder of this thesis, fit together. Finally,
I will conclude with further details on skolemization and unification, as well as with
a brief presentation of the ATMS database, and the mechanisms for indexation and

retrieval.

Implementation Language and Tools. LOGICALC is written in NISP [McD83,

41
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McD88] and benefits from tools provided by the DUCK system [McD85]. NISP essen-
tially supplements LISP with type-checking, a powerful and extensible type-system
with polymorphism,! a comprehensive library, and is portable between Common Lisp
and Scheme (T). The DUCK system is writen in NISP and provides tools for manip-
ulating formulae and managing databases of predicate calculus assertions with an

ATMS; LOGICALC takes advantage of these tools and often extends them.

2.1 Introduction

DUCK provides a set of tools to manage and interact with multiple predicate calculus
databases driven and arbitrated by an active reason maintenance system. In this
section, I briefly recapitulate these notions and mechanisms inherited from DUCK
which are relevant to LOGICALC; further details can be found in Appendix A and

[McD85]. My secondary purpose is to anticipate and motivate subsequent sections.

Stating An Axiom. New axioms are introduced by means of the AXIOM special

form whose syntax is (AXIOM name formula).

Formulae are written in a LISPish notation. For instance, py Vp2 V... Vp,and p D ¢

are respectively written (or p; p; ... p,) and (if D q).

Quantified propositions are expressed naturally in a similar fashion; e.g. Vzy P is

written (forall (¢ y) P)—similarly for 3 (exists).

When a new axiom is introduced, DUCK verifies that its formula is well-formed and
well-typed, then stores it in the database in a form appropriate for efficient subsequent

retrieval. I will now elaborate on the details of this procedure.

'Parametric, ad-hoc, and inclusion polymorphism are all present in one form or another, although,
not necessarily in their full generality.
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Syntax and Type Checking. When DUCK is handed a formula, it makes sure
that it is well-formed and well-typed.? For example, the AXIOM special form enforces
this condition on its formula argument. The procedufe implementing this capability
is driven by type declarations. There are two categories of type declarations: (1)

declarations of constants, and (2) declarations of (bound) variables.

The types of constant functions and predicates are declared globally with duclare,
deffbun, and defpred [Appendix A]. Thus if has type (prd [prop propl), i.e.
it is a predicate of two propositional arguments. Therefore, DUCK will enforce the
restriction that an implication can only appear where a proposition is expected, and

that it must have exactly two arguments, both propositions.

A variable—introduced by a quantifier—may also be associated with a type declara-

tions, e.g:
(forall (n - integer) (=n (+ n 0)))

In the quantifier’s binding list, variables are interleaved with types. In order to
distinguish variables from types, types are preceded by a dash—all variables between
this type and the previous one (or the beginning of the binding list) are declared to

be of this type. In the formula above, n is declared to be an integer.

Type Definitions. DUCK knows about a number of predefined types. However, it
is often convenient, when axiomatizing a domain, to introduce new types. The form
(defducktype new old) defines new to be a subtype of old. Most commonly, this
is used with old = obj, where obj is at the top of the type lattice (everything is an
obj), e.g: )

2Since we are manipulating actual LIsP expressions, low-level issues of syntax have already been
taken care of by the LISP reader, and, at this point, well-typing subsumes well-formedness.
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(defducktype quantity obj)

defines quantity to be a new type with no interesting properties.

Querying The Database. The point of having a database is so that we can ask
questions and get answers. Traditionally, facts are stored in the database, e.g. (p a),
and a query often contains free variables, e.g. (p 7x), which stands for the question
“does p hold for certain values of ?x, and, if yes, which ones?”; answers take the form

of substitutions, e.g. {?x « a}.

DUCK also supports backward-chaining rules of the form (<- p (and ¢1 ... q,))
much like PROLOG’s p:=¢;, ... ,q¢,. LOGICALC takes advantage of this facility to

implement built-in theories.

In order to allow querying the database in this manner, it is necessary to skolemize
queries and formulae in the database, and to use unification during the retrieval

process. Thus, (p ?x) is the skolemized form of the query (exists (x) (p x)).

When a new axiom is introduced with the AXTOM special form, after it has been syntax-

checked, it is automatically skolemized prior to being recorded in the database.

Goals in a Theorem-Prover. Ina theorem-proving system, queries become goals
“and the technique for deriving answers using backward-chaining rules is generalized

into the construction of a proof tree by means of inference rules.

Here too, skolemization and unification can be enlisted to considerable advantage; (1)

to search the database for relevant axioms (i.e. containing occurrences of the goal);

(2) to manipulate goals, and effect refinements.
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Sequents. The traditional technique for proving a proposition of the form p D qis
to assume p and prove q. In order to formalize this technique, it is convenient to use
a notation that makes explicit the set of assumptions under which we are currently

operating.

For example, to indicate that r follows from the set of assumptions {a1,...,a,}, we
write:

Alyeeoylp =T

and we call such an object a sequent. From A,p = g—where A,p = AU {p}—the
DEDUCTION THEOREM [And86, p59] permits us to conclude A = p D q.

In LOGICALC, not only are sequents used in the representations of conclusions, but
in the representations of goals as well. In the context of a goal, the sequent A = p
means that we are trying to derive a proof of an instance of p (which may have free

variables) from the set of assumptions A.

Assumption Sets and Datapools. DUCK provides a particularly suitable concept
to capture the notion of a set of assumptions: datapools [McD79]. The database is
managed by an Assumption-Based Truth Maintenance System (aTMs)? whose task
is to maintain a view of the database according to the current datapool: all formulae
which are assumptions of the current datapool are labelled IN, which means that they
are visible and known to be true in this context. All formulae derived from premises
which are IN are similarly labelled IN as well; and so on by transitive closure. All
other formulae are labelled OUT and are not visible (either they are false, or merely
not known to be true). Thus, by changing the current datapool (such as when we

move from one goal to another) we get a different view of the database.

The more primitive notion is that of a bead. We can mark a formula with one or

more beads. When a bead is selected, all those formulae which have been marked

3See e.g. [Doy79,McA78,McA80,dK84,dK87,dK88,McD79,McD85,McD89].
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with it are labelled IN. A datapool is a set of beads; selecting the current datapool
simultaneously selects every one of its beads. Datapools are more convenient because
they make it easy to capture the notion of hierarchical sets of assumptions: let DP
be a datapool whose set of beads is {by,...,b,}, and let b,., be another bead; then

DP' defined by {b1,...,bs,bns1} inherits all the formulae in DP plgs those specified
by bn+1~

In a system of Natural Deduction where proofs are constructed by incremental refine-
ments, hierarchical sets of assumptions arise naturally. Therefore datapools turn out

to be particularly well-suited to our purpose.

2.2 Skolemization

Skolemization and unification are fundamental operations in LOGICALC. Much of
the benefits afforded by the system are derived directly or indirectly from their use.
In this section, I provide a brief, non-technical, introduction to skolemization, and

discuss some extensions to the classical unification algorithm.

2.2.1 Introduction

In a practical sense, skolemization can be regarded as an operation which transforms
a formula by removing the quantifiers occurring within and replacing quantified vari-
ables with free variables or skolem terms in a manner that preserves the meaning of
the original formula; e.g. the assertion that (forall (x) (p x)) becomes (p ?x),

where ?x represents the free variable x.

In what sense is the meaning preserved? From the original assertion and for any term

t we were licensed to infer (p t) since the assertion stated that p held for all x’s.
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Similarly, for any assertion which contains free variables, we are allowed to infer an

“instance of it by plugging in other terms for these variables.

For existentially quantified variables the transformation is somewhat more involved.
First, consider the statement (exists (x) (q x)). The interpretation is that there
exists some object which satisfies q. The object itself is unspecified, but it is typically
convenient to name it arbitrarily; e.g. we would say: “let a be such an x,” where a
is a new name we just made up—the name has to be new so that it doesn’t conflict
with another object named a. Skolemization will also make up a new name, usually

notated !.x, and produces the formula (q ! x)

!'.x is called a skolem term, and is represented internally by a LISP expression of the
form (sk x n), where n is an integer which is different for every new skolem term.
You can think of (sk x n) as a composite name for the new constant x,. Since n
is increased for every new skolem term, these names can never conflict with existing

constants.

When a formula has both universally and existentially quantified variables, skolem-

ization becomes slightly more complex. Consider for example the assertion:
(forall (x) (exists (y) (< x y)))

Removing the first quantifier, we obtain (exists (y) (< ?x y)). However, we can-
not simply remove the second quantifier and replace y with the new constant ! .y
because the assertion (< ?x !.y) would imply that any ?x is less than this ! .y-
Clearly, this is not what was originally intended. Instead, we should construe y—
that is, the y whose existence is asserted by (exists (y) (< ?x y))—as a function
of ?x: given an 7x, it is possible to find a y whose value depends on the particular

value of 7x and such that (< ?x y) is true for those values.

Thus, from the above assertion, skolemization produces the formula (< ?x ! .y(?x)),

where !.y(?7x) is the printed representation for a skolem term whose function is y
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and whose argument is ?x. Internally, this term is represented by the expression (sk

y m 7x).

2.2.2 Predicate Calculus Databases

Skolemization is a technique particularly well suited to the tasks of maintaining and
querying databases of propositional assertions. Every formula is skolemized prior to
being recorded in the database; e.g. (forall (x) (p x)) will be recorded as (p 7x).
Subséqﬁently, we can inquire whether (p a) is true by attempting to match it against

each pattern in the database.

Tentative matching of this sort is carried out by a procedure called “unification”
[Rob65]. In the case of (p ?x) against (p a), not only will unifiation succeed, but
it will also return the information that the term a must be plugged into the free
variable 7x; the latter piece of information is usually notated {?x «— a} and is called

a “substitution.”

Querying a database does not necessarily require successively attempting unification
with every element stored therein; such an approach would be prohibitively expensive
in practice. Instead, some sort of indexing scheme is usually maintained to facilitate
and speed up access to relevant assertions. A widely used technique is to file each
assertion under the heading of its main symbol. Thus, (p ?x) would be indexed
under p (see section 2.7.1 for a discussion of indexing). Answering the query (p a)

simply requires unifying with the patterns indexed under p-

Note that, if we did not skolemize, the technique presented above would place all
formulae of the form (forall (vars...) formula) under the heading forall which
would be useless. Furthermore, we would not be able to use unification to retrieve

information in as free and uniform a fashion. Consider the assertion:
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(forall (x) (exists (y) (if (p x) (q y))))

It is equivalent to (forall (x) (if (p x) (exists (y) (q y)))), yet such a fact
is difficult to recognize automatically simply because of the syntactical difference;
unification, being essentially a syntactical matching operation, utterly fails to identify

the two expressions.

Also, given the query (if (p a) (q ?z)), no useful answer can be derived even
though the above assertion guarantees the existence of a 7z which satisfies the query.
However, here again, the syntactical differences get in the way of successful unification.
Furthermore, even if unification were to be extended to correctly handle the syntax
problem, it remains that the unskolemized assertion does not give a name to the
object whose existence it guarantees. Consequently, we cannot plug that name into
the free variable 7z to obtain the desired answer. In contrast, the skolemized version

of the assertion is:
(if (p 7x) (q !'.y(7x)))

and an answer can be constructed by unification, thereby producing the substitution

{7z« t.y(@}.

As we can see, the great advantages of skolemization are that it factors out syntactical
variations in quantification, allows better indexing techiques, makes it possible to
query a database using unification, and gives names to objects whose existence is

asserted.
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2.2.3 Skolemization of Axioms

I will now illustrate skolemization on an example taken from an earlier version of my

axiomatization of Qualitative Physics.4

(AXIOM NEXT-OF-AT
(FORALL ((BEFORE ??T1 FOREVER) - timepoint)
(IF (REACHABLE (AT T1))
(EXISTS ((BEFORE T1 ?7T2) - timepoint)
(= (NEXT (AT T1)) (BETWEEN T1 T2))))))

In my formalization of Qualitative Physics, there is the notion of a situation. A
situation is either a point situation, and corresponds to a specific time-poiht, or it
is an interval situation, and corresponds to the interval between two time-points.
The two kinds of situations alternate. In particular, the axiom above expresses the
condition that a point situation must necessarily be followed by an interval situation.

The only way to stop is when the far end of an interval situation is at infinity.

This a.xioxﬁ illustrates several features of the language. Firstly, it gives the flavor
of its LISPish syntax. Secondly, it shows that type declarations are allowed in the
binding lists of quantifiers—a binding list is the expression that immediately follows
a quantifier, and is usually a list of the variables which are being quantified over; a type
declaration is preceded by a dash and applies to the objects before it (e.g. (forall
(x - integer) (p x))). Thirdly, a binding list may also contain constraints, such
as (before ??t1 forever); the variables being quantified over are identified by the

?? prefix.

When this axiom is presented to the system, it will be skolemized into the following

expression prior to being stored in the database:

“The version presented in Chapter 10 is more recent, and no longer includes axiom next-of-at
which is used as an illustration here.
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(IF (AND (IS timepoint ?7T1)
(BEFORE ?T1 FOREVER)
(REACHABLE (AT ?7T1)))
(AND (IS timepoint !.T2(7?T1))
(BEFORE ?T1 !.T2(?T1))
(= (NEXT (AT ?T1)) (BETWEEN ?T1 !.T2(?T1)))))

The universally quantified variable t1 was replaced with the free variable ?t1, and
the existentially quantified variable t2 with a skolem term of the form e.g. (sk t2

17 7t1)° that prints as !.t2(7t1).

Type declarations resulted in the addition of type constraints to the formula. Each

type constraint is represented by an IS-expression.

Similarly, constraints occurring in binding-lists are added to the formula: for uni-
versal quantification, a constraint contributes an additional condition, whereas, for
existential quantification, it contributes an additional conclusion. This is why the
first constraint was added to the implication’s antecedent, while the second one was

conjoined with the consequent.

Negation switches the roles of V and 3. So does implicit negation, such as in the

antecedent of an implication (because p D ¢ = —pV q). Thus, the proposition:
(IF (FORALL (X) (P X)) (FORALL (Y) (P Y))) (1)
is skolemized as follows:

(IF (P '.X) (P ?7Y))

3The number 17 has no special significance; the number which is selected is the value of the
global counter sknum#, which is then incremented. Thus a different number is chosen for each new
skolem term.
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2.2.4 Skolemization of Goals

Queries to the database and goals in a theorem-prover are skolemized in a dual man-
ner, i.e. as if within a negation. Thus, as a goal, the proposition (7) is skolemized as

follows:
(IF (P ?X) (P !.Y))

It is clear that, if we want to show that “there exists” some z such that the formula
is satisfied, all we need to do is exhibit such an z; i.e. find a substitution for the free

variable z such that the resulting instance holds.

Conversely, if we want to show that “for all” ys the formula is valid, then all we need
to do is make up a new name and prove that the formula holds of it—the intuition
being that, if the proof obtains for this arbitrary constant, about which we made
absolutely no assumptions, then it would work just as well for any term substituted

throughout in its place. In other words, the conclusion would hold for all terms.

This technique captures the following mathematical practice: to prove that Vo:7r P(z),

let a stand for an object of type 7, and show that P(a).
Skolemization automatically provides such new names in the form of skolem terms.

The logical intuition behind the duality of skolemization for axioms and goals can

also be captured by either of the following remarks:

* Proving that p follows from the set of assumptions A can be done by adjoining

—p to A and showing that the resulting set AU {-p} is inconsistent.

e The object is to show that the implication A O pis valid, where A is interpreted
as the conjunction of its elements. By virtue of being on opposite sides of an
implication, A and p have opposite polarities and must be skolemized with

reversed conventions.
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2.3 Fundamental Concepts

In this section, I provide brief introductions to those conceptual entities which form

the basis of LOGICALC’s framework.

2.3.1 Goals and Answers

A goal consists primarily of a formula p and a set of assumptions A. Conventionally,
this is represented by the notation A = p. The point is to find a substitution 6 of
the free variables of p such that 8p follows logically from A.

An answer to the goal A = p is such a 0, together with a proof tree demonstrating
how 0p can be inferred from A. A goal may have several answers if different instances
of p can be derived from A. Answers are normally arrived at either by unifying the
goal’s formula with an axiom or an assumption, or by proposving, then solving a plan.

Several alternative plans may be attached to the same goal.

2.3.2 Assumption Sets

At the top-level, the assumption set is the global database, which contains axioms for
various domain theories. In the course of developing a proof, it is possible to obtain
subgoals whose assumption sets contain additional hypotheses. Consider a goal of the
form A = p D ¢. The natural technique for proving such a goal is to assume p and
try to prove ¢. Plan generator DEDUCTION-THEOREM will do this for you: for the
goal A = p D ¢, it will propose a plan with the 1 step A;p = ¢, where A;p denotes
the set AU {p}. The plan’s validation will discharge the assumption when the step
has I;een solved: from a proof of A;p = g, it concludes A = P D ¢ by IF-INTRO.
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For a Natural Deduction style of proof, the ability to make assumptions and subse-

quently discharge them in this manner is essential.

Since the DEDUCTION-THEOREM can be applied to goals that already make assump-
tions, a natural hierarchy (partial order) exists among assumption sets. For example,
A is said to be the parent of A;p. The global database is the ancestor of all assumption

sets.

2.3.3 Plans and Validations

Plans are constructed as a result of invoking plan generators, which will be further
discussed later. A plan is attached to a supergoal, and consists of a set of steps
together with a validation. Each step is a subgoal. A validation is the description
of a procedure to derive a new logical conclusion from premises supplied as inputs.
When all steps have been proven, their proofs are fed to the validation which combines
them, using inference rules, into a new proof. This proof becomes an answer to the

supergoal.

Steps are really of two kinds: éolved and pending. Initially, all steps are pending.
When a step has acquired one or more answers, the user has the option to follow one
of them. Following an answer to a step means this: a copy is made of the plan in
which the step occurs. This copy is called a successor plan. It differs from the original
plan in that the step in question is removed from the pending list, and its answer is
inserted in the solved list instead. The pending list is instantiated using the answer’s

substitution 4.

Following an answer to the last pending step in a plan causes the validation to be

executed and an answer to be derived for the supergoal.
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2.3.4 Proofs

A proof is a sequent A = p indicating that p logically follows from A, together with
a proof tree recapitulating the various inferences required to effect its derivation.
Each node of this proof tree is itself a proof. The leaves of this tree are axioms and

assumptions.

Proofs are created by inference rules. An inference rule derives a conclusion from
premises; both consist of proofs. An inference rule may also require parameters to

further specify the details of the derivation.

A conclusion proof recapitulates its own genesis: it is an aggregate consisting of a
sequent representing the conclusion, the inference rule responsible for its derivation,
the premises it was derived from, and the parameters characterizing the details of »

this inference.

Since a proof packages its own premises, it can also be regarded as a tree: a proof
tree. Thus a proof (node) has a dualistic interpretation: (1) it contains a sequent
representing a conclusion; (2) it is a proof tree recapitulating the derivation of this

conclusion.

As I mentioned earlier, when the user follows an answer to the last pending step of
a plan, the plan’s validation is executed. The validation combines the proofs of the
plan’s steps using inference rules. A proof is thereby constructed which solves the

plan’s supergoal. This mechanism is the primary source of new proofs.

Another way of obtaining new proofs is by forward inferencing through the mediation
of inference generators. They allow the user to augment the database with new
conclusions derived from existing assertions. Since the preferred mode of interaction
with LOGICALC is backward chaining using plan generators, inference generators will

not be further discussed in this thesis.
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LOGICALC incorporates a mechanism to automatically generalize proofs. In this con-
text, “to generalize” means precisely this: to replace certain terms with free vari-
ables while preserving validity. For example A = p(a) D p(a) is generalized into
A = p(z) D p(z).

2.3.5 Goal Classes

The picture painted so far is unfortunately inaccurate in that it blissfully ignores a
~ major contribution of LOGICALC’s graph structure: namely, goal classes. I will now

introduce this notion.

It is not uncommon for the same goal, or variants of the same goal (modulo renaming
free variables), to occur in different plans in various places of the growing graph
structure. For example, if we often mention a particular term d, which is of type
7, proving that a is of type 7 may well be a frequently recurring subgoal. It would
be nice if we could just prove it once in a way that would automatically benefit all
occurrences of this goal, rather than to be forced to go through the same tedious
motions for each occurrence. The major source of recurring subgoals, however, is the
mechanism creating successor plans [see above], because it must make new copies of

the plan’s remaining pending steps.

in LOGICALC, goals are grouped in equivalence classes. For example, the two goals
A = p(z) and A = p(y) are said to be (alphabetical) variants of one another: they
are identical modulo renaming free variables (e.g. renaming y to z). Both goals belong

to the same equivalence class.

An equivalence class is represented by an aggregate called a goal class (or class for
short). It serves as a centralized bookkeeping device for answers: whenever a goal—
member of a class C—acquires an answer, it registers this answer in C, thus sharing

it with its fellow members.
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Now that I have eased the‘reader into this notion of goal classes, I will remove the
final layer of deception. Goals do not in fact play the central réle in which I have cast
them so far; classes do. Contrary to what I claimed earlier, plans are not attached to
a supergoal but to a superclass. Correspondingly, when an answer is constructed by

executing a plan’s validation, it is recorded with the superclass, not with a supergoal.

So what is a goal? In a sense, it is nothing more than a funny-shaped window
through which we view its class. Each member of a class C gives us a different view
of C, but it is a different view of the same thing. A goal is simply the representation
of an occurrence of a particular class, with the variables renamed in some way. For
example, when a plan contains the step A = p(z), this step will indicate that it is an
occurrence of a class A = p(u) with the renaming {u — 2}. If another plan contains
the step A = p(y), this step will similarly be represented as an occurrence of class

A = p(u) with the renaming {u — y}.

For practical purposes and convenience, goals are a little more complex than just a

pointer to a class plus a renaming. I will say more about this later.

Classes were designed to address the issue of recurring subgoals; but what of related
goals? Consider a class Ci: A = p(a), and a class C;: A = p(u). Clearly, an answer
to C; is also an answer to C; that instantiates u with the constant a. Therefore, it
would be desirable to have a mechanism to automatically communicate this answer
to C; when it is recorded in C;. Conversely, should C; acquire an answer that assigns
a to u, this answer would also work for C;, and the latter should be told about it. For
precisely this purpose, each class has links to similar classes. When a class acquires
an answer, it broadcasts it along these links. The recipient classes must then each
determine whether the answer is admissible—in which case it is recorded—or not—in

which case it is ignored.

The measure of similarity used to establish these links is based on the notion of

generality. For example, if p’ is an instance of p (i.e. there exists a substitution 8 such
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that p = p'®), then A = p is more general than A = p. Also,if BC A, A=pis
more general than B => p. Each class has links to all those classes which are more or

less general than itself.

Thus, the underlying graph helps make the most of each answer by handling directly
certain practical issues of subsumption: (1) goals are grouped in equivalence classes
and share their answers; (2) related classes are connected by links, and communicate

their answers to one another by broadcasting them along these links.

In practice, the user can remain completely oblivious to the existence of classes, and

interact exclusively with goals and plans [actually, views of same].

2.4 Principles of Operation

In this section, I am going to introduce a number of underlying mechanisms and
explain how they all fit in the overall framework. I will do this by reviewing typical

interactive operations and outlining what is really happening behind the scenes.

2.4.1 Initiating a Session

The most important preliminary step is to axiomatize the domain of interest (e.g.
qualitative physics or some such). For example, in Chapter 10, I present an axiomati-
zation of Kuipers-style qualitative physics. Normally, the user will write these axioms
in various files and load these files into the LISP system prior to initiating the session

proper.

The session is started by invoking the logicalc procedure. In response to a prompt,

the user states the theorem to be proven. This formula is syntax/type-checked. Next,

6T am using 2 to express syntactic identity because I will usually write = to denote the equivalence
connective. :
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it is skolemized” and a goal class is constructed to represent the resulti_ng pattern.
Then, the system installs the top-level goal which is a member (occurrence) of this

class.

The top-level goal is the only goal which is not a step in some plan. The object of
the session with LOGICALC is to interactively—and monotonically—grow a graph of
goals, classes, plans, proofs and answers, until a satisfactory answer to the top-goal

has been synthesized.

2.4.2 Solving a Goal

A goal is a member of a class. As I explained earlier, a class is essentially a centralized
bookkeeping device for answers. When a goal is created which is a member of a
preexisting class, it is possible that the class already possesses answers. In this case,
the new goal will also have these answers simply by virtue of being a member of the

class. Thus a goal may be solved by inheriting solutions derived earlier.

If a goal is created which cannot be assigned to a preexisting class, then a new class
must be constructed to house it. This new class is initialized by a two step process:
firstly, links are established to and from more/less general classes, and secondly, the

system attempts to derive obvious answers for the new class.
Obvious answers are acquired in the following ways:
o Related classes are examined and admissible answers are borrowed from them.
This step makes up for the fact that the new class was never broadcast to.

¢ A decision procedure is applied to determine whether the class is a tautology.

"Unless skolemization has been turned off by setting 1c-skolemize* to NIL.
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o The assumption set is consulted to find axioms or assumptions that unify with

the class’s conclusion.

e Built-in theories or decision procedures are invoked. In LOGICALC, these are

currently implemented by backward-chaining logic programs.

Thus a goal may simply be solved as a consequence of the initialization mechanism. If
a goal does not acquire a satisfactory answer either by inheritance or by initialization

(as the case may be), then one must resort to proposing, then solving, plans for it.

2.4.3 Creating Plans

When viewing a goal (or a class) through LOGICALC’s graph editor, the user may
create one or more (additional) plans for it by invoking a plan generator. This is done
by issuing a command of the form plangen args... where plangen names the desired
plan generator, and args... are arguments denoting the premises and parameters

required to perform and/or specify the expected refinement.

Suppose that we are now viewing (we say at) a goal of the form A = q(f(z)) and
that foo is an assertion in A of the form p;(u) A py(u) D g(u) = f(f(u)), then the
command ‘equality £ - foo’ will result in the creation of a plan with the following

3 steps:

L pi(u), 2. pa(u), 3. q(g(u))

Furthermore, the plan’s conclusion imposes the following assignment: z « f (u).

I am now going to explain how the system goes from the command issued earlier, to

the plan shown above. This is accomplished in 4 successive phases:
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1. Processing the arguments.
2. Constructing plan descriptions.
3. Expanding plan descriptions.

4. Creating plans according to these descriptions.

Processing the Arguments

The plan generator must first make sense of the arguments typed by the user. In the
case of the EQUALITY plan generator, the user must specify both the term(s) to be
substituted by equality, and the equality premise to use for this purpose. To make
parsing the arguments easier, the command line must be an instance of the following

template:

equality (term designators) - (equality designator)

In our example,

(term designators) = f
(equality designator) = foo

Note that in both cases, further processing is required to turn the user’s specifications

into a useful parameter or premise:

o From the symbol £, the system must determine that the user means to denote
the occurrence of the term f(z) in goal A = ¢ f(z)). In general, there is
a procedure that turns (term designators) into a set of pointers® to specific

occurrences of terms in the goal.

8A so-called pointer is actually a list of integers representing a selection path into the formula
and leading to the denoted occurrence, and is ordinarily simply called a path.
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o From the symbol foo, ‘the system must determine that the user is interested in
the equality formula g(u) = f(f(u)) occurring in assertion foo. \Also, since this
equality is a subformula of foo, in order to become available for use, it must be
inferred from foo. Therefore, the system must come up with a plan to derive
the desired equality from foo. It is the description of this plan which will be
used in place of the equality premise (its projected conclusion is the equality
premise).

The procedure, which here turns the (equality designator) into a plan descrip-
tion, is called detaching. It determines that g(u) = f(f(u)) can be inferred
from foo by MODUS-PONENS, but requires p;(u) A p2(u) as a minor premise.

The resulting plan description is:

(plan g(u) = f(f(u)) modus-ponens (foo (goal p;(u) Apz(u))))

The results of this phase—i.e. the set of specific term occurrences, and the plan
description for inferring the equality—are packaged in a standardized format and

handed over to the next phase.

Constructing Plan Descriptions

The second phase is given a description of the current goal, and the set of premises
and parameters assembled by the previous (parsing) phase. The object is to construct

a description of the plan corresponding to the requested refinement.

In the case of our example, there is one premise whose conclusion is g(u) = f(f(w)),
and one parameter which denotes the occurrence of term f(z) in goal A = ¢(f(z)).
The system must perform the equality substitution backwards on the current goal
to obtain a new subgoal—I say ‘backwards’ because the substitution here is 9(u) —

f(f(u)), whereas, when the plan has been solved and its validation is executed to
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infer a conclusion from a proof of the subgoal, the substitution is performed in the

other direction, i.e. g(u) — f(f(u)).

f(f(w)) is unified with subterm f(z), thus establishing the assignment z «— f(u), and

the following description is constructed for the subgoal:

(goal q(g(u)))

Note that the subgoal’s assumption set is implicitly the same as that of the current
goal. If additional assumptions had to be introduced, they could be specified as extra

arguments to the (goal ...) construct.

Now, the system must assemble the various parts into a plan description which cap-
tures the idea that the resulting proof is to be inferred by EQUALITY from a proof of

the premise and a proof of the subgoal:

(plan ¢(f(f(u))) equality
((plan g(u) = f(f(u)) modus-ponens
(foo (goal py(u) A pa(u))))
(goal q(g(u))))

(parameter denoting subterm g(u)))

Notice that the respective descriptions of both premise and subgoal were simply

plugged in.

Expanding Plan Descriptions

For the user’s convenience, the system does a little extra work on the plan description.
For example, goals which are conjunctions are expanded into subplans with one step

for each conjunct. Similarly, goals which are double-negations are expanded into
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subplans whose step has the double-negation stripped off. This behavi_or can be

disabled by the user.

During this phase, there is the potential to perform arbitrarily complex plan trans-
formations. However, LOGICALC does not at present attempt to handle anything but

conjunctions and double-negations.

The example description assembled earlier is thus transformed into:

(plan ¢(f(f(u))) equality
((plan g(u) = f(f(uv)) modus-ponens
(foo (plan p;(u) A pp(u) and-intro
((goal p;(u))
(goal p2(u))))))
(goal q(g(u))))
(parameter denoting subterm g(u)))

Creating a Plan According to a Description

Finally, from the plan description, a plan structure must be constructed, and the
resulting plan and goals aggregates must be appropriately inserted in the existing

graph.

In order to construct a plan, we must be able to determine (1) the steps, and (2) the
validation. Both can be established from the descriptiori. The steps are simply the
set of goal descriptions, and names of assertions used as premises. Inspection of our

example description yields the following set of steps:

0. foo, 1. (goal pi(u)), 2. (goal py(u)), 3. (goal q(g(w)))
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foo is assigned step number 0: steps which correspond to assertions do not have to
be proven since they are elements of the assumption set. They are assigned numbers
starting from 0 downwards, which makes it easy to not display them when a plan

node is being examined by setting variable show-plan-negative-steps* to NIL.

Similarly, the plan description encodes the inferential structure in a fairly straight-

forward way. The following validation is extracted:
(equality ((modus-ponens (0 (and-intro (1 2)))) 3) (param...))

The integers denote proofs of the corresponding steps.

For each goal description, a goal structure must be constructed; I went over this
procedure in section 2.4.2. As I explained then, goals so constructed may already
possess answers. A useful notion to introduce here is that of a yes answer. This is
an answer which does not assign any of the goal’s free variables; i.e. its substitution

is empty. A yes answer is as general as an answer can get.

If the newly created plan has steps which have yes answers, these steps do not have
to be further considered since they have been solved in the most general manner
possible. It is useful to make a distinction between those steps which still require

work from those that do not.

As discussed in section 2.3.3, a plan partitions its steps in two sets: those which are
solved, and those which are pending. Steps which correspond to assertions, as well
as steps which have yes answers are immediately assigned to the first set; all others

to the second one.

2.4.4 Initializing a Plan

When a new plan has been constructed, it must be initialized. Part of this process

was just described in the above, but other questions have to be answered too; such
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as: is the plan redundant? Do all of its steps already have satisfactory answers? If

yes, can these answers be combined, and a conclusion be drawn right away?

Checking for Redundancy

The idea here is to avoid inserting a new plan in the graph if it is not going to help.
A plan is considered redundant if its projected conclusion is an instance of an answer
already recorded in its superclass. For example, if the plan’s projected conclusion
is ¢(f(f(u))) and its superclass already has an answer that concludes q(f(2)), there
is no point in pursuing this plan since it would only derive an instance of a known

answer.?

Another possibility is that there exists another plan for the same class, or a related
class, and which subsumes the new plan in some sense which I won’t detail here. The
idea is that, if there is some other plan which will do the same job, or better, there is
no point in adding a new one. The issue, however, is a little more subtle than it looks
at ﬁrs‘t because, for practical reasons (such as meeting with the user’s expectations
about progress—concerning successor plans, for instance), it may be desirable to allow

some amount of redundancy.

If a plan is found to be redundant, it is discarded and a fate is constructed sum-
marizing this redundancy. Fates are what the user gets back after invoking a plan
generator. They state what happened, hence thé name “fates.” For instance, some
say “a plan was derived, but was found redundant because of this answer” or “a plan
was derived, but was found to be redundant because of this other plan” or, usually,

“a plan was derived, and here it is.”

®Now that the generalization technique has been added to LOGICALC, it is possible for the answer
effectively obtained to be more general than the projected conclusion. Thus, the decision to not
- pursue a plan because its projected conclusion is an instance of a known answer may in fact rule
out a plan whose conclusion would have been generalizable into a more general solution than was
available before.
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Checking for Overall Solutions

The first case is when all steps have yes answers; i.e. there are no remaining pending
steps. In this case, a conclusion can be immediately derived by executing the plan’s
validation; and the plan is discarded. A fate is returned indicating that this conclusion

was derived.

The second case is when all steps have answers, but they do not all have yes answers.
The object here is to determine if it is possible to use these existing answers to derive
alternative conclusions for the plan. The difficulty is that, if we pick an answer for each
step, these answers may make incompatible assignments to free variables; for instance,
z « a for one and = « b for another. The system determines which combinations of
answers are compatible, if any, and executes the validation for each one of them. This
process is called pushing a plan. Fates are constructed for the resulting conclusions.

There is also a fate for the plan itself, since it cannot be discarded.

Finally, if some steps do not have answers, a fate is returned that simply accounts for

the new plan.

In all cases, unless the plan is discarded, it is added to the set of plans for its class.

2.4.5 Informing the User of the Results

Initializing a plan results in one or more fates. F' urthermore, there may have been more
than one plan to initialize: for example, the user might have specified two premises,
instead of just one (namely foo), in the earlier example of equality substitution; the
same procedure would have been followed for each one, presumably resulting in the
construction of two plans, each requiring initialization, and each yielding its own set
of fates. All these fates are collected and displayed to the user who must then chose

one to proceed with.
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In addition, for each fate that represents a plan, the user is asked whether he wants
to make the plan local. Here is what this means: a class not only serves to store
answers, but also plans. All members of a class have equal access to either. However,
it would be very confusing if the display of a goal listed all the plans recorded in its
class; it is better to list only those plans which the user has specifically designated as
being relevant to the goal. These plans have to be imported from the class;!? they

have to be made local to the goal.

When the user has selected a fate, the graph editor moves the current view to the
corresponding node, which is either an answer or a plan. If it is a plan and the plan

has only one pending step, then, the current view is moved directly to that subgoal.

2.4.6 Following an Answer

In this section, and the next, I discuss the question of how plans become solved.

When the current view is that of a plan with one or more pending steps, the user
should select one of them and proceed to solve it. When that step has acquired a
satisfactory answer, the user should follow this answer. Following an answer moves
the current view to the node representing the answer, and displays the fates associated

with it. I am now going to explain where these fates come from, and what they are.

The point of following an answer is to construct a successor plan for the plan in which
the answer’s goal!! is a step. The successor is a copy of the plan, with the following
difference: the step in question is removed from the list of pending steps and its
answer is inserted in the list of solved steps; furthermore, the remaining pending

steps are instantiated according to the answer’s substitution.

10The command ““plan can be used to import a plan from a class, while the command -plan
can be used to drop a local plan (it still remains available in the class, and can be imported again
later). :

1 The goal which the answer is an answer to.




2.4. PRINCIPLES OF OPERATION 69

Since a step may have more than one answer, and the user is at liberty to follow any

number of them, a plan may have more than one successor.

The new successor plan must be initialized in the manner described in section 2.4.4,
thus resulting in the collection of a set of fates. These fates are then recorded with
the answer; following the same answer again will not cause them to be recomputed,

instead the system will use the cached values.

2.4.7 Concluding From a Plan

Following an answer to a plan’s last pending step causes the plan’s validation to be
executed and an answer to the plan’s class to be constructed. Here is how it works:
we have a set of answers—one for each step—and a validation which is an expression
describing how to infer the plan’s conclusion from these answers. A validation has

the form:
(inference-rule (prémises...) (parameters...))

where a premise is either a step number, and denotes the proof of the corresponding
step (available through the answer), or is a validation, and must be recursively inter-
preted. Interpreting such an expression yields a proof: first, each premise is evaluated
and yields a proof. Then, the inference-rule is called with two arguments: the list of

these proofs, and the parameters. It returns a proof.

Now, the system must decide whether this proof provides an answer which is worth
recording in the class. If the new conclusion is an instance of an existing answer,
then it is redundant and is discarded; a fate is returned that mentions the subsuming

answer.
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Otherwise, the proof is packaged as an answer and recorded in the class. Further-
more, it is broadcast to all related classes through the system of links introduced in

section 2.3.5.

2.4.8 Creating a New Proof

New proofs can only be created by inference rules. More precisely, an inference rule
is a function which takes premises and parameters as input and returns a description

of a conclusion as output. This description is then generalized by the system.

The point of this generalization is to replace as many terms as possible with new free
variables while preserving validity. For example, the tautology p(f(a), b) O p(f(a),b)
will be generalized into p(z,y) D p(z,y) (the greater gains come from generalizing
over discharged assumptions). The technique used for this purpose is an extension
of Explanation-Based Generalization: a variabilized skeleton of the conclusion (ie. a
~ formula which has the same propositional shape, but in which all terms have been

replaced by new free variables) is regressed through the recorded inference tree.

The system then checks if there exists a proof whose conclusion is an (alphabetic)
variant of this new conclusion. If such is the case, the old proof is returned—this
technique is known as uniquifying proofs—otherwise a new proof is constructed to

package the conclusion together with the inference tree of its derivation.

If a new proof is constructed, it is also inserted in the database. More precisely, if the
proof corresponds to the sequent A = p, then the formula p is given a new arbitrary
name and is added to the datapool of assumption set A. Thus new conclusions become

assertions and can be used as premises in subsequent refinements.
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2.5 Exceptions to Skolemization

The decision to apply skolemization to assertions and goals is only the default policy.
This policy may be explicitly revoked and reinstated at any time to affect subse-
quent behavior—past decisions are not reconsidered. Plan generators are available

for quantification and skolemization.

I will now discuss a situation where skolemization is unable to remove certain quan-

tifiers from a formula. The situation arises with the use of A-expressions.

| 2.5.1 Lambda Expressions

The language includes the notion of M-expressions. A A-expression is a term of the

form:
(LAMBDA (z; ... Tn) tlzy...za])

and denotes either an anonymous function if ¢ is a term, or an anonymous predicate if
t is a proposition. Therlanguage reserves the operator % to represent application of a -
A-expression to arguments. The operator ¥ takes an indefinite number of arguments
(> 1). The first argument is supposed to denote a function (or a predicate), and the

following arguments are the parameters the function is to be applied to. For example:
(% (LAMBDA (zy ... z,) t[z;... To]) ar ... ap)

If the 1st argument is n-ary and there are exactly n parameters, then it is possible
to use the rule of B-reduction and replace the % term with the term (or proposition)
that results from applying the function (or predicate) to the parameters. For instance,

B-reducing the above example yields t[a; . .. an).
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The unifier does not attempt higher-order unification [Hue72, Hue75, Pie73]; rather,
it limits itself to the straightforward extension to the classical unification algorithm

[see section 2.6]. This is a restriction in the implementation, but not one of principle.

The introduction of A-expressions in the language was motivated by practical con-
" siderations. For example, for reasoning by induction it is often convenient to have a
second-order axiom expressing Mathematical Induction which we can instantiate at

will to derive specific first-order induction formulae.

This dissertation does not address the issues raised by the formal treatment of A-

expressions. In particular, all the classical problems remain. See Chapter 3.

2.5.2 Skolemizafion of Lambda Expressions

Since an anonymous predicate can be expressed as a A-expression, the body of said
expression may contain quantified formulae. Skolemization, however, is unable to
rérnove the corresponding quantifiers: to remove a quantifier, one must determine
whether it has universal or existential force in order to decide whether the quantified
variables should be replaced by free variables or skolem terms. This determination
cannot be made for the body of a A-expression because it cannot be ascribed a polarity.

Consider the formula:
(Q (LAMBDA (X) (EXISTS (Y) (< X Y))))

The A-expression appears as an argument to the (second-order) predicate Q. It is not
possible to decide on a polarity for the body of this expression. If you feel tempted
to say ‘positive’, then consider that Q might be equivalent to Ap Ay —p(y).

A A-expression that appears as an argument to a (higher-order) predicate cannot be

skolemized. Skolemization must be postponed until after B-reduction.
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I shall now illustrate this discussion with an example of mathematical induction. In

standard notation, the second-order axiom expressing mathematical induction is:
(VP : N prop) [P(0) A (Vn € N) P(n) D P(n +1)] D (Vm € N) P(m)
In LOGICALC, it is written thus:

(FORALL (P - (PRD [integer]))
(IF (AND (% P 0)
(FORALL (N - integer)
(IF CAPN) (AP (+N 1))
(FORALL (M - integer) (% P M))))

Note that P(m) has positive polarity, while P(0) and P(n + 1) have negative polarity
because they appear in the antecedent of the implication. P(n) is nested in the
antecedent of two implications: the effect of the two implicit negations cancel each
other, and P(n) has positive polarity. Clearly, the A-expression to be substituted in

for P cannot be skolemized in advance.

After skolemization, the formula expressing Mathematical Induction becomes:

(IF (AND (IS (PRD [integer]) 7P)
(% 7P 0)
(IF (AND (IS integer !.N(?P))
(% 7P 1.N(?P)))
(% 7P (+ '.N(?P) 1))))
(IF (IS integer 7M) (Y% ?P 7M)))

Suppose now that we wish to produce an instance of this formula by plugging the

following A-expression for the free variable ?P:
(LAMBDA (X - integer) (EXISTS ((< ?X ?7Y) - integer)))

After carrying out the substitution, B-reducing the redexes, and skolemizing, we

obtain:
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(IF (AND (IS (PRD [integer])
(LAMBDA (X)
(AND (IS integer X)
(EXISTS (Y) (AND (IS integer Y) (< X Y))))))
(AND (IS integer 0) (AND (IS integer ?Y.1) (< 0 7Y.1)))
(IF (AND (IS integer !.N)
(AND (IS integer !.N)
(AND (IS integer !'.Y[1]) (< !'.N '.Y[1]))))
(AND (IS integer (+ !.N 1))
(AND (IS integer ?Y.2) (< (+ !'.N 1) ?Y.2)))))
(IF (IS integer 7M) '
(AND (IS integer ?7M) ,
(AND (IS integer !.Y[2](?M)) (< 7M !.Y[2](?M))))))

2.6 Extensions to Unification

The motivation for skolemizing formulae by default was to allow unification as a
fundamental operation. Unification is a very powerful, and, I claim, natural operation
[but see below]. It frees the user from having to decide on, and apply, substitutions,

and facilitates search through the database.

Some would argue that the details of unification are often too complex to be carried
out by people, and therefore would object to unification being called a “natural”
operation; after all, where is the naturalness in it if people can’t do it? This objection,
however, misses the point: it is not the “carrying out” which is predicated to be
natural, but rather the principle of the operation. People can easily identify “similar”
patterns; based on this presumption of similarity, they may then request that the
machine carry out unification; the result, assuming the operation succeeds, makes
sense to people in exactly the right ways: (1) it confirms their expectations that
those things indeed match, (2) it fills in the blanks, and (3) they don’t have to figure
out the details.
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There are two topics which I would like to dicuss briefly here: first, the extensions
to unification necessary to handle quantified formulae and A-expressions, and second,

the notion of segment variables.

2.6.1 Quantified Formulae and Lambda Expressions

We have seen that, eventhough the default policy is to skolemize all formulae, there
may be circumstances when it is either necessary or desirable to manipulate explic-
itly quantified formulae. It would be convenient if, when confronted with quantified
formulae, we did not suddenly lose all the advantages of unification. For example,
Vz p(z) and Vyp(y) should unify—in the sense that the operation should succeed,

eventhough the two expressions being unified do not become identical in the process.

Similarly for /\-expressioﬁs: Az f(x) and Ay f(y) should unify. In fact unifying A-
expressions is no different from unifying quantified formulae; both are instances of

the more general idea of unifying expressions of the form:
(binder (variables. . .) expression)

The algorithm I adopted is a straightforward extension of Robinson’s unification
procedure rather than a higher-order approach [Pie73, Hue72, Hue75], and can be
interpreted as the unification of the corresponding de Bruijn formulae [dB72], with
the restriction (to preserve soundness) that free variables can only be assigned well-

formed de Bruijn terms (i.e. closed).

2.6.2 Segment Variables

In PROLOG, it is possible to denote the tail of a list using the vertical bar notation.

For example, the term [XIL] denotes a list with X as its first element and L as its tail
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(or remainder). In LOGICALC, the corresponding idiom is [?X !?L]. The term !?L is
called a segment variable, which is a generalization of a tail variable: it stands for an
unspecified number of adjacent terms. A segment variable is not restricted to appear

at the end of a list. For example, here is how the member predicate might be defined:

(DEFPRED (MEMBER ?X - obj ?L - (LST obj))
(MEMBER ?X [!?L1 ?X !7L2]1))

The above formula expresses the idea that 7X is an element of a list if said list is
of the form ?X, preceded by a certain number of elements (1?L1), and followed by a

.certain number of elements (!?L2).

Of course, the astute reader will have noticed by now that a single unification may
produce more than one solution. Consider unifying [A B C D] with [!?L1 ?X !7L2];

4 solutions result from this attempt:

{7L1 « ] , 7X + A, ?L2 « [B C D]}
{?L1 « [A] ,?X B, ?L2 « [C D] }
{?L1 « [A B] ,7X «C, 7L2 « [D] }
{?L1 « [A B C],?X « D, 7L2 « [] }

From this remark it follows that, in LOGICALC, we can no longer retain the notion of
a most general unifier; rather, unification returns a list of unifiers (i.e. substitutions).
Unfortunately, it is also unreasonable to expect unification to return a complete set
of unifiers. Consider unifying [!?X A] and [A !'?X]. The problem is to find a substi-

tution which makes identical the two sides of the following equation:
['?X Al = [A !7X] (®)

Clearly there are 2 cases:

e Either ?X = [J, in which case (®) simplifies to [A] = [A].
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¢ Or ?X must begin with A, i.e. be of the form [A !?Y]. By substitution, (®)
becomes [A !'?Y A] = [A A !'7Y], which simplifies to [!?Y A] = [A !'?Y]. In
other words, ?Y is defined by the same equation (®) as ?X, using the name Y

instead of X.

From these remarks we may conclude that the set of unifiers in this example can be
recursively enumerated: {?X = [1}, {?X = [A]}, {?X = [A Al} ... Since this set is
infinite, it is probably not a good idea to try and compute it all; instead, LOGICALC

simply returns the first two elements (i.e. ?X = [] and ?Y = [J).

2.7 Database Management

2.7.1 Indexation and Retrieval

Simply adding a new node to the ATMS is not sufficient; we also need means to query,
or, more generally, search the database. To support this capability efficiently, it is

necessary to cleverly index the contents of the database.

Indexing was mentioned earlier. I stated then that, in order to speed up access to the
database, the simplest technique is to file each formula under its principal symbol,
e.g. (p a) under p. When presented with a query (p ...), the system doesn’t have

to search the whole database, but can lookup the relevant formulae indexed under p.

Indexing can be and usually is done somewhat more cleverly than the simple-minded
one-level technique suggested above. For example, PROLOG systems often use a two-
level indexing scheme: the first level of indexing is done using (predicate name/arity)
as a key, while the second level might be based on the nature of the first argument—

whether it is a constant, a list, a functional term, or a variable, say.
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In LOGICALC, indexing is done using a discrimination tree. The simple-minded tech-
nique presented earlier corresponds to a discrimination only 1 level deep; the PROLOG
technique to a discrimination 2 levels deep. In LOGICALC, we can discriminate to lev-
els as deep as required by considerations of specificity against space/time efficiency.
The current implementation allows multiple indexing, i.e. it is possible to index the
same piece of data in more than one way. It is self-reorganizing: if discrimination
according to a particular key turns out to not work very well at a certain point in the
tree, the system will automatically select another key that works better; thus, whereas
PROLOG may be stuck using a predicate’s 1st argument as a secondary key, LOGI-
CALC might pick another argument when it becomes obvious that the 1st one results
in poor discrimination. Also, our implementation is data-driven so that the objects

themselves (e.g. syntactic constructs) may dictate how they wish to be indexed.

Simply adding a new node to the graph managed by the reason maintenance system
isn’t enough. Convenient and efficient means of retrieval have to be provided as well.

To this end, several indexation schemes are maintained concurrently.

The principal means of access to the database is through DUCK’s multiply-indexed
discrimination tree. I will not go into the details here (but see e.g. [McD85]). The
general idea is that one can use FETCH to retrieve all solutions in the current datapool
that unify with the argument pattern. FETCH will also return the solutions that can

be derived by backward-chaining rules [Ibid.].

It is often useful in theorem proving to be able to search the database for assertions
containing occurrences of a specific formula that is of interest. In particular, I will
later introduce the idea of detaching formulae from assertions (this idea is related to
non-clausal resolution).} For an efficient implementation of this idea it is crucial that

we be able to find out quickly all the assertions a particular formula occurs in.

The naive way to achieve this sort of cross-indexation (and indeed this was how the

first implementation worked) is to produce additional assertions of the form:
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(LOGICALC_INDEX formula assertion sign)

where formula is a subformula occuring in assertion (which is the name of a node)
with the corresponding sign. Thus, finding candidate assertions from which to
detach a given formula is simply a matter of calling FETCH with the appropriate
LOGICALC_INDEX pattern. Of course this wastes a lot of memory because each sub-
formula has to be copied into its own LOGICALC_INDEX assertion.

The current scheme is a simplification of the above. Instead of the first argument to
LOGICALC_INDEX being a formula, it is now the principal symbol in the formula (i.e.

connective or predicate). This scheme is a lot more economical in terms of memory.

The interface is implemented by function CONSULT-INDEX. It is given a pattern as
argument and returns a list of assertions that may possibly detach the given pattern
(i.e. contain a subformula that unifies with the pattern modulo its sign). Initial selec-
tion is done according to the pattern’s principal symbol. Then filtering is performed
based on the connectives and predicates naturally occurring in the pattern; those

candidates that do not also mention them are discarded (modulo some care).

The original scheme is more specific because the pattern must unify with the recorded
formula, however, not only does it waste storage, it also wastes time and memory
performing unification, the result of which will be discarded anyway since “detaching”
has to start again from scratch. The current scheme performs no other unification
than those implicit in the retrieval of LOGICALC_INDEX assertions (which are flat). Yet,
experience shows that the filtering does about just as well as unification would, at a
much lesser cost, and is much faster. Since “detaching” is subsequently applied, the

occasional remaining false positives are then identified when unification is attempted.

There is another indexing scheme which is concerned with skolem terms. Experience
showed that it is very useful to be able to determine what assertion a given skolem

term came from (presumably through unification). The reason this is useful is that
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if you want to prove something about a particular skolem term, the most likely place
to find that information is in the assertion where the skolem term was defined. For

this purpose, I maintain assertions of the form:
(INDEX->SKOLEM id assertion)

where id is this integer that uniquely identifies the skolem term (or rather the cor-
responding bound variable), and assertion is the name of the assertion in which it

is mentioned. It is by this method that the -SKOLEM option [Chapters 1 and 6] is
supported.

2.7.2 Local Assumptions and Datapools

In a system based on natural deduction, in order to prove a goal of the form A = PDgq
one would ordinarily invoke the Deduction Theorem and attempt a proof of A;p = 4.
In the later sequent, we interpret p as a local assumption. If q is itself an implication,

the process may be repeated resulting in an additional assumption.

In the course of a proof, hierarchical sets of assumptions will thus naturally arise.
Therefore a method is needed to efficiently represent multiple assumption sets orga-

nized hierarchically. This is precisely what datapools have to offer [McD79,McD85].

Beads and Datapools

Datapools allow multiple sets of assumptions, and the conclusions derived from them,
to coexist coherently and consistently in a global database managed by an ATMS. To
interact with the database, a current view must be selected which specifies which of

these sets will be presently assumed; the ATMS then labels as TRUE (or rather IN
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according to traditional RMS parlance) all formulae which belong to these sets or are
known to be supported by (e.g. because they were derived from) formulae in these

sets.

The trick is accomplished with the aid of beads. To simplify in the extreme, a bead
can be thought of as a distinguished mark. A formula can be marked with a bead.
The bead can be selected or not. When the bead is selected, all formulae marked
with this bead are labelled as TRUE. In other words, a bead can also be thought of

as a set of assumptions: when the bead is selected, the corresponding set is assumed.

A datapool is essentially a set of beads. When the datapool is selected, all the beads
in its set are selected as well. Such an approach makes it very easy to implement
hierarchical sets of assumptions: a new datapool is created by making up a new bead
and adjoining it to the set of beads inherited from the parent datapool. The new bead
created on this occasion is called the datapool’s characteristic bead. All assumptions
specific to the new datapool will be marked with this characteristic bead and will be
labelled TRUE only when said bead is selected, i.e. when this datapool or one of its

descendent is selected.

The complete theory of beads and datapools is much more general since it allows

deletions as well as additions, and supports non-monotonic dependencies. It is fully
documented in [McD79].

Assumption Sets and Datapools

Goals and proofs are represented by sequent-like ob jects of the form A = p where A
is an assumption set uniquely associated with its own datapool. This approach was
very attractive because it permitted a natural and painless retrofitting of sequents

into a framework we were familar with, using tools readily available in DUCK.
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As I mentioned earlier, during the course of a proof, a natural hierarchy of assumption
sets will arise, e.g. when the goal A = p O ¢ is refined into A;p = g. The datapool
for A;p has the datapool for A as its parent, i.e. it inherits all the assumptions (and -

conclusions) in A. However, p is marked with the characteristic bead of A; p.

Assumptions and Free Variables

The scheme outlined above works like a charm when the assumption p is ground.
Unfortunately, it becomes unsound when p contains free variables. I will now show
how the problem manifests itself in practice, and I will then present two possible
techniques to preserve soundness. LOGICALC does not allow unsound refinements, and

automatically resorts to a policy that combines the two aforementioned techniques.

When a goal sequent is of the form A = p(z) D q where z is a free variable, it is not
legal to “move” p(z) to the assumption set and attempt a proof of A;p(z) = q. .The‘
reason is that moving p(z) to the assumption set really means to assert p(z) in a local
datapool and we lose the notion that the variable z was somehow connected to the
goal; this happens because “fetching” from the assumption set conceptually involves
making copies (in particﬁlar renaming free variables) of those assertions which are

extracted.!?

Let me illustrate this with a example. Suppose you wanted to prove the following

proposition:
(EXISTS (X) (IF (P X) (P A)))

You would then attempt to prove the skolemized version (IF (P 7?X) (P A)). If

you were allowed to simply move (P ?X) to the assumption set, you would now have

12 Another way to look at the problem is to realize that, in a goal, a free variable represents an
existentially quantified variable, whereas, in an assumption set, it represents a universally quantified
variable. ‘
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a local assumption which can be unified with the remaining goal (P A), and you
would correctly conclude that you have a proof that (P A) follows from this set of
assumptions. However, after discharging the local assumption, you would erroneously
conclude that you derived a proof of (IF (P ?X) (P A)). Clearly this conclusion is
wrong since substituting ?X with B yields (IF (P B) (P A)), which is not a valid

formula.

Making a local assumption that contains free variables is therefore disallowed in LOG-
ICALC. When it is desirable to move to the assumption set a proposition that contains
free variables, 2 options are available: (1) either instantiate the variables in question
with ground terms, or (2) capture those variables by quantification using a preliminary
refinement step reintroduing a quantifier—e.g. replace (if (p 7x) (p a)) with (if
(forall (x) (p x)) (p a)). The user may either perform such operations manu-
ally, or let the system resort to its default policy which is to instantiate those variables
shared by the antecedent (p) and the consequent (q) with arbitrary new constants (in
the form of skolem terms), and capture by quantification the remaining free variables
of the antecedent. When this preliminary procedure has been carried but (either
manually by the user, or automatically by the system), the resulting antecedent no

longer contains free variables and can be safely moved to the assumption set.






Chapter 3

Logical System

In this chapter I describe LOGICALC’s axiomatic structure. First I recapitulate the
classical formulation of =. Then I discuss each inference rule, showing how it is either
a primitive or a derived inferent;e rule in the classical formulation (thus establishing
soundness). I introduce the notion of “skolemizing axioms” to support skolemization
and quantification as inference rules, and show how my system captures the axiomatic
structure of the classical formulation (thus establishing completeness). Finally, I

discuss the treatment of A-expressions, and also unification and substitution.

3.1 Introduction

LOGICALC is typically used as a natural-deduction proof system, which makes the
idea of a sequent-based logic [Gen35] very attractive because the notation explicitly
captures the notion of a conclusion following from a set of assumptions. A sequent
is written A = p, where A is a set of assumptions and p is a formula; the sequent is

“true” iff p logically follows from A.

85
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There is perhaps greater elegance in the syrﬁmetric formulation of sequents [Smu68]
where both sides are taken to be sets of formulae: in U = V, U plays the role of a
conjunction and V of a disjunction. However, LOGICALC can also be used to derive
conclusions in a forward manner; and, whereas is easy to interpret p as the conclusion
in A = p, it is less clear what meaning should be ascribed to V in the symmetric

formulation U = V.

I will generally write A, p => ¢ to mean that ¢ can be derived from an assumption set
containing the formula p. I will occasionally write A; p = ¢ to mean more specifically
~ that ¢ can be derived from an assumption set whose “local assumption” is p. The
notion of a local assumption arises from the following theorem-proving technique:
when attempting to prove p D g, assume p and try to prove ¢ under this additional
assumption; i.e. given the goal of proving A = p D ¢, try to show A;p = ¢ instead.
This technique is justified by the Deduction Theorem.

The reader may wonder why I make this distinction between an assumption and
a “local” assumption. The reason is that, because of the way assumption sets are

implemented [see chapter 5], only “local” assumptions may be discharged.

An inference rule prescribes what conclusion may be derived from given premises.
For instance, Modus Ponens states that, from the premises A = p D g and A = p,
one may validly conclude A = ¢. Therefore, an inference rule may be viewed as
a procedure taking sequent premises as input and returning a conclusion sequent.
- LOGICALC generalizes this notion and implements inference rules as functions taking
a list of premises and a list of parameters, and returning a list of conclusions [more
about this later]. Parameters serve to further specify the particular inference to be
performed. For instance, Equality Substitution requires a “path” to identify the

subterm to be replaced.

In the classical formulation of Modus Ponens, i.e. from P D g and pinfer ¢, the implicit

condition is that p in the major premise and p in the minor premise are syntactically
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identical. LOGICALC is more powerful because it relies on unification rather than
syntactic identification. Therefore, when I state that one may infer A = ¢ from
A= p D qand A = p, I really mean that the p in the major premise and the minor
premise are unifiable by 6, and that the ¢ in the conclusion is really g. Stating
this explicitly each time would make the exposition difficult to read. Furthermore, I
am going to start out by assuming that syntactic identification is used, so that the
relationships with the classical formulation will be simpler to establish. Later, in
section 3.10, I will argue that substituting unification for syntactic identification only

makes the system more powerful as a tool, but does not change the logic.

LOGICALC also relaxes the process of identification on the side of the assumption
set. In the example above, both major and minor premises were shown as having
the same assumption set A. The actual requirement is that the assumption sets of
the premises may be ordered by hierarchical inclusion. The assumption set selected
for the conclusion is the one that makes the most assumptions. For example, from
A= p D qand A;r = p, Modus Ponens will infer A;r = ¢. Once again, this will not
be explicitly stated in the following exposition because (1) doing so would obscure the
discussion, and (2) this trick is by no means necessary; just like unification, it simply
enhances the power of the system considerably from the user’s point of view. The
only exception to this rule is when a “local” assumption is explicitly mentioned, e.g.
A;p = ¢, in which case the assumption set for this particular premise is not allowed

to be stronger; it must have p as its local assumption.

3.2 Classical Formulation

I am going to start out by giving a brief account of a classical formulation of first-
order logic with equality. For this purpose I chose the F= system of [And86]. All the
notions and results mentioned in this section will subsequently prove useful when I

formally capture and justify LOGICALC’s logic.
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3.2.1 The Language of F=

First, we need to define the primitive symbols of F and specify the formation rules
for terms and well-formed formulae (henceforth wffs). The primitive symbols of F
are:

1. Improper symbols:! () [] =V V.

2. Individual variables: u v wz y z uy v; wy ... uy ...

3. n-ary function variables: f™ g h™ fI gt AT ... for each natural number n > 1.

4. Propositional variables: pgr s p; ¢, ry s ...

5. n-ary predicate variables: P™ Q™ R™ S™ P} Q7 Ry St ... for each natural

number n > 1.

There are denumerably many variables of each type. There may also be finitely or
infinitely many individual, function, propositional, or predicate constants. Terms and
wffs are defined inductively as follows:

1. Each individual variable or constant is a term.

2. If t; ... t, are terms and f™ is a n-ary function variable or constant, then

f*(t1,...,t,) is a term.

3. If t; ... t, are terms and P™ is a n-ary predicate variable or constant, then
P(ty,...,ts) is a wff.

4. If A is a wff, so is -A.

!Brackets are only required to disambiguate the “textual” representation of certain formulae. If
we agree that the actual representation of a formula is not a linear text string but a tree (e.g. a LISP
s-expression), then brackets are only useful to disambiguate the representation of these trees in our
textual metalanguage.
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5. If A and B are wffs, so is [A V B].

6. If B is a wff and z is an individual variable, then Vz B is a wff.

In LOGICALC, free variables are denoted by expressions of the form ?X; also, if P™ is a
predicate variable, then P"(t,,...,t,) will be written (% ?P™ ¢, ... t,) (similarly for
functional variables), while predicate constants will follow the normal LISP convention.

I will ignore these distinctions for the time being.

It is customary to let [A A B] stand for =[~A Vv =B], [A D B] for [~A V B], [A = B]
for [[A D> B] A[B D A]], and 3z B for =Vz -B. In LOGICALC, only ‘=’ is actually

implemented as an abbreviation.

3.2.2 Substitutions

If 21 ... z, are individual variables and ¢; ... t, are terms, then Silir A (resp.

St iinA) denotes the result of simultaneously substituting ¢; for all (resp. all free)

occurrences of z; in A for 1 <: < n.

I will often write 6 to denote a substitution, and @A to represent the application of
this substitution to A. Also A[z] will stand for a wff with 0 or more free occurrences
of the individual variable z; subsequently, A[t] will represent the wff obtained by

substituting ¢ for the free occurrences of z in Alz].

It is occasionally useful to generalize the notation and write SaC to denote the
wff obtained from C by substituting free occurrences of A with B such that the
free variables of B are not captured. Also, sometimes we want to substitute some
occurrences (not necessarily all of them), in which case I shall write e.g. 38C; in
LOGICALC, the particular occurrences to be substituted will have to be specified by

parameters.
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3.2.3 Axiom_atic Structure of F=

Modus Ponens: From A and A D B infer B.
Generalization: From A infer Vz A, where « is any individual variable.
Axiom of Reflexivity: z =z

Axiom Schemata:

1. AVADA

2. A D «BV A, where . indicates an implicit left bracket whose matching
right bracket is placed as far to the right as is consistent with explicit

brackets; often, this means: to the end of the formula.
3. ADBD>.CVAD>.BVC
4. Vz A D S7A where t is a term free for the individual variable z in A.2
5. Vz[AVB] D.A \./V:BB provided that z is not free in A.

6. =y D«S;A D S;A where A is an atomic formula.

3.2.4 Proofs

Here again, I shall follow Andrews:

A proof of a wff B from the hypotheses A; ... A, is a finite sequence B, ... B,,
of wffs such that B,, is B and for each 1 < i < m one of the following conditions is
satisfied:

2t is free for z in A means that no free variable of t is captured by some quantifier in A when
the substitution is performed: if y is a free variable of ¢, there is no free occurrence of z in A which
is in the scope of a Vy. LoGICcALC automatically handles this problem by effecting an Alphabetic
Change of Bound Variables whenever required [see later].
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1. B; is an axiom.
2. B; is an hypothesis A ;.
3. B; follows by Modus Ponens from preceding members of the sequence.

4. B; follows by Generalization from a preceding member of the sequence. The

individual variable generalized upon must not be free in any hypothesis.

5. B; follows from some preceding member of the sequence by the Rule of Alpha-

betic Change of Bound Variable [see later].

I will write A; ... A, F B to indicate that B has a proof (a derivation) from hypothe-
ses A; ... A,. ' '

3.2.5 Major Results

The most important result is that F= is sound and complete, i.e. every theorem of
F= is valid, and every valid formula of £(F=) is a theorem of F=: the set of theorems
and valid formulae coincide. A formula is a theorem if it has a proof. A formula is
valid if it is true in every model of F=. Since I will examine LOGICALC’s system
by comparing it with Andrews’ F= system, I will not need the notion of validity for
the following discussion and will say no more about it. The interested reader should

consult any textbook on Mathematical Logic such as [And86].

By showing that LOGICALC’s rules are derived rules of inference in F= and therefore
preserve validity, I will show that LOGICALC is sound. Also, by showing how LOGI-
CALC captures the axiomatic structure of 7= and therefore can produce all of F=’s

theorems, I will establish completeness.

But first, here is a list of derived rules of inference for F =
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Extended Rule P: If H+ A, ... H+ A, andif [AjA... AA, D B is tautologous,
then H + B.

Substitutivity of Implication: If F A D B then - C D SAC for positive occur-

rences of A in C, and - $5C D C for negative occurrences.
Substitutivity of Equivalence: Similarly, if - A = B and + C, then F SAC.

Rule of Alphabetic Change of Bound Variables: If - C then + S'Zjé‘;AC pro-

vided y is not free in A and is free for z in A (i.e. doesn’t get captured).

Universal Instantiation: If H - Vz A then H F $TA provided ¢ is a term free for

T in A.
Deduction Theorem: if H,A B then H - A O B.

Rule of Substitution: If H - A, and z is an individual (resp. propositional) vari-
able, and ¢ is a term (resp. a wff), then H - SA provided z doesn’t occur free

in H and t is free for z in A.

Rule of Existential Generalization: If H - A, then H F 3z SLA provided z isn’t

free in A and ¢ is free for = in A.
Rule of Cases: f H+- AV B and H,A + C and H Bt C then H | C.
Indirect Proof: If H,~A + B and H,~A + -B, then H F A.

Weakening: If H; + A and H, C H,, then H, - A.

3.3 LOGICALC’s Axioms

Like every sequent system, LOGICALC’s principal axiom schema is H,p = p. It is

also traditional to let every tautology be an axiom: that is, if p is a tautology, A = p
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is an axiom. In LOGICALC, this tradition is acknowledged by the obvious inference

rule, but tautologies can also be derived by means of taut-trans [see later].

LOGICALC also possesses the Axiom of Reflexivity = ¢ = z. From this axiom, it
is possible to infer all instances of it (i.e. = t = t) by the Rule of Substitution;

LOGICALC of course saves you the trouble by relying on unification in the first place.

3.4 LogIcALC’s Inference Rules

I will now list all the basic inference rules available in LOGICALC. A discussion of those
rules related to quantifier-handling will be postponed until later sections. For each
rule, I will give the name by which it is known to the system as well as a diagrammatic
representation of the corresponding inference where premises are presented above a
fraction line and the conclusion lies below. I will alsoprovide a description of purpose,
a justification in terms of the classical system (thus establishing soundness). Finally,
I will include a representation of the validation for the corresponding inference; this

is for reference purposes only and may be safely ignored for the moment.

A=p
Identity A=p

The identity inference rule doesn’t do anything interesting. Its sole purpose is
to serve as a no-op place holder in certain validations.

(identity (premise) ())

A=p
Substitution A =0p

The substitution inference rule requires a substitution  to be specified as a
parameter. This rule serves little purpose since LOGICALC uses unification any-
way and was intended primarily as a documenting device in a proof. However,

with the implementation of proof generalization, the status of this inference
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rule has become even more dubious. Proof: Rule of Substitution. The classical
system requires that for each individual assignment ¢/z in 8, ¢ be free for z in p;

in LOGICALG, applying a substitution that violates this requirement will result

in a preliminary alphabetic change of bound variables being effected on p [see

section 3.10]. (substitution (premise) (6))
| A =p
Assumption-Intro A;q=p

This inference rule captures the idea of weakening a proof by introducing an
extraneous assumption (¢ in the above schema). It is used internally by the
system: whenever a class receives an answer [cf. broadcasting], it attempts to
“adapt” it to itself; doing so may involve weakening the proof until its assump-
tion set matches the class’s. Proof: by Weakening.

(assumption-intro (premise) (q))

A= D1
4 A= Pn
And-Intro A=>pA...Ap,

From n premises, and-intro derives their conjunction. Proof: by Rule P, using
PiA... Apn Dp1A... Ap, as the tautology.

(and-intro (premise; ... premise,) ())

Ap=> ¢
If-Intro A =pDg

If-intro captures the essence of the Deduction Theorem; i.e. given the premise
A;p = ¢, it will discharge the local assumption p and conclude A = p D ¢.3
However, it imposes the restriction that p and ¢ may not share free variables.
The reason for this is discussed later: briefly, it is because free variables in

the assumption set are independent from free variables in the goal, just like

3In the distant past, a technical difficulty forced me to make the assumption to be discharged
an explicit premise; in other words, the rule takes two premises as input: A;p = p and 4; p=q.
This problem has since been resolved but the rule was not changed to remove the now-redundant
1st premise.
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in PROLOG variables in the query are independent from those in the database.
Thus, even when p[z] and g[z] both mention a free variable z, they are really .
talking about two distinct variables. If we were to infer A = p[z] D ¢[z] from
A; p[z] = q[z] the two distinct free variables, both called z, would become
confused. I could arbitrarily restrict the applicability of if-intro to only those
cases where p and ¢ do not have free variables with the same names, however it
is more useful to define the rule so that it renames those free variables in p that
would otherwise collide with free variables in ¢. Such a renaming is justified
simply by the Rule of Substitution: new free variables are substituted for old

ones. . (if-intro (assumption conclusion) ())

A =pDg

If-Elim Aip=> ¢

If-elim implements the converse of if-intro. This is not terribly useful in practice,
but is proVided for the convenience of proof manipulation procedures: an earlier
version of LOGICALC used it to perform some non trivial footwork in connection
with the case inference rule; a better way, not involving if-elim, has since been
designed. Proof: if A+ p D ¢, then also A,p+ p D ¢, and sihce A,pt p, by
Modus Ponens conclude A,p I gq. (if-elim (implication) ())

P D q is a tautology
A=0p

Taut-Trans A =0q

This is essentially Andrews’ Rule P. The basic idea is that, if p D ¢ is a
tautology of the propositional calculus and 0p and 0q are wffs of first-order

logic, if Op is a theorem then 0q is also a theorem. Proof: Rule P.

(taut-trans (premise) (p q))

A=pDyq
A= P

Modus-Ponens A= q

From an implication as the major premise and a proof of the implication’s

antecedent as a minor premise, infer the implication’s consequent. Proof: Modus
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Ponens. (modus-ponens (implication antecedent) ())

A=pDg
A= —¢q
Modus-Tollens A= —p

From an implication as the major premise and a proof of the negation of the
implication’s conéequent as a minor premise, infer the negation of the implica-
tion’s antecedent. Proof: From  p D ¢ and the tautology p D g Demg D p,
infer - =¢ D —p by Rule P, then from F —¢ by Modus Ponens conclude F —-p.
(modus-tollens (implication negated_consequent) ())

A =p(z,y)

’ A =p(y,z)
Symmetry : provided p is symmetric

Traditionally, in order to state that a predicate is symmetric, one would have to
write an axiom of the form VaVy p(z,y) = p(y, ). However, such an approach
is not only verbose, it also makes manipulations that require using the property
of symmetry quite tedious. In LOGICALC, the user has the option to simply give
the LISP symbol naming p the property symmetric; this is what the symmetry.
_rule checks for. Furthermore, the “detaching” procedure will automatically take

advantage of such declarations [see Chapter 7 p256]. Proof: by Substitutivity

of Equivalence. (symmetry (premise) ())
Aip= ¢

Ajp =>—q

Not-Intro A =-p

If assuming p leads to a contradiction, then —p must be the case. The rule
discharges assumption p and concludes its negation. Proof: Indirect Proof.

(not-intro (premise negated_premise) ())

A= p
A=-p
Not-Elim A= ¢

Not-elim captures the idea that anything can be inferred from an inconsistent

set of assumptions. The inconsistency is expressed by the ability to derive




3.4. LOGICALC'’S INFERENCE RULES 97

both p and its negation. The rule’s actual conclusion must be provided as a
parameter. Proof: by Rule P, from tautology p A —-p D gq.

(not-elim (premise negated_premise) (q))

A=a=0b

A= pla]

Equality : A= plb]
If a = b, and p[a] is a theorem containing occurrences of a, then p[b] (i.e.

Case

Sepla]) is also a theorem and is obtained by replacing some occurrences of a in
p by b. Note that some care must be taken with bound variables and potential
captures [see later]. The occurrences to be replaced must be speciﬁéd with a list
of “path” parameters. Proof: let A = 3%p[a] where z is an individual variable
that does not occur in A, by Axiom Schema 6 we have z =y D +S;A D S} A;
by Substitution $Zy we derive a = b D «SZA D S{A; by Modus Ponens from
a = b we infer S;A D S A, i.e. pla] D p[b]; finally, again by Modus Ponens,
from pla] we conclude p[b].

(equality (equality target) (path; ... path,))

A= pmV...Vp,
A= POy
A= p2A-p1 Dgq

A=2p, Api AL.. APy D g
A= q

When a proposition can be derived in each one of an exhaustive list of cases,
then it is a theorem. The exhaustive list of cases is represented by a disjunction
p1V...Vp,. Each case has the form A = py A—pr_1 A...A=p; D ¢so as to keep
it disjoint from the others; this is not strictly required by the Rule of Cases but
(1) making each assumption more specific also results in the corresponding case
being easier to prove (which is an important consideration in a proof system),
and (2) in order to derive anything at all from p(a) V p(b), p(a) = p(a), and

p(b) = p(b), one must introduce a new term c defined to be a in the first case and
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bin the second case, and for this definition to be consistent with the assumption
set, it is necessary that the cases be disjoint [more about this in Chapter 6 p204
and p226]. Proof: If we have HF AVB, H- A>Cand HF-AAB D> C,
then by Rule P and the tautology [A D C]A[-AAB D> C]>.[AVB]>C,
we infer [A V B] D C and finally conclude C by Modus Ponens.

(case (disjunction case; ... case,) ())

3.5 Skolemizing Axioms

Since skolemization plays such a central réle in LOGICALC, it would be convenient
if it could be viewed as an inference rule rather than as an operation on theories.
This is what gave me the idea of “skolemizing axioms.” For every quantified formula
Jz A[z], we can imagine there is a corresponding “skolemizing axiom” 3z A[z] =
Ala], where « is a new skolem constant denoting the a: which satisfies A. Skolemizing
positive occurrences of the quantified formula 3z Alz] is now simply a matter of using
the corresponding skolemizing axiom and invoking the Substitutivity of Equivalence.
What is needed to formalize this notion and fold it back into the logic is an axiom
-schema that will correctly generate all skolemizing axioms. The following explains

how this can be done.

I restrict myself to a countable formulation of F=. Each wff in L(F=) can be uniquely
associated with a different integer by fixing a particular enumeration. Let ¢ be an

indexing function that maps a wff to an integer in precisely this manner.

A new (infinite and countable) set of functional constants al is introduced, where
of has arity n, and n = 0 indicates an ordinary constant, and the following axiom

schema is added:

Qz Alz] = Ao, 0)(¥1,- - -, ¥n)]
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where Q is a quantifier, A is a wff of £(F=), z is some individual variable, and y,
through y, are all the free variables of Qz A in an order specified by some arbitrary
scheme such as order of occurrence or order of enumeration. A skolemizing axiom is

an instance of the above schema.

The result is a conservative extension of F= (see 3301 p124 in [And86]). It simply

serves to make the notion of skolemization into an explicit theory.

During a session with LOGICALC, skolemizing axioms are added to the database when
they are needed. Only plan generators and inference generators perform such addi-
tions; inference rules only operate on available premises. a is represented by a skolem
function of n arguments. Also, since one direction in the equivalence is always obvious
(by Existential Generalization or Universal Instantiation), only the other direction is

effectively asserted.

Skolemizing axioms are defined only for formulae Qz A[z] of L(F=), i.e. that do not
themselves contain skolem terms. I do not need skolemizing axioms for formulae
~ containing skolem terms because I am trying to capture only and precisely those
inferences allowed in F= (wherein neither premises nor conclusions mention skolem
terms). On the other hand, it is possible to iterate any number of times the same
process of introducing skolemizing axioms, or to otherwise generalize the principle
of the skolemizing axiom schema which I presented earlier; however, such a more

complex formal apparatus is not needed here.

3.6 Inference Rule for Skolemization

In LOGICALC, skolemization is implemented as an inference rule. In the following I
will use Q to denote a quantifier (either V or 3), and each timie I will specify whether it
has universal or existential force—e.g. ¥ has universal force in p D Vz g, but existential

force in [Vz p] D q.
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« A = F[Quz plz]]
skolemize (universal) A= Flply]]

When the quantifier Q has universal force and the subformula Qz p[z] does not
occur within the scope of another quantifier in F, and y is free for z in F,
then the quantifier can be removed and the variable z replaced with the free
variable y. LOGICALC doesn’t have a rule of universal instantiation as such.
It can be simulated by this version of skolemization followed by a substitution
step (typically unification). Proof: by Axiom Schema 4, Vz plz] D ply] is an
axiom (resp. by Existential Generalization and the Deduction Theorem F ply] ©
3z p[z]). From F[Vz pz]] (resp. F[3z p[z]]), by Substitutivity of Implication for
positive (resp. negative) occurrences of Vz p(z] (resp. 3z p[z]) infer Flply]].
A= F[Qzp[z]]

A =Qz plz] = plo]
skolemize (existential) A= Flpla]]

When the quantifier Q has existential force and the subformula Qz p[z] does
not occur within the scope of another quantifier in F, and there is a skolem-
izing axiom for Qz p[z], then the quantifier can be removed, and z replaced

throughout p by a. Proof: by Substitutivity of Equivalence.*

3.7 Inference Rule for Quantification

Quantification is an inference rule that performs a function inverse of skolemization,

L.e. it reinserts quantifiers in subformulae. I will use the same conventions as above.

A= Flpla]]

quantify (existential) A =F[Qxz p[z]]

When p[a] is a subformula of F not in the scope of a quantifier, and a is some

*Actually, since only the non trivial direction of the equivalence is recorded, the Jjustification
should really be by Substitutivity of Implication, which works out just the same since Q must have
existential force.
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term, then some occurrences of a in p may be existentially abstracted by a
variable and the subformula p[a] replaced with the quantified formula Qz p[z],
where Q has existential force, i.e. is 3 if the subformula has positive sign, V
otherwise. Proof: by Existential Generalization (resp. Universal Instantiation)
and the Deduction Theorem infer p D 3z 5%p (resp. Yz 3%p D p); then, by
Substitutivity of Implication for positive (resp. negative) occurrences of p in F'

conclude F[3z 5%p| (resp. F[Vz $%p)).

A= Fpla]]
A = Qe p[z] = pla]
quantify (universal) : A= F[Qzp[z]]

Here again, a skolemizing axiom and the principle of Substitutivity of Equiva-
lence are together at work. Note that the premise A = F[p[a]] is often really
of the form A = F[p[z]], where z is a free variable which gets unified with «

. for this particular inference step.

3.8 Soundness and Completeness

A logical system is sound iff all its theorems are valid: that is, if its axioms are valid
and its inference rules preserve validity. I have shown that all of LOGICALC’s rules of
inference are derived rules of inference in a conservative extension of F=, therefore

they are sound by virtue of the system F= being sound.

The system F= is complete in the sense that every wff of L(F=) which is valid is
also a theorem. I will show that LOGICALC shares this property. However, I will only
be interested in completeness with respect to formulae which are strictly in £(F=).
Remember that LOGICALC’s system is an extension of F=. In particular, its language
has additional symbols (such as skolem terms) which are not in £(F=). I will not
consider completeness relative to this extended language, but rather to its proper

subset £(F=) which is all that is required to express sentences in First-Order Logic.
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The result will be established by showing that LOGICALC faithfully captures the
axiomatic structure of 7= and therefore that every theorem of F= is also a theorem

in LOGICALC.

Modus Ponens: is also a rule of inference in LOGICALC.

Generalization: is subsumed by quantification. Proof: if A[z] is a formula, there
must be a skolemizing axiom of the form Vz A[z] = Ala]. From A[z] infer
Ala] by Substitution, then Vz A[z] by Substitutivity of Equivalence from the

skolemizing axiom; this is exactly what Quantify (universal) accomplishes.
Axiom of Reflexivity: is also an axiom in LOGICALC.

Axiom Schemata 1, 2 and 3: if Ais a tautology, so is ¢ = = O A, therefore infer
A by Taut-Trans.

Axiom Schema 4: Vz A[z] D Vz A[z] is a tautology, therefore a theorem. By
Skolemization into the consequent infer Vr Alz] O Afy], then by Substitution
conclude Vr A[z] D A[t].

Axiom Schema 5: Vz[A V B[z]] D Vz[A V B[z]] is a tautology, therefore a theo-
rem. By Skolemization into the cbnsequent infer Yz [A Vv B[z]] D [A Vv B[y]].
There is a skolemizing axiom of the form B[a] = Vz B(z]. By substitution infer
Vz [A V B[z]] D [A V B[e]], then by Quantification of the second occurrence of
B conclude Vz [A V B[z]] D [A V Vz B[z]] and by Alphabetic Change of Bound
Variable Vz [A V B[z]] D [A V Ve B[z]].

For this derivation to be acceptable, we rﬁuét show that the rﬁle of Alphabetic
Change of Bound Variable is a derived inference rule of LOGICALC. Proof: From
Vz Alz] infer A[z] by Skolemization, where z is a variable free for z in Alz].
For any variable y, there is a skolemizing axiom of the form Vy Aly] = Ala)]. By
Substitution, from A [z] infer A[a]; and finally, by Substitutivity of Equivalence
(or Modus Ponens), conclude Vy A[y].
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Axiom Schema 6: it would seem to be a simple matter to infer z = y D «Afz] D
Al[y] by first assuming z = y, then applying the Equality rule to A[z] D A[z],
and finally discharging the assumption. There is a limitation in LOGICALC
which prevents you from making an assumption in this way (to be subsequently
discharged by the Deduction Theorem) if it has free variables (and more impor-

tantly if it shares free variables with the consequent).

When you must find a proof for A = p'D ¢, you typically want to set up a
subgoal of the form A; p = ¢ (the refinement to be validated by If-Intro). If p[z]
and q[z] share the free variable z, then the correct semantics for the subgoal
A; p[z] = q[z] is that, as you further refine and develop the proof and z becomes
more and more instantiated (remember we rely on unification), the proper and
selfsame substitution is reflected in both the assumption p[z] and the subgoal’s

conclusion ¢[z].

Unfortunately, this cannot be done because when p[z] is asserted in the assump-
tion set (datapool), the free variable z loses its former identity and in some
sense becomes renamed. A similar (mis)feature is present in PROLOG: when
you assert(p(X)) and X becomes subsequently instantiated, this instantiation

will not be reflected in the assertion you made earlier.

Therefore, LOGICALC will not allow you to “move” p to the assumption set if
it contains free variables; these variables will have to be “captured” either by
quantification or by instantiating them with ground terms (the system will offer

to do this automatically whenever necessary).

The if-intro inference rule makes sure to enforce this particular restriction and
will arbitrarily rename all free variables (should there be any for some reason)
in the assumption being discharged. For instance H,p[z] = ¢ would result in

H = p[z] D q, where z is not free in ¢ and is free for z in p[z].

Despite this limitation, it is not very difficult to derive Axiom Schema 6. Let

Alu,z] be a wff such that x is a variable free in A, and u represents all the
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- other variables free in A. There are skolemizing axioms of the form:

VulAlu, 2] D Afu,2]] = Aly(2),2] D Aly(z),2] (i)
Vzylz =y D VueAlu,z] D Afu,y]] =« a=8D VuaAlu,a] O Aly, B](ii)

1. = Alu,z] D Aly, 2] is a tautology

2. = YuaAlu,z] D Aly, 2] by Quantification using (i)
3. a=Lf=YudAlu,z] D Aly, 2] by Assumption-Intro

4. a=f=>Vu«Alu,a] D Au,q] by Substitution

5. a=f=VYusAlu,a] D Aluy, j] by Equality

6. = a =D VusAfy,a] D Alu, ] by If-Intro

7. = Vzyez =y D VuaAlu,z] D Afu,y] by Quantification using (i)
8. ==y D VusAlu,z] D Afu,y] by Skolemization

9. ==y DeAlu,z] D Alu,y] by Skolemization

The simpler case where there are no other free variables u is dealt with simply
by omitting axiom (i) as well as lines 2 and 9, and by removing Yu and any

other mention of u throughout.

I have demonstrated that LOGICALC completely captures the axiomatic structure of
F=, therefore it is complete in the sense that all valid formulae of £(F=) can be

derived.?

3.9 Lambda Expressions

LOGICALC also allows terms of the form \z; ... T A which denote anonymous pred-

icates or functions. The motivations for introducing this notation were:

e It is occasionally convenient to state a general principle as an axiom in terms of

a free predicate (or function) variable and be able to derive instances tailored to

>The language of LOGICALC covers more formulae since it includes the skolem constants al.
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the current problem by plugging in the appropriate \-expression. Mathematical

Induction is such a principle:
(VP : N~ prop) [P(0) A (Vn € N) P(n) D P(n+1)] D (Vm € N) P(m)

By substituting Az [E,’;oi = ﬂ%ﬂl] for P, we are able to derive the following
induction theorem:
[E?:oi = 0!0;-1! A (Vn € N) E?:oi = n!n2+l! ») Z?:OI Z = !n+12!121+1+1!]

S (Vm e N) ¥, i = mimtl)

2

e )\-expressions are a convenient notation for expressing set theoretic notions. For
instance, Az A[z] can be interpreted as the set of those z which satisfy A. Set

intersection is defined by:
Viaz €S1NS;=z€ S1AT€ES,

by viewing = € S as an abbreviation for S(z), once again it is possible to plug

in A-expressions for S; and S; and derive instances of the above definition.

3.9.1 Comprehension Axioms

Naturally, the logical system needs to provide ways of manipulating A-expressions.
For instance, plugging such expressions in the above schemas involved a little more
than mere substitution: it was also necessary to reduce® the resulting redexes—a redex
is an expression of the form (% (Az;...z,.B) t;...t,) denoting the application of
a A-expression to arguments. Reducing the preceding redex means replacing it with
Blt)/zy...tn/xs]—Thus P(m) after substitution became [Az 2 ;i = ﬂ’”7"'-9](m)
which was then converted to ¥ ,: = ﬂg—'—;ﬂ

)

6What LOGICALC calls “reduction” is also known as A-conversion.
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The intuitive way to justify this reduction operation is to assume the existence of

Comprehension Axioms of the form:

Ae1. .z Aty .. t,) = SEw2nA

Azi. .20 s](ty. . tn) = §Emng

and then invoke Substitutivity of Equivalence (or Equality); similarly for Abstraction.

Unfortunately, it is well known that the resulting system is inconsistent.

3.9.2 Rules for Reduction and Abstraction

Before agonizing further on the fundamental inconsistency introduced by this treat-
ment of A-expressions, I will state formally the rules of Reduction and Abstraction,

however dubious they may be.

Reduction H= INCRER

t1 ...tn

Replace a redex with the body of the A-expression with each occurrence of a
formal parameter z; replaced by the corresponding actual parameter ¢;. The t’s

are supposed to be free for the z’s in A, and p may be either a term or a wff.

H= A[p[tla“-’tﬂ]]

Abstraction H=A[(% (A\z1...znplzr,...,20)) t1...15)]

Replace a term or wff pin A with a redex (i-e. the application of a A-expression

to arguments) that reduces to p. t1 ... t, are term or wffs that may or may
not occur in p. z; ... z, are variables which do not occur free in p. Each
z; abstracts out of P zero or more occurrences of ¢;. ¢; must not contain any

variable bound (by quantifier or lambda) within a subterm or subformula of .
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3.9.3 Russell’s Paradox

When applied without discrimination, these rules send soundness down the tube.
In particular, here is the derivation of a contradiction inspired by Russell’s famous

paradox.

The set of all sets which are not member of themselves might be represented by the

expression Ay —y(y).
Ay ~y ()] Ay —y(y) = [Ay ~y(¥)] Ay —y(v) (i)
must be an axiom in LOGICALC. By Reduction we conclude
Ay —y(9)]Ay ~y(y) = ~[hy —y(¥)] Ay —y(y) (i)
which is in contradiction with (i). Therefore, by NOT-INTRO, we infer:
= [Ay —y ()] y ~y(y)
We can proceéd similarly with thé negation a.nci infer:
= [y -~y (y)]dy ~y(y)

Hence the paradox.

LOGICALC will give you as much rope as you need to hang yourself, and then some.
Type theory is a rather attractive alternative which does not have these problems
[And86,AINP88c,C*86]; however, it would require all variables and constants to be
explicitly typed (annotated with a type). Implementing such a scheme would not be
terribly difficult but it would necessitate a number of additions and extensions to the

code to make the approach practical:

1. The representation would have to be extended: every variable and every con-

stant must be associated with a type expression.
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2. Unification would have to be revised to properly deal with types, e.g. it should
- be replaced with some variant of higher-order unification such as Huet’s or

Elliott’s.

3. Input syntax would have to be extended to allow the specification of type ex-
pressions. Also, if the user had to type in all type annotations, such a task
would quickly become unbearably tedious. Therefore, the system would have
to be able to supply the proper type annotations when they are left out by the

user, e.g. by means of a type inference/reconstruction algorithm.

4. Syntax checking would have to be revised accordingly. In fact it would have to

be part of the type reconstruction procedure.

5. Printing of terms and wffs should indicate type annotations but not overwhelm

the display with them.

For the purpose of mathematical investigations, this would be a worthwhile project,
but, since I was mostly interested in facilitating exper'iment'ations with Al formalismé /
problems, it seemed that the benefits to be derived from such an enterprise would
hardly be worth the effort. Instead, I suggest we follow traditional practice in math-
ematics which is to omit type annotations, but be mindful to only perform those

manipulations that would be permissible in a typed system.

LOGICALC allows the user to specify type declarations for variables and constants.
On the strength of such declarations, syntax checking [see Appendix A] will detect

and prohibit the more blatant infractions to the principle of type well-formedness.

Since neither variables nor constants are typed symbols (i.e. they do not have a type
annotation), what good are type declarations after the process of statically checking
the syntax of a formula or expression has been carried out? LOGICALC will typically

translate a type declaration into an IS-expression of the form (IS (type) (term)) and
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insert it in the resulting formula (using either A or D as appropriate) as an additional
constraint. The type theory proper is specified as a theory extension. Note that
this practice serves to limit the scope of certain axioms, but will not prohibit the
derivation of paradoxical results, e.g. when a substitution step violates an implicit

type constraint.

If we represent a type constraint by a proposition of the form z:T, the axiom of

Mathematical Induction will be encoded by a formula such as:

P:Nwprop D«P(0) AVn[n:ND«P(n) D P(n+1)] D Vm [m:N D P(m)]

3.10 Unlification and Substitutions

So far, my exposition of the logic did not presuppose more than the ability to de-
termine syntactical identity in order to apply rules of inference. However, LOGICALC
affords the user considerably more flexibility and power by relying on unification in-
stéa.d. Thus, Modus Ponens should be understood as stating that from p; D ¢ and p,
and the existence of a substitution 8 such that dp, = 0p, (where = denotes syntactic

identity), one may infer fq.

Naturally, the problem of unifying expressions is made slightly more complicated by
the fact that quantifiers and lambdas have to be properly dealt with. In particular, we
should require that Vz A[z] and Vy A [y] must ﬁnify, but no substitution will make the
two expressions syntactically identical; such an identification could only be effected
through an alphabetic change of bound variables (such as ¢ — y). Should wé then
extend the notion of unification to include not only a substitution but also a renaming?
I suggest that such an extension is unnecessary. Whereas the substitution truly carries
additional information, the renaming does not and is merely a change of notation.

Instead we should broaden the notion of syntactic identity to cover notational variants

as well.
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The classical method for factoring out the choice of names for bound variables is
to use De Bruijn’s notation in which binding lists are omitted and each occurrence
of a bound variable is replaced with the appropriate De Bruijn’s index [dB72]. A
De Bruijn’s index is an integer denoting the reference depth of the occurrence of the

variable it stands for: ¢ means “the variable introduced by the ith quantiﬁer‘or lambda
up from here.” Thus Af Ag [f(Ah k(g))](g) would become A X [2(A1(2))](1).

Two formulae are equivalent modulo an alphabetic change of bound variables iff
they are syntactically identical when written using De Bruijn’s notation [dB72]. This

observation leads me to formulate the following improved notion of syntactic identity:

T'wo expressions will be declared syntactically equivalent if they are iden-
tical when written using De Bruijn’s notation.

More practically: the only places where they may differ are occurrences of
bound variables, and these occurrences would be assigned the same index
by the process of translation to De Bruijn’s notation.

The justification for using unification rather than mere syntactic identification is that
it simulates substitution steps. Unification does not permit inferences which do not
also have a derivation using syntactic identification and a few additional substitution
steps, but it makes their proofs shorter since these steps do not have to appear

explicitly.

If we decided to make the aforementioned steps explicit, obviously the corresponding
substitutions would have to satisfy the requirements 6f the classical Substitution
Rule: i.e. for a given unifier § = {t1/z1,...,ta/zn }, that t; be free for z; in the
corresponding formula. As we shall see, this imposes a natural restriction on the

unification procedure.

t i1s free for z in A, iff for each free variable y in ¢ there is no free occurrence of z ,
in A that is in the scope of a Vy, 3y or Ay. If we consider this requirement in light

of de Bruijn’s notation, we find that what it means is that ¢ is allowed to contain an
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occurrence of a de Bruijn’s index n iff this occurrence appears in the scope of at least
n quantifiers or lambdas in ¢. In other words, a free variable can only be assigned a
well-formed De Bruijn’s term, i.e. one in which every index n occurs within the scope
of at least n quantifiers or lambdas. I call this the requirement of well-formedness for

substitutions.

Using de Bruijn’s notation, LOGICALC’s extended notion of unification is simply ordi-
nary unification with the addition of the restriction just stated. It is exactly ordinary
unification when the formulae contain no quantifier or lambda. It is also exactly
ordinary unification when they do, except that it will report failure more often. It
will report failure in exactly those cases where the resulting substitution would con-
tain assignments involving non-well-formed De Bruijn’s terms, thereby violating the

requirement of the Substitution Rule.

LOGICALC’s implementation of unification is of the incremental depth-first recursive
algorithm variety. Bound variables are compared by computing their de Bruijn indices
(for this reason I must keep track of binding lists as they are being encountered).
When about to assign a term to a free variable, the algorithm not only performs the
“occur” check, but also makes sure that said term does not contain free occurrences

of bound variables (this again relies on keeping track of binding lists).

Usually, unification of two expressions is done assuming that their respective free
variables are independent (i.é. that z in one expression is distinct from z in the other).
LOGICALC’s unification procedure cleverly keeps track of which side each term or
variable pertains to; for instance unifying f(z) and f(g(z)) would produce a pseudo-
substitution of the form { (z,left) « (g(z),right)} from which it is possible to
extract (compute) a substitution applicable to the left side (which would be something

like: {z « g(y) }) and another one applicable to the right side (empty in this case).

Unfortunately, it is possible that extracting a substitution in this manner might vi-

olate the requirement of well-formedness. Consider the problem of unifying \y f(z)
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with Az f(g(z)). Clearly, the same pseudo-substitution will be computed by the uni-
fication procedure. However, if extracting a substitution for the left side results in
{z < g(y)} where y was thought to be a “new” variable, we can see that the in-
tended meaning of y in the substitution conflicts with the bound variable in Ay f(z)

and unwittingly violates the requirement of well-formedness.

The solution is to keep in mind that “pseudo-substitutions” are constructed according
to the principle of well-formedness; therefore, any violations of this principle encoun-
tered while applying a “true” substitution must be the result an unfortunate choice of
name when extracting said substitution from the corresponding pseudo-substitution.
One possible fix would be to revise the substitution by chosing other names until it
was admissible again. I opted for a different approach: I rename bound variables

until they no longer conflict with free variables.”

"In fact, since constants and bound variables are both represented by LISP symbols, it is also
necessary to rename bound variables so that they do not conflict with constants by the same names.




Chapter 4

A Graph Editor for Theorem

Proving

In this chapter I introduce the idea of theorem proving as graph editing. Each type
of node, such as goals and plans, must define its own interface by means of a display
function and a command processor. I will look at the issues of Display (introducing

the notion of a view), Abbreviations (input and output), Commands, and Help.

4.1 Introduction

A session with LOGICALC begins with the user stating the theorem to be proven,

which the system formats and presents to him as a “goal.”

By invoking a “plan
generator,” he should then propose a refinement of the goal into a “plan” whose steps
are themselves goals, and proceed to select one of these subgoals to work on next in
a similar fashion. The process bottoms out when a subgoal matches an axiom or an

assumption.! When one branch has thus been closed, the user will move on to the

lor is otherwise obvious, e.g. a tautology.
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next remaining open branch, and so on until the proof tree has been completed.

This view of interactive proof development is clearly an instance of the more gen-
eral notion of graph editing. The user works towards constructing a proof tree by

progressively extending a tree of goals and plans until each branch is closed.

Others too have looked at interactive proof construction as a process of graph editing.
NUPRL’s user interface [C*86] is implemented on ted, the Text EDitor, and red,
the Refinement EDitor; both are based on the concept of structure editor. The
Environment for Formal Systems (EFS) [Gri87a] is also based on a structure editor,
but generated by the Cornell Synthesizer Generator [RT87]. The Interactive Proof
Editor (IPE) [RT88] more specifically applies the notion of an attribute grammar to

structure the proof tree and investigates the idea of “proof by clicking.”

IPE lends itself well to an exploratory style of proof. LOGICALC was also designed
precisely with this type of interaction in mind. Unlike systems such as LCF [Mil79a,
Pau87] and the Boyer-Moore theorem prover [BM79] where it is necessary to deter-
mine in advance the key lemmas that will be required in the course of the proof,
IPE And LOGICALC both allow the user to start out and proceed without a-priori
knowledge of what will be required or even what direction the course of the proof will
take. The ability to switch between alternative proof attempts encourages the user
to “try things out.” Also, it is not unusual to realize after a few such attempts that
there are axioms “missing” in the theory; it should be possible (and it is) to extend

the theory “on the fly” without forcing the user to start all over again.

The “detaching” mechanism, which will be discussed in a separate chapter, aliows
LOGICALC to go one step further and provides the user with another degree of free-
dom. The basic idea is that, when confronted with a goal, the user often has the
intuition that a particular axiom should be used to solve it, but the details and the
particulars of the inferential manipulations actually required are difficult to work out.

With LoGIcALc, the “détaching” mechanism will take care of it automatically by a




4.1. INTRODUCTION 115

combination of unification and a process that superficially resembles non-clausal res-
olution [Mur82] but is actually justified in terms of regular inference rules [Chapters 3
and 7).

As I mentioned earlier, IPE investigates the possibility of “proof by clicking.” While
this is an attractive model for the non-sophisticate (or casual) user, it only allows
1-dimensional exchange of information and does not support compositionality well.
Furthermore, because of its low bandwidth, the preferred mode of interaction must be
supplemented with other forms of input (e.g. textual). I find that graphical mouse-
based interfaces, while they make for much sexier demos, just don’t have the gener-
ality, simplicity, flexibility, or power of the more traditional command-line-oriented
shells. Also, it is often a lot faster to just type in a command than to pull down a

menu and select an item (and then be prompted for arguments).

LOGICALC offers a model of interaction that is reminiscent of a UNIX-type shell; there
are motion commands to follow parent/child or other kinds of links, just like cd allows
- the user to move about the file system by following super/subdirectory or symbolic
links. The system keeps track of a stack of visited nodes which can be “popped” or
“jumped to” in the manner of pushd/popd. There is a command stack which plays
the same role as the UNIX shell “history;” commands can be recalled from this stack
and substitutions applied. Abbreviations can be used to define macro commands,

much in the manner of aliases. Finally there are commands to extend the graph.

In an article on graphic user interfaces for computer algebra systems, Kajler [Kaj]

identifies a number of essential issues; in particular, the following:

e The display of formulae. Subtopic: the display of “long” formulae.

e Abbreviating parts of formulae. Subtopic: provision for a “magnifying glass”

(i.e. display of abbreviation contents).

o History mechanism.
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o Attaching comments to objects.

e Interactive help.

All of these are addressed in LOGICALC.

LOGICALC’s graph editing functionality is implemented in an object-oriented way:
each type of node provides its own specific display procedure and command pro-
cessor. Thus the implementation is natural, modular and extensible. For obvious
ergonomic reasons (principle of least astonishment), it is desirable to impose some
kind of uniformity and consistency of interfaces across node types. In the following
sections, I will discuss the topics of Display, Abbreviations, and Commands, which
are the principal components of this overall “look and feel,” as the catch phrase goes
these days. Other issues, such as “detaching” and “find mode,” subterm and premise
descriptors, etc... which also contribute to uniformity of command specification will

be treated in separate chapters.

4.2 Walk Mode

. LOGICALC’s interface is based on DUCK’s walk mode [McD85]. Many entities in DUCK
can be thought of as graph structures. These include goal hierarchies constructed
during deductions, data type hierarchies, etc. .. The “walker” or “browser” is a sort
of graph editor which allows you to move about these graphs, inspecting, and, in
some cases, altering them. When the walker has control, the system is said to be in
“walk mode,” and prompts with “w>”. You can type commands to move around in

the graph or act on it, or LISP expressions to be evaluated.

In “walk mode,” the system displays the current “focus of attention” which is the

graph’s node currently under scrutiny. We also say that we are at the node.
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When the focus is moved to a new node, or when the PP command is entered, the
system outputs a detailed display of the node, which was designed to be as informative
as possible and consists of helpfully formatted material, often including labeled and/or
numbered items and pointers to other nodes. Simply numbered items are typically
subparts, and typing n to the shell is interpreted as a request to move to the node
representing subpart n. In other words, positive integers act as moving commands

[more about this later].

The system keeps a stack of those nodes which have been inspected. Whenever you
move to a new node, it is pushed on the stack, except when it is already in the stack,
i.e. has already been visited, in which case everything above it is “popped™ off. The
stack command displays all elements currently on the stack in an abbreviated form,
prefixing each one with a negative (or null) integer: the current node is prefixed with
0 (zero), the previous node with —1, etc... Typing —n moves you back to the node
prefixed with —n (in essence, n nodes are popped off the stack). Typing 0 (zero) acts

just like pp: the current node is redisplayed in the verbose form.

Each node is really represented by a pair (node, node_descriptor), where node_descriptor

is a 4-uple of the form:
(type, abbreviate, display, command_processor)

Commands such as stack or —n, which are stack commands are intercepted by the
browser’s interpreter and directly executed: stack invokes the abbreviate procedure of
each node on the stack in order to produce the condensed display. pp and 0 (zero) are
similarly intercepted and invoke the display procedure of, and on, the node on top of
the stack. All other commands? are handed to the current node’s command_processor.
However, should the command_processor report failure to handle the command, then
the global command processor (named logicalc) gets a turn; this global processor

centralizes those commands common to all modes, such as abbreviation, execute,

2Except a handful which are also intercepted by the browser.
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xabbrev, commands, history, information. If this too should fail, the command is

then evaluated as a LISP expression.

4.3 Display

Every type of node has its own display function, but they are all constructed along
the same principles. Enough information must be provided to identify and permit
useful work on the node. Also, since the paradigm is that of graph editing, sufficient
information must be provided to navigate to other nodes. A typical display includes

the following:

A title which indicates type and identity of this node.

* A representation of the node itself. For instance, a goal would display its for-

mula.

e Numbered subparts. For example, a plan will output an enumerated display of

its steps. The user can move to subpart n simply by typing n to the shell.

e Other links. They are typically grouped by category. A subtitle indicates the
name of the category, and it is followed by an enumeration as above. For
example, in the display of a goal, we can find the subcategory “answers;” each
answer is numbered and an abbreviated description is provided. The user will

be able to move to answer n by typing answer n.
o Other information, such as the number of class plans for a goal, or the number

of successors for a plan.

Many examples of displays have already been encountered in the introductory example

[pp. 7-38]. Here is another illustration:
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Goal View <class CLASS.3>

Find: (X) in:

(< (F 7X) '.0)
Assumptions:

(< (F t.A) V.C) -- 1:<198
Answers:

1 X = | MID_A_XX2

2 X = 1A
Supergoal:

(IF (< (F '.A) '.C) (AND (£ '.A ?X) (< (F?X) r.CO)N
Local Plans:

PLAN --- (TAUT-TRANS)

1 (< 7Y1.3 (F 7X.4))

2 (< (F 7X.4) '.C)

3 (< '.X1(7X.4 7Y1.3) 7X)

4 (< 7X !.X2(7X.4 ?Y1.3))
(2 class plans)

As I hope you begin to see, all this is organized to facilitate movement about the
graph; recall that —n moved back n nodes; 0 or pp redisplays the current node; n

moves to subpart number n; and answer n moves to n'®

answer—more generally
foo n moves to n'® element in the enumeration of subcategory foo, or nt® link of
type foo. Proof construction may occasionally look like an adventure gamé, but

navigation should not be the difficulty!

Node display is terminal-oriented rather than graphical,® but the most widely used
terminals are supported (i.e. xterm, vt100, hpterm), as well the TI Explorer, and
TEX. The global variable term* controls which kind of device output is prepared for.
In particular, I produced all examples included in this thesis by setting term* to
tex. What term* controls is how certain kinds of textual enhancements are effected,
such as selecting boldface or reverse-video. For regular terminals, this is achieved by
escape sequences, on the Ti Explorer a :set-current-font message must be sent to

the stream, while for TgX, appropriate control commands must be inserted (e.g. \bf).

3The project started out before X was available.
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The code is easily extensible, but nowadays it would make more sense to invest in a
graphical interface (maybe based on CLX). Note that setting term* to nil disables

all enhancements.*

All formulae are displayed using a more powerful version of the traditional LISP pretty-
- printing procedure. This version is data-driven (therefore easily extensible) and can
handle abbreviations (these will be described in the next section). Today, the XP
proposal [Wat89] might be a viable alternative although I believe that in certain

respects it is not quite as powerful.

In every display and for each category of formulae, there is a corresponding global
variable that controls whether and how much of the formula to display. These vari-
ables have uniform semantics (and namings) across all node types and are documented

in The LOGICALC Manual [Duc88]. Thus the user is able to customize all displays

according to his preferences.

The truth abouth LOGICALC is that what you see is not what you get. For most type
of nodes, LOGICALC provides an extra level of packaging, namely “views.” You may
have noticed that the title of a goal display stated Goal View rather than just Goal.
The reason is that I lied to you: you weren’t really looking at a goal, but rather at a

view of that goal. The fact is that you never get to see goals, but only views of them.

The principal distinction between a goal and a view of same, is that the view has a
table which specifies a renaming of the goal’s variables. The reason for wanting to do
such a thing is rather subtle: in a complex graph, the same node may be accessible
from different places. However, these various places may have wildly differing variable
namings. Therefore, in order to produce the least astonishment in the user, it is often
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