THE APL IDIOM LIST
Alan J. Perlis
Spencer Rugaber

Research Report #87
April 1977

Publication of this document was supported by a grant from
the Mobil Foundation.

13.
14.
15.
l6.
17.
18.
19.

TABLE OF CONTENTS

INTRODUCTION...OO..oo.oco..0.0..0000..'0.!'....0-00-.-.3

EXTENSIBILITYQno.o.o.oo-oooo.l.togoiclooooo.0'.0.0..0005

..SOURCES¢'ooolcno...c..o-o.-0..0.0“00."-.coo.ono.o....oe

CATEGORIES. et tveuneeronnecasonnnnsacassosnaaasannnnnaal
ANNOTATED EXAMPLES.....................,..‘.....,......8
PREDICATES « « « « e v e e ee e ee e e enesennseneenaseneseness.ld
SCAN...........;......................................19
TEXT PROCESSING IDIOMS..ucceeeceacecaosanssassoasasnssss2l
PHRASES . ceueeeosececscaaessassssascsasssssssassssnsssell
PEMPLATES « « « 2« e v e e e s e e annesnnssnnsnnesnnsenssenasenss25
IDENTITIES « « v« e v e e e e s enennsnnsnesnseesnsnesneeneess26
EXTENSIONS . eeeeeeeeoosecoosaasccasasssssosssasssoannssslB
CODING TRICKS « e« v e e eeeueeonneennesanesenncennceennesss3D
MINI-OPERATIONS.......................................31
OTHER OPERATIONS .. cveeceeocensensanscasaaaaascnsessnees3d
APPLICATIONS . teveeoseooaaossescssooasoancscassosaenses3l
SUBROUTINES, MACROS, AND IDIOM;.......................39
SUBSCRIPTION..41

PROBLEMS.......Q..'..QQ‘..'.l...'Q‘.....'...O....000000043

1.0 INTRODUCTION

APL programs have been criticized for being hard to
read. On the other hand, the conciseness of the language
'is a necessary ingredient of its power. 1In an attempt to
underStand the processes of reading and creating APL
‘programs, many examples have been studied. It has been

found that certain expressions occur repeatedly in vérying
contexts. For example, the APL expression
W<((VaV)=1pV)/V is often used to remove duplicate
elements from a vector. Such expressions are called
"idioms," and'this report is a collection of them culled

from the literature and from personal experience.

Idioms are characterized by their frequency of
occurrence, application-independence, power, and
"chunkability" (their ability to act as a constituent in
higher order idioms). The key point to be made about them
is that, once they are learned, they are thereafter
recognized as a unit. No further analysis need be done.
This suggests that idioms should be taught early in the APL

experience.

To understand programs, one must enter into them.
. Understanding is discontinuous. Examination is initially

puzzlement. Then a flash of inéight and a model takes

form. The program is studied to verify the model. The

insight is more easily attained if the intersection of

idioms between writer and reader is large.

No language, APL included, provides the perféct set of
ﬁrepresentations and functions for every algorithm. A
” p;oéram is a mapping of the perfect set into the available
set. Programming is the art of organizing these mappings.
Generally we seek to define mappings that are of utility

beyond the particular algorithm being studied.

In the case of APL, representations and processing
which are simple and require uniform scanning.should be
added ﬁo the language. Note) and SCAN. Consider the
representation of a graph as a 2 by N array of edges. The
computation of the set of vertices connected to a subset S
of the nodes (transitive closure) should perhaps be a
primitive. 1In this way, the detection of idioms may be

useful in guiding future extensions to the language.

Idioms are not restricted to APL, but APL’s
conciseness and composability make idioms much more common
in that language.' FORTRAN, for example, contains idioms
such as I-(1/2)%*2 té Eell whether I is odd or even,
TEMP=A, A=B, B=TEMP, foi exchanging two values, |

and A(I,J)=(1/3)*((3/1), inside of a loop, for making A

an identity matrix. LISP, with its highly regular syntax,
is typically taught by the presentation of idiomatic
examples. In Irons’ extensible systems programming
language, IMP, the expression (S«S5-1)=0 => {actiéns}, is
the most'common way of programming V, Dijkstra’s semaphore

_synchronization operation.

2.0 EXTENSIBILITY

-

This list of APL idioms was compiled by the'authors in
the hope that it might act as the first step in the
collection of a lafge body of APL programming knowledge.

As such, suggestions, corrections, and additions are

solicited.

4

3.8 SOURCES

Material for this report has come from the authors and

from the following additional sources.
1. APL 0.
2. Proceedings of the APL annual conferences (1-7) .

3. On-line library of VS-APL on the resident IBM/370

system.

4. Raymond P. Polivka and Sandra Pakin, APL: The

Language and Its Usage, Prentice-Hall, 1975.

5. Ned Irons, Michael Condry, Terry Miller, and many other
people in the Yale University, Department of Computer

Science.

4.0 CATEGORIES

A mild attempt has been made to organize the following
material into categories. Sections include PREDICATES,
MINI-OPERATIONS, IDENTITIES, SCAN, TEXT PROCESSING, etc.

In some cases, a short discussion is also given.

5.0 ANNOTATED EXAMPLES

1. REMDUP or Remove duplicates: W+((VuV)=ipV)/V.

| W is to be set to a copy of V with duplicates removed.
To demonstrate this, consider the Kth element of V.

~ There are two possibilities. If this is the first
occurrence of the Kth element, that is, if there is no J
less than K such that V[J1=V[K], then VaV[K] will be X.
(1pV)[X] will also be XK. Thus the Kth element of the
compressor will be 1 indicating that V[X] should be
included in ¥. 1If, on the other hand, there exists a J
less than X such that VI{J1=V[X] then ViV[X] will be J.
(;pV)[K] will still be K. Because K does not equal J,
the Kth element of the compressor will be 0 and V(K]
wiil not be included in W. Hence, for each X, 1<K<pV,
VEK] is included in ¥ iff it is the first (leftmost)
occurrence of its value in V. W will contain each of
the different elements of ¥ and it will contain no

duplicates. Therefore, W is V with duplicates removed.

Another variant of this idiom is:
W<(1 18<\Ve.=V)/V. The <\ leaves only the first
(leftmost) 1 in any row. The 1 1§ looks at the main

diagonal. A 1 there indicates that this is the first

occurrence of the corresponding value thus far in V.
This idiom directly generalizes to higher‘dimensions
such as the rank-three case:

W«<«(1 18<\A/1 3 3 284A.=R4)+44.

In situations where the length of V is large

~ compared to its span (the difference between its'largest

and smallest elements), the following idiom can be
used: (ReV)/R<(L/V) TO [/V (where TO is described

in idiom #4 below).

EXPAND: D<«(1+pA)[pB
A<(((14p4),D)+4),[11D*B.

. A is an "old" array. B is a new entry to be catenated

along the first axis of 4. B must be of rank one less
than 4. 1If either 4 or B is larger than the other along’
any axis, then the length of that axis must be expanded

to make them match. TAKE is used to accomplish this.

Bar Graph: W<Vo.21[/V.

V is a vector of non-negative integers. A boolean

4matrix is to be created such that the Ith row contains

VLI] consecutive 1s, starting in the leftmost position.

The above idiom accomplishes this.

10

As another application, suppose V(LI] is the length

of the Ith word of a string. It is desired to create a

table (matrix) with one word from the string per line.
Then (,W¥) is an expansion mask that, when applied to the
string (with blanks removed) and reshaped to have pV

rows, will be the desired table. This entire idiom is

" called MAKEARRAY:

V Z«MAKEARRAY S;A;L;Y:H

A<(' '=5,' ")/11+4pS

L« 1+44-0,7 144

Ye(S52' ") /S

H«Lo.2A[/L

Z«(pH)p(L,H)\Y V
A contains the positions of blanks in S. It is used to
compute the lengths of the words. These lengths are
saved in L. Y is S with blanks removed. H is the bar
graph idiom described above. It is ravelled and used to
expand Y. The result is then reshaped into the desired

word list.

To actually create a bar graph, the following idiom may

be used: G<' O'[1+(Pafl/V)e.<sV]. Here the boolean

. array is used to select either a blank or a [0 to create

the graph.

 T0: V<A,A+(xB-4)x1|B-A.

T0 makes V a vector of integers from 4 to B. It works

for any integers 4 and B.

5. Blank removal:

a.‘

Eliminate leading blanks: W<«(v\Sz' ')/S,

The V\ of a boolean vector turns on all bits that
are to the right of the first 1. Therefore, only
those consecutive blanks at the start of the string
are eliminated.

Eliminate trailing blanks: W<(v\$S=' ')/S. This
idiom is the same as (a) applied to the reversal of
the string. Another way of accomplishing this uses
DECODE to, in effect, v\ from the right end:
W«(T1+(S=" ')11)+S.

Multiple blanks reduced to a single blank:
W+(Av1+101,4<S=' ')/S. 1If either S[I] or S[I+1]
are non-blank, then the compressor will have a 1 in
the Ith position. Only if both are blank, will a 0
appear in the compressor indicating that a blank

can be removed.

6. Character-number conversions:

a.

Compute the number of digits needed to express a

number : D«lL1+10eN for positive integers or

D<L1+10@|N+N=0 for all integers.

11

12

b. Convert a number into a vector: V<(Dp10)TN

(where D is computed in (a)).

c. Convert an integer into

a character string:

 S«0DpL1+7] (where V is computed in (b)).

d. Convert a string of digits, represented as

characters, into a vector: V<"1+0D:15.

e. Encode a vector of positive integers as an

integer: I<«(10%L1+108[/V)LV.

f. Make an array in which each row contains the

character representation of one element of the

input vector V: M«ODL1+&((L1+10e[/V)p10)TV].

7. AMTOAL and ALTOAM:
Let A be a multi-dimensioned
memory ih row-major order;
some entries are given in M,
posifions, S, for those same
then the following idiom can
Going the other way converts

positions. This idiom is:

array, stored in linear

If the memory addresses of

and if a list of subscript
elements is to be computed,
be used: S+1+(pA)TM-1;

subscripts into ravel order

M<1+(pA)1S-1.

Viewed from another perspective, this is similar to the

problem of converting a directed graph, 4M, represented

in adjacency matrix form, into a list of its arcs

(AMTOAL) : AL+1+(pAM)T 1+(,

AM) /1p,AM.

Going in the other direction is nearly as easy

(ALTOAM) : AM<(A,A)p(1AxA)el1+(A,A«[/,AL)LAL-1.

13

14

6.0 PREDICATES

The APL language can be used to make assertions about
APL programs. The inclusion of logical vectors and |
‘operators in the language, in effect, provides the
exp;essibility‘of the first order predicate calculus. 1In
/particular, "for all" is expressed by A/ and "there exists"

with v/. This section gives further evidence of this

power.

1. Example of input specifications given in APL. This
problem comes from the article "An illustration of
current ideas on the derivation of correctness proofs

and correct programs," D. Gries, IEEE Transactions

on Software Engineering, Volume SE-2, Number 4,

December, 1976. The problem is to justify a line of

text given the following input parameters.

Z is the current line number.

N is the number of words on the 1line, each word
separated by exactly one blank.

S is the number of extra blanks at the end of the

" line.

B on input is a vector of startlng positions of words
on the line.

B on output is a vector of starting p081t10ns of
words on the Justlfled line.

Even numbered lines are to have extra blanks separating
words toward the left end of the line, odd numbered
lines ﬁoward the right. The input specifications for
this problem can be stated by the following APL
expression: A/(T>0),T=LT+«B,Z, 1+N,S where T is a
vector contaiping column positions, line number, number
" of words on the iine minus one, and number of blanks
terminating the line minus one. The specifications
state that all of these numbers must be integers greater

than zero.

A solution to this problem is given by the following APL
function, annotated below:

V JUSTIFY ;A;M;F;:G
+0x102M«¥N-1
A<S+M
C«LA+M
F«M+((A-CxM)p1) ,MpO
G<(MpC)+(Fx~2[Z)+(2|2)x¢F
B<(1+B-1N)++\0,G V

The function is executed only if ¥ is at least one,

otherwise the input line is already justified. 4 is the

total number of blanks on the line. ¢ is the minimum
‘number of blanks that will separate any adjacent pair of
words. F indicates how the unallocated blanks should be
distributed among the other words, depending on the

parity of Z. Together they form G, the actual number of

15

. 3.

16

blanks separating adjacent words. Finally, B is
computedbby'taking the o0ld value of B, subtracting the
number of blanks to the left of each word in the input
string, and adding the number to the left in the output

string. SCAN is used to compute this running count.

Example of APL used to express a proof. To prove: the
expression R+(2=+f0=(1q)°.lxN)/1N sets R to be a
vector whose components are all of the primes less than

or equal to N. Proof:

a. Let C«2=+4£0=(1N)e.|N.

b. ¢ is a boolean vector of length N. It compresses
1¥. Hence, R contains only elements from 1N.

c. For some J, 1sJ<N, consider C[J]. Then

CLJ] is (2=+£0=(1N)e. | N)[J]
is 2=+40=(1N)e.|d
Is 2=+40=(1N)|J

—p—

1s 2=+£0=(1J) |dJ

e

0]

d. ¢C[J)=1 iff J has precisely two exact divisors from
1J, that is, if J is prime.

e. C[J1=1 selects J in C/\N. Hence, R contains primes
<N. S

f. Conversely, consider any prime P, 2<P<N. Then PeiN
and 2=+/0=(1N)e.|P is 1.

g. Thus, C[P]l=1 and PeR.

Is X an integer? X=Lx.

10.

11.

12.

13..

Is A numeric, as opposed to character? 0=0\0p,4.

;s L made up entirely of elements of V? A/LeV.

;s M a syﬁmetric matrix? N M=8M .

Are all of the elgmeéts of V unique? A/ (VAV)=1pV.

Is V nondecreasing?. A/(AV)=\p?,

Are two equal-length vectors equal? A/V=W or VA.=W,
Does the vector V céntain any elements from L? v/LeV.

Are any rows of the matrix M duplicated?

A/1=+{MA;;QM.

Is the string S free from repeated spaces?

A/BV1+1¢1,B«1,5=' ',

Is the vector X a permutation of the vector Y?

XOAXx1Aa.=Y[AY].

17

14.

’

Is the Boolean vector, V, either all 1°s or all 0°s?

0=(pV)|+/V or

A/V/0 1o.=V or

AfV=14V or
(A/V)IV~V/V or
A/V=1¢V or
(r/v)=L/v or
A/1=VAV or
A/ViV/V or
~A/Ve~V or

~#2/1 OeV.

150

Are two entities (of any sort) identical?

V Z«X EQUALS Y
<0
+0x1(ppX)=zppY
+0x1v/(pX)=pY
Z+A/ ,X=Y V

18

7.0

SCAN

———

The SCAN operator is a powerful device in APL for

~avoiding loops. Some of its uses are described below.

+\

M\

LA

o

- Running sum. (See, for example, PREDICATES #1 -

JUSTIFY.)
Progressive maxima.
Progressive minima.

Generate the sequence 1 1 2 2 ... N N with

|-\12x¥N.
SCANs of Logical Arrays

Turn on all 0s after (to the right of) the

first 1.

Leéve only the first (leftmost) 1 turned on.

(See ANNOTATED EXAMPLES #1 - other variants.)

Leave only the first 0 turned off.

19

8.

2\B

Create a vector of running even parity on B.

Also, convert reflected Gray code to binary.

Turn off all elements after the first O,

20

21

8.0 TEXT PROCESSING IDIOMS

Because APL does not contain a complete complement of

text processing operators, the frequency of occurrence of

this application has necessitated the development of a

library of text processing idioms. MAKEARRAY, EXPAND, and

A

the blank removal idioms have already been described in the

" section ANNOTATED EXAMPLES. Others are given below.

10

Pattern matching: Return the stérting positions in the
string B of all occurrences of the substring 4:

Z«("14A£("1+104)¢(4°.=B),0) /1pB.
Left justify a word list: (+/A\L=" ")¢L.
Right justify a word list: (1-(r=" ')11)¢L.
Replace '*'s by ' 's: A<B=z'*!
B<A\A/B.

Filter out blank rows from a word list:

M<«(LA.2' '"){L.
Alphabetically sort a word list: - M<LLA27.8 1+041L; 1.

Sort a word list by length of word: M<LLAL+.2' ';1].

lg.

Remove duplicate words from a word list:

M<((Q1Q)=1pQR«2LLA.=QL) /L.

Find the number of occurrences of word ¥ in list

N«+/LA.=W.

Create a text array from user input:

V T<«ENTERTEXT ;LINE
T<0 0Op''!
LOOP: +0x10=pLINE+,[1
T<«T EXPAND LINE
-+ LOOP V

22

23

9.0 PHRASES

A few APL idioms are so commonly used that, when

reading an APL program aloud, they are‘typically replaced

‘by an English word or phrase. Examples of these idioms are

given below.

-~

If -- conditionally branch to line L if condition C is

true:

+Lx1C or +C/L.

Positions -- of elements of V in W: (WeV)/1pW.

Round -- to the nearest integerx(for positive real

numbers, R): L.5+R.

sort --

Indices

_ Last --

up or down: VIAV] or VLVV].
-—- into a vector: 1oV,

element of a vector: 'V[pV]

row of a matrix: MLC(pM)[11s1]

‘column of a matrix: ML;(pM)[2]].

All -- (see PREDICATES): Al

8. There exists -- (see PREDICATES): v/.
9. Ordinality -- of a vector: AMV.
(+/V)+1TpV.

180. Average -- of a vector:

~

24

25

16.8 TEMPLATES

A template is a pattern that can be used in various

situations for creating useful constructs. Some examples

are given below, where o stands for a class of appropriate

operators or idioms.

s

1.

(p4)a,A: Ravel 4, operate on it, then put it back

together again.

(BxC)+Dx~C: Avoid conditional branching of control by

constructing a vector with two types of components, B if
the condition is true, and D otherwise. (See, for

example, PREDICATES #l1 - JUSTIFY, line 5.)

A®Bo.aC: Use outer product to compute a
multi-dimensioned array of values, and then use diagonal

transpose to get rid of unneeded elements.

26

11.0 IDENTITIES

Because APL is closer to a mathematical formalism than
most ofher programming languages, mathematical properties
of APL programs are more apparent. As an example of this
Aphenomenon, seVeral mathematical identities expressed in

_ APL are given here.

2. *A+B is (*A)xxB.
3. -T4 is L-A.

4. ~AAB is (~A)Vv~B.

5. -+4 is +-A.

6. -4+B is (7A)+-B;

7. NxA+B is (WxA)+NxB.

8. x/pA is p,A.

9. V[AlB

- 10. AR®BYC

is

is (p4)ovVLi,41.

ALBIRC.

27

12.9 EXTENSIONS

Some APL vector operators do not extend to higher
dimensioned airays. Typical ways of achieving the same

effect using idioms are given below.

1. Epsilon: If W is a word and L is a compatible word list
then V/LA.=8¥ is a simple way to get the effect of
bepsilon on a rank two array. W could as well be rank

two, itself.

2. Compression: Given a boolean array 4 and a compatible
array B, it is desired to create a resultant array C,
with the same number of rows, such that ¢[I;] is the
same as A[I;1/B[I;], possibly padded with blanks or
zeros. This effect can be accomplished with the
following idiom:

H<[/+/A
C«((14pB),H)p(,(+/A)e.21H)\(,4)/,B.
3. Primitive scalar operations: For example, to multiply
- each row of the matrix M by the compatible vector V, two
approaches are possible. First, C+«Mx(pM)pV.

Alternatively, C<«1 2 18Mo . xV.

4, Dyadic iota: To look up an entry, E, in a table, T, the

following idiom can be used:

A<(pE)[1+¥pT
Z«((((14pT) ,A)4T)A.=A4E)r 1,

To achieve the effect of dyadic iota working on two
compatible tables, Bi14, the following approach is

useful: C<(<\(AA.=8B),1)[.x11+14pB

29

13.86 CODING TRICKS

Several miscellaneous APL programming tricks are given

below.

To accomplish the effect of (4xC)*BxD, ¢/ can be

used: +/A4,B,C,D.

To sort a vector in either ascending or descending

order, depending on whether B is +1 or T1: W<VLAVxB].

To achieve the effect of ALI;J:;J]1«BLI;J] for all I and J
(as long as p4 is pl 2 284):

CL,1 2 28(p4)prC+,A])«,B

A«(pd)pC. :

To achieve the effect of ALI;J;K1«BLJ;I1+CII;JIxDIK;d;1]

for all I and J: A«2 1 1 2 3 2 1QBo.+(Co.xD.

30

14.

primitive operators. They suggest potential extensions to

MINI-OPERATIONS

Some short APL idioms act as additions to the set of

- the 1anguage.

Find the position of the left-most 0 of a boolean

vector: P«1++/A\V.

Remove elenments satisfying a given condition, such as

being non-zero: G+(G=0)/G.

Convert a set of positive integers into a mask:

M«(2\[/V)eV.

Count how many occurrences there are of each of the

different elements of a vector: Y«REMDUP V
Ne+/Yo . =V.

Find where the 1s occur in a boolean vector:

P«<(+/B)+VB or P<«B/1pB.

Locate the maximum and minimum elements of a vector:

"Val/v and Val/v. _ ' l' '

31

10.

11.

12.

13.

14.

15.

Find the position of the first occurrence of any element

of W in V: P«L/VW.
Extend a transitive binary relation: B<«BV.AB.
Isolate the fractional part of a real number: F«1]||N.

Separate a real number into integer and fractional

parts: V+<0 17TKN.

Create an arithmetic progression (N elements with

difference D and first element S+D): V+<S+Dx1N.

Find the number of occurrences of scalar S in vector

Ve N<+/S=V or S+.=V.

Compute the original of a sum scanned vector:

W«V-0, 14V,

Simulate an integer CASE statement branch:

+I¢L1,L2,L3.

Simulate 'a multi-way conditional branch:

+(c1,02,¢3)/L1,L2,L3.

"32

16.
17.
18.
19.

20.

21.

22.

23.

24.

33

Encode a boolean vector into an integer: I«21V,
Create an identity matrix: M«(1N)e.=1N.

Create an upper-triangular matrix: M«(1N)o.<aN.
Create a 1ower-tfiangular m;trix: M<(\N)eo.21N,

Align the diagonals of a matrix into columns (with

wr ap-around) : N<(T1+1pM) M.
Invert a permutation: V<AP.
Form the transitive closure of a relation:
V T<TC G
+V/,(G+GVGV.AG)=2T«G V.

Change all 0°'s to N's in the vector V: V<V+NxV=0.

Evaluate a polynomial with coefficients ¢ at point X:

CA<(X*$"1+1pC)+.xC. Better yet: A<X1C.

34

15.0 OTHER OPERATIONS

Other, more extensive, operation-like idioms are given

below.

1.

ROWSORT =-- Sort the rows of a matrix independently:

'C*‘AsA
Z«(pA)p ((LAYLCILAC,R(bpA)pr1tpA)(C]].

Or, alternatively:
RE<pd
, X«(h,4)-010
Z«Rp(,A)[OI0+XLALX+"14R]]

Make 4 the same rank as ¢ without changing its

contents: A<((((ppC)-ppd)pl)pA)pA.

What are the "upper-left-hand-corners" in array C of
places where 4 can fit, where C is of arbitrary rank and
A is the same rank as C (AMTOAL is defined in ANNOTATED

EXAMPLES - #7): B<(pC)p(1+(pC)-pA)A.2 AMTOAL (pC)p1l.

Map a vector, V, uniformly into N buckets (R is a vector
of bucket numbers for the corresponding elements of

V): Re+/(AxN+[[A«V-LV)o .2 1+17.

lﬂ'

11.

Merge 51 and S2 under control of boolean vector B:

S1+B\S1
S1[(~B)/1pBl+S2.

Or, alternatively:

(51,52)(¥B]«S1,S52.

Put the string (or vector), B, into the string, 4, at

position W: S«(A,B)[b(1p4),(pB)pN].
Depth of parenthesization: D++\(S='(')-0,f1+s=')'.
Create a truth table of order W: T«Q(Np2)T 1+12*N.

Column indices of first occurrences of E's in rows of

M P+1++/A\M=E,

Move all of a set of points into the first quadrant:

. D«1 2 1 28De.-L/D.

Find the number of elements common to two vectors. Do

| not count duplications: N<+/AeB.

12.

Gap Opener: X is a vector. P is a vector of indices

into X. G is a vector the same length as X, containing

35

non-negative integers. The object is to open up gaps at
X[PLI1] of size GLIJ:

X<«((1(pX)++/G)e(1pX)+(+\0,G)[1++/(1pX)eo.>,P]1)\X.

36

16.6 APPLICATIONS

Some short expressions, peculiar to specific

applications, are given below.

Round the number ¥ to P places: R«(10*-P) x| .5+Nx10%P,
Convert degrees to radians: R«Dx0%180.
Convert radians to degrees: D<Ex180%01.

Compute the value of principal P, computed at interest

rate R, for N periods: V<Px(1+R)*N.

Compute the effective rate of interest, given the

nominal rate NR: ER<(1+NR:N)*N.

Compute the limit of the nominal rate NR when

continuously compounded: ER«*NR.

Compute the binomial coefficients of (X+Y)=*N:

V«<N!0,N.

Compute the distances among a set of points in two-space

where the points are represented by a vector of

37

coordinates:

Re(+/(1 3 2 3QPo.-P)%2)%.5.

38

17.0 SUBROUTINES, MACROS, AND IDIOMS

Idioms are neither macros nor subroutines. Because of
their flexability, they would require too many arguments to
.be implemented by macros. Using subroutines would require
a highef degree of generality than the problem might
»wariant. These points are illustrated by the following
four fuﬁctions which make use of the‘éame idiom, but in

different ways.

1. Compute the third-order determinant of a matrix:
V Z<DET A
Z«-/+/x/[2]7(2 3p0 1 2 0 2 1)$4,[.514 V
2. Determine whether a pair of line segments intersect.
| The array A contains four rows and two columns. Each
"row gives the coordinates of a point; Each pair of rows
determines a line.
V Z<«INTRSCT A;C;D
C«0 "1 0+(®3 4p0,13)$[2]4 4 3p1,4

D«A(2 1 384 2 3p0 1 2 0 2 1)¢C,[.51C
Z<A/02x/2 2p1¢-f+/x/[31D V ‘

39

3.

Determine whether a polygon is convex. 4 is an array of
vertices, no three of which are co-linear.

V Z«CVX A;N;Q;P
N<14pA
Q«N|(1N)e.+0,12
P<(1, A)LQ+NX0 Q;]

Determine whether a point is inside of a convex polygon.
H is the point in question and 4 has the same form as in
$3.

V Z«<H INSIDE A3;N:;Q3;P;S:;D
N<«14p4
QeN|(1N)e.+0,12
P<(1,4)[Q+Nx0=Q;]
S<«P
S[33;1«(N,3)p1,H
D«1 3 2 48(2,N,2 3)p0 1 2 0 2 1
Z<AfO0sxf-/02])+/x/Cu]DP(S,[.518),L.5]1P,[.5]P V

Z+«0= N|+/OS F+/x/031(2 1 38(N,2 3)p0 1 2 0 2 1)¢P L.slp

40

41

18.84 SUBSCRIPTION

APL s subscription operator is more general than that
'of anylothér programming 1aﬂguage.A It is possible, for
example, to subscript a vector by an appropriate array of
arbitrary’tank. The power of this operator is demonstrated

"by the following examples.

1. Print out the string S with large characters (where C is

a boolean, rank three array, having one (7x5) character

per page):

A<' ',04

I+, A8

Q<2 1 3 28CHARS[I;;]e.xI
T«(A,'?2')[Q+Q=0]
Z2«(7,x/1+%pT)pT

2. Create a checkerboard:
X«2 3 5p815 2p'\ '
Y«<0 "1+8 9p2 1
Z<((pY)x1+pX)p1l 3 2 ux[y;;]
3. WALLPAPER:
V Z«H WALL Wi;U:;X:Y
U«WLH[1]1?pW]
X+2 3 18(AL21,HL2],H[1])pU
Y«2(24H)pH[1]
Z«((pY)x1+pX)pl 3 2 u4Qx[Y;:;]

4. Instead of using @, as in the idioms #3 and #4 of the

last section, an array B can be generated from A (B is

\

made of ¥ X by K arrays of all X consecutive rows of 4.

p4 is N by K.) B«AL(T1+1K)e&(K,N)p1N;1].

42

19.6 PROBLEMS

The useful applicatién of idioms to the teaching of
APL can be seen in the solutions to the classroom problems
given below. All of the problems require that explicit

looping be avoided.

1.'The Symbol Table Update Problem: A4 is a vector of
integers (the symbol table), X is an integer (the key),
and B is a vector of integers such that pB is p4 (the
usage éount list). If X is in A at position I; then
BLI] should be incremented. Otherwise, 4 should be

extended with X, and B should be extended with 1.

SOLUTION
A<A, (Y+~XeA) /X
B+B,(Y/0)+X=A4

DISCUSSION

Y indicates whether or not 4 and B should be
extended. If Y is 1, then the 1/°s yield X and 0,
respectively. Otherwise, tﬁe compressions yield the
empty vector. X=4 is a logical vecth'indicating that 0
should be added to all of the elements of B except the

one corresponding to X, which will be incremented by 1.

43

2.

Given two input vectors, X and Y, such that pX is pY,
let X be a set of elements and Y be a vector of positive
integers. It is desired to produce a vector of Y[1]

copies of X[1], Y[2] copies of X[2], and so on.
SOLUTION
V«X[(+\(1+/Y)e 1+1++\0,Y]
DISCUSSION

Indexing is a powerful operation in APL. Instead
of creating the desired number of copies of each

element, perhaps using outer product, their indices into

"X are produced. The output vector is then generated

with subscripting.

= Incidently, if X is 1pY, then another, shorter
solution is given by: Vel++/(1+/7) 0. >+\Y, To compute
the inverse of this function, that is, to find,how many
times each element occurs, the following expression can

be used: Y++/(1T/V)°.=V.

KWIC: Given a list of titles (of papers, books, etc.),
it is desired to create a "Key Word In Context" (KWIC)
index. Each title will occur in the index as many times

as it contains key words. The titles are to appear in

44

alphabetical order by the key word being emphasized on
that line. On input, L is a list of non-key words to be

ignored, and 4 is the list of titles.

SOLUTION

V Q«L KWIC A3;V3G3;F3FF3H3;K3C3U3Z23R3B3D3S3P3M3d 3N
Ue~(r ', A4)et,5.:2F 0
G+U>((14pA)p 1)U
F«+/G
FF«+/F
B« 2+(,G)/,(pU)prltplU
K«1++/(A\FF)o.>+\F
V<,U,0

CCeVz 16V
Z«|-/(((+/C)+2),2)pC/rpV

R«[/2Z .
B<(FF,R)p(,Z°.21R)\(,0 1+U)/,A
D«1+(pB)lpL
S«A/((FF,D)4B)v.=28((14pL),D)4L
M+S{B

P«b((1+¥pM)p27) 187 1+04 M
J«(SFH)LP]
N«dOAL(SFK)[P];],((pd),5)p"
Q<(-L(1+p4)+2)d(((pd),3)p"' "), N V

‘DISCUSSION

U is a logical array that acts as a mask on 4,
indicating punctuat?on marks. F is the nuumber of words
on each line, and FF is the total number of words in 4.
H is a rotator, which, for each word, indicates how far
it Qould‘have to be rotated to bring it to the start of
its title. KX gives, for each word in A, the number of

the title in which it appears. 2 gives the length of

45

each word. These variables are then used in the fashion

of MAKEARRAY to create a list with one word per line.
This is stored in B. S is a mask for throwing out
non-key words. P does the sorting by key word. It is
used as an index into H (with non-key words eliminated)
t§ generate J. The rotation of the words is done on the

last line.

FIND:i Given an array B of arbitrary rank and an array 4
that will "fit" into B (that is, ((ppB)2pp4) and |
((-pA)+pB)zp4), it is desired to find all of the places
in B where A matches. A match is indicated by giving
the coordinates of its "upper left hand corner." This
could be called the multi-dimension pattern matching

problem.

SOLUTION

V M«<A FIND B3;K;U3V3;H3C3D
D«((((ppB)-ppA)pl),pA)pA
"K«<1+(pB)-pD
U<1+KT 1+1x/K
V<Ue.+(pD)T 1+1p,D
H<«1+(pB)1 1+1 2 1 3%V
c+«(,B)[H]

M<(CA.=4)/U V

46,

47
DISCUSSION

D is the idiom (OTHER OPERATIONS - #2) for making 4
have the same rank as B. K is the number of positions
on each axis that must be checked during the comparison
procedure; U converts these positions from linear form
to subscriptlform as in idiom #7 of ANNOTATED EXAMPLES.
These are the "upper left hand corner" positions. V
gives the subscript positions of all of the places that
must be compared. These are converted back into linear
form in H. Each row of C is a possible match for 4 in
B. The actual checking is done on the last line. The

subscript positions are returned.

Let S be a vector of elements. Let V be another vectdr
such that pS is pV and VII] tells which set S[I] belongs
to. That is, V éontains all of the positive integers in
the set 1[/V, possibly including duplications. Iﬁ is
desired to return a vector ¥ containing the maximum

element of each set.

SOLUTION

W<S[.xVe.=A[/V

48
DISCUSSION

Ve.=1[/V is a way of creating masks for the

elements of each of the sets. [.x is an idiom useful

- when the right operand is a logical array. It selects

the largest element of each of the designated sets.

Find the integers <N whose squares have decimal
expansions that are palindromes (numbers that read the
same backward as forward).
SOLUTION
Y<Q((1+L108N¥*2)p10)T(1N)*2

T«Y=(-+/A\Y=0)¢dY
2 Z<(A/T)/\N

DISCUSSION

Y computes the decimal expansion on 1N as given by ¢
idiom #6 in ANNOTATED EXAMPLES. T compares a number

with its reversal. Z is the set of answers.

Create Ulam’'s spiral of primes. (See Scientific

American, Volume 218, Number 3, March 1964, pages

120-128.) Begin by creating a rectangular array, Y,b

' containing the integers 1p,Y in the following

configuration:

49

N W
(o230 N]
[S4 00—y V]

Notice how the integers increase as they spiral out from
the center. Now, replace all the prime numbers by *’s
and all of Ehe composite numbers by blanks. The results
is a dramatic presentation of the distribution of prime

numbers.

SOLUTION

Y<«SPIRAL N
- X«~PRIMES Y
Z<' x'[1+X]

V Z«SPIRAL N;A;C;G;D3E
A< Nx2
C<+4| A COPIES |-\A
. G<L0.5+N%2
D«C+4x0=C
E«LL;(1+NxN)4D]
Z«(N,N)pAN LINEAR 1 1 28(G,G)o.++\0,E V

VZ<N LINEAR C
Z«1+(N,N)1C-1

L«2 4p71 01001 0 "1
COPIES is idiom #2 of this section and PRIMES is derived

from PREDICATES - #2.

DISCUSSION

The full power of using idioms is demonstrated by
this example which makes use of no less than seven other

idioms from this report.

50

