Talk Notes
on
Mathematical Studies of Parallel Computation
Raymond E. Miller

Research Report i#89

October 1976

Supported in part by the Office of Naval Research under
Grant N00014-75-C-0752. ‘

I. Introduction

In this talk I first want to discuss some of the motivation for studying
parallel computation from a formal or mathematical point of view. Then I
hope to briefly review some of the different types of studies of parallel
computation in order to‘place into perspective the role played by mathematical
models of parallel computation. Finally, I will int;oduce a number of‘mathe-
matical models of parallel computation, with a threefold purpose in mind;
first, to discuss some of the basic properties that have been isolatéd and
studied; second, to highlight some general approaches to proofs that have
proved useful; and third, to describe relationships between some of the
different models. A fairly large selected bibliogfaphy is included in
these notes as an aid to those who might wish to delve deepervinto parallel
computation. ‘ |

II. Motivation for Studying Parallel Computation

Probably the most obvious reason for looking at parallel computation is
the hope of obtaining significant speedup in large computations. Certainly
there is some basis for éhis. Some special parallel machines have been
designed, and even some built, which show dramatic speed advantages on
particular types of problems over more standard general purpose machine
designs. Also, even though most machine spegdup has been accomplished
through dramatically increasing the speed of the raw computer circuits,
rather than additions of parallelism, it has been long said that the
limits of direct circuit speedups are being reached. Thus parallelism may
play an ever increasing role in future computer speedup.

Another related reason for studying parallelism is the increased

appearance of parallel machine architectures. With such machines here,

or nearly here, there is a challenge to learn how to use them efficiently,
even though most programming languages only have, at most, ruaimentary
facilities to express parallel sequencing. This challenge spans a sroad
spectrum from inventing new algorithms which are parallel in nature,

to introducing more flexible facilities to utilize parallelism both in
terms of programming statements and hardware implemegtations. |

Even though these reasons are compelling, there is a probably much
more fundamental reason for studying parallelism in computation. This is
simply that it is not well understood, has so far defied precise quantification,
and if understood could not only improve parallel computation but could even
be helpful in improving sequential calculations.

Questions of the following variety arise. The fundamental arithmetic
operations used in calculations are well understood. The aritﬁmetic
complexity of computations can thus be studied and in some very important
cases is already starting to be well understood. The blossoming area of
theoretical computer science called complexity theory is essentially this
area of study. Yet, theieAis more to computation than pure arithmetics.
These include data structures and parallelism. Appropriate sequencing,
and parallelism could further reduce the time and space complexity of a
problem. What, however, are the fundamental operations for sequencing
or parallelism control? Or, for that matter, is there even any fundamental
set of operations for this? These questions will probably have to be
settled before any significant progress can be made on understanding
gomplexity issues in parallel computation. However, so far essentially

no progress has been made. Another basic question, on which some progress

has been made, is the isolation of inherent properties of parallelism
to describe the amount of parallelism and correct behavior in‘parallel
computation. Some of these topics are the main part of my talk. The
properties have acquired names like deadlocks, determinism, boundedness,
- gafeness, etc. Before we get into this,.however, we §hou1d show where
studies of these formal properties fit into the.more general framework
qf parallel computations.

III. Types of Studies

In order to make parallel computation a reality one needs both parallel
machines and parallel solutions to problems. A recent Survey of aésociagive
and parallel computers is given by Thurber [141]. Although this survey
gtresses associative processing techniques, a number of parallel machine
architectures are also described. The most obvious way to realize
parallelism in a machine is to have a direct implementation of vectors and
arrays by having a set of processors each of which operates on one component
in the array or vector with the same arithmetic or logical operation.

This allows a simplified machine control requiring only a single instruction
stream to control all processors. Also, since vector and matrix notation

is commonly used for expressing large computational problems it gives the
hope that natural parallel algorithms will follow for such machine
structures. Many such machines have been proposed [14,22,23,48,50,105,
131,132] with probably the most widely known development being the

ILLIAC IV [14] which has actually been built and has demonstrated the
feasibility of such machines for classes of problems that fit well into

such a format. However, such machines appear to be rather special purpose,

since there can be considerable degradation of performance on problems

that do not métch well with the structure and size of the particular

machine. Rather‘than an array of processors some machines "pipeline'" the

operations through processors, to gain their speed; e.g. [5,24,73,132,138].

Since all of these machines are restricted to éssentially one stream of

instructions, they are somewhat restrictive in how they can exploit parallel-

ism. Various ideas using multiinstruction streams have been proposed [23,28,

40,42,84,131], and even more drastié‘proposals in which the actual computer

gtructure could dynamically change, restructuring itself to fit the problem,

have been proposed [34,95,118,124,137,139] but these seem further from reality.
Another area of study is programming constructs and analysis for

parallelism. If one is going to allow a program stream to break into

several program streams and recombine in various ways then constructs are

needed in the programming language to facilitate this. Various ideas have

been proposed: FORK and JOIN [28,36], parallel DO's, TASKING, etc. Also;

aiong with this, operations for sequencing of parallel, and possibly

asynchronous, events have been proposed: LOCK-UNLOCK, SEMAPHORES (381,

etc. Now with the possibility of multiple instruction streams a number

of questions arise. Given a program, could it be made "more parallel?"

(See e.g. [15,45,75,81,83,100,117,140]). How does one schedule and allocate

facilities to the program both for efficient processing and efficient use

of facilities? (See e.g., [9,26,31,32,45,46,70,120]). Will the program

run correctly or could it deadlock somewhere in the process? (See e.g.,

[63,111]). Much work has been done on these probiems.. Solutions to

particular problems have been proposed, such as for the mutual exclusion

problem [39,78]. Also, these problems are formalized and studied in the

mathematical modelling studies.

A third type of study in parallelism involves the development of
parallel algorithms for various classes of computational prob}ems such as
polynomial evaluation [104], systems of difference equations [70], iterative
methods [l44], etc. Miranker [101] gives a survey of numerical analysis
type of work in this area, and much has been done subsequently. Most of
this work assumes a machine with multiple units that can be'doing different
operations simultaneously, and that the results done by one processor are
readily available to any other processor. This idealization certainly
simplifies the question, and would be what one would ideally desire for
a machine, but as we have seen from the parallel machine discussion it
does not match actual machines which constrain what can be done in parallel
as well as the way in which data can flow from one processor to another.
Nevertheless, many important results have been obtained, particularly about
the inherent limitations of speedup obtainable from parallel operation.

In contrast to these first three areas of study of parallelism that
deal with more or less practical matters of parallel computation; that is,
designing parallel computers, programming them, and finding "good"
algorithms for them, the studies of thebretical models of parallel computa-
tion and the complexity in parallel computation are considerably less
applied. To make'an analogy, the models of parallel computation are to
parallel computation like the finite state machine model is to sequential
circuits. In the models one hopes to be able to represent classes of
behaviors; classifying them, understanding the basic properties of these
behaviors, and using them to model practical siuationms. Thus, for example,
within a model one migﬁt be able to specify precisely what "more parallel"

means and derive procedures to obtain a more parallel form. The other

questions of scheduling, allocation, correct operatiom, etc. also can be
made precise and studied. For example, one such thing concerning correct
operation which has been so isolated and studied is determini;m. Determin-
ism is now recognized as one of the important and inherent properties of
parallel computation, and various means for insuring determinism have been
obtained. Before this was isolated, through the study of theoretical
models, there seemed to be considerable confusion over ideas such as

races, conflicting sequencing situations, errors in interlocking, etc.

All of this became much clearer through the formulation of the notion of
determinism. The use of the theoretical models to represent practical
problems has also been fruitful in isolating errors in proposed soiutions
and in clarifying the practical sequencing problems. Thus, the role of

the theoretical modelling studies of parallel computation is to»provide

a formalism or "language' to represent and study practical problems of parallel
compﬁtation, supplying both an understanding of various types of behaviors
and properties and of providing a means of finding equivalent but, in some
sense, "better" realizations of the same problem. Now let's look at some
of these models and see what we know so far.

IV Mathematical Models of Parallel Computation

The theoretical models for parallel computation, which started to be
developed in the early 1960's, still do not provide a unified framework
for studying parallel computation. Some models are graph theoretic in
nature, providing a flowchart-like representation. Others include more
automata-like ideas with the analysis using the idea of the instantaneous
descriptions. Also, some of the production systems of logic (such as Post
systems and A-calculus) can be viewed as'types of parallel computation

formalisms. Some work has been started to unify these approaches, but this

has not progressed far enough to provide a uniform treatment of these
models and their relationships to one another. -

A. Various Types of Models

Gragh Models

In the early 1960's a group at UCLA under Professor Estrin worked on
the notion of improved computer structure through a "fixed plus variable"
structure [41]. This led to the study of parallelism which they modelled,
fbr the study of scheduling and allocation, via acyclic graph structdfes.
At M.I.T., Rodriguez developed a graph model [123]. Karp and Miller [69],
through studying possible additions to speedup computers by having special
purposebdevices perform macroinstructions, developed a graph model now
commonly called a computation graph in which nodes were used to represent
individual operations and directed edges were used to represeht fifo queues
of working data. Parametefs attached to the edges specified the queue
Abehavior. Thus if an edge dp was directed from node ng to nj it

had four rameters A U w, T
ad four pa e o> Up2 o0 Tp

d

P
OO
(p,p’p)p)

where Ap represented the initial number of items in a queue, Up the number
of items added to the queue each time ng fired, Wp the number of items
removed from the queue by each firing of nj, and Tp the number of items
needed (the "threshold") by ny for it to be activated. Computation graphs
do not allow conditional branching, due to the firing rules, but it

was shown that they necessarily provided determinate computation and

algorithms were obtained for their termination and queue length values.

Also special scheduling results were obtained [120].

Petri [116], in the early 1960's also developed a graph model now
commonly called a Petri ﬁet, and this has received considerable study.

A simple Petri net is shown in the figure.

The graph has two types of nodes depicted by circles and bars called "places"
and "transitions" respectively. Places can hold "tokens" and these control
the firing of the transitidns. A traﬁsitioﬁ can fire if all of the places
entering it have tokens. The firing of a transition removes a token from
each incoming place and adds a token to each outgoing place of the
transition. Thus, in this example ty is the only fireable transition
(the dot indicates a token) and when tl fires it removes the token

from Py and places tokens in Py and Py Then t, and t3 are
fireable so "parallel computation" is represented. The structure

P, Ps» ty tg shows a "conflict" situation. When a token is in both P,
and Pg then both t4 and tg are fireable. However, not both can fire
since in firing each requires a token in both P, and Ps to be removed.
Thus the global rule is imposed that a token can be used in only a single
firing, and in this example this means that an arbitrary choice must be

made on whether to fire t, or t5. Petri nets have been studied extensively

[4,11—13,27,35,51—59,61,62,66—68,74,79,99,102,108—116,133,134,137,145] and
are still not completely understood. A rather comprehensive survey of
Pétri nets is given by Peterson in [113]. A simplified Petri net called
a marked graph restricts each place to have exactly one input transition
and oné output transition. These turn out to be special kinds of
computation graphs [96] in which Up = Wp = Tp = 1 for each édge,'and
are well understood.

One of the very intriguing aspects of Petri nets is the simple anﬁ
illustriouskway in which they represent parallel sequencing. Some researchers
have enriched the model by various techniques.’ For example, byyéroviding
tokens of different colors, by inhibitor edges, and by timings [2,3,9,65,93,137].
It appears that any such additionm, although quite helpful for representing
certain behaviors, turns the model into one that can simulate a Turing
machine, and in that sense makes it hopeless to completely analyze.

Schemata Models

Two basic types of schemata modeis exist. One 1is based on having a
finite set of operations-operating on a common memory, and whose control
of the operations is done by some sort of automata theoretic construct .
[72,75,90,136]. Thus we have a schema J = (M,A,J) where M 1is the
memory, A 1is the set of operations and 9 1is the control. The models
are usually uninterpreted models or partially uninterpreted models meaning
that the particular functions‘an& decisions associated with the operations
are not specified.

| A second type of schemata model is based upon elementary operation
schemas (usually a finite set of them) which are interconnected to form
a data-flow schema [37,80,129]. 1In these, rules of interconnection are

often specified in order to insure determinacy of the interconnected

schema. That is, we have sufficient conditions for determinacy. In contrast,
in the (M,A,J") schemata one develops constraints on the schemata (usually
global in nature) from which necessary and sufficiency of determinacy
follow.

The more purely automata type models vary anywhere from finite
automata forms [17,18] to parallel random access programmed machine in
nature. A special iterative form has been studied (87,88] in which |

some complexity types of results have been obtained.

B. Basic Properties and Proof Techniques

As we have remarked earlier determinacy is one of the better uﬁderstood
properties of parallel computation. It takes several different forms in
the different models, but in essence it means that the outcome of the
computation is unique and does not depend upon the particular relative
times that operations are allowed to be performed. The computatioﬁ graph
is by its structure always determinate, as are some of the data-flow
schemata. In terms of schemata one can envision different types of ‘deter-
minacy. The one studied in [72] is a very strong type of determinacy. It
means that for any memory location the complete sequence of values that
appear in the location during computation under a given interpretation
is independent of how the individual operations were sequenced. Necessary
and sufficient conditions are developed for such determinacy and they are
shown to be essentially the Bernstein conditions [15] on overlap on domain
and range locations of operations. Also, for a broad class of schemata,
pamely repetition-free, lossless, persistent, commuta£ive, counter schema
it is shown that determinacy is decidable. The technique for showiﬁg’this

is a more-or-less standard sliding argument which is used in Church-Rosser

type theorems which allows one to slide symbols of one sequence of operations
to match another sequence without changing memory values. Another aspect

of the proof involves vector addition systems of which we say more later.

A rather surprising aspect of the decidability of determinacy (as well as

other properties) is iﬁé lack of "stability." It has been shown [94] that

if the single property of repetition-free is removed from the hypothesis

then determinacy becomes undecidable. This boundary between the decidability
énd undecidability can be viewed as the most rudimentary measure of‘complgxity,
although some of the properfies are known to be quite complex [85] even though
they are decidable. ‘

Normally, this strong form of determinacy is more than really desired.
Often one would only require the final values (assuming termination) of
two computation sequences to match on either all, or a specified subset, of
memory. The strong determinacy of course implies this weaker "output
determinacy" but little is known how to obtain output determinacy without
requiring determinacy throughout the sequence.

The determinacy prbperty does not arise directly in terms of Petri
nets. This is because the Petri net does not have interpreted functionals
operations, nor does it have a formal way, like interpretations for
schemata, of adding them. Thus any such questions must be dealt with outside
the Petri net model. The conflict situation in Petri nets does,_however,
give rise to an obvious situation that looks like it would lead to
indetefminacy.v Also, it has been shown to be intimately connected with
deadlocks.

Other properties of interest include: termination, i.e. how many times

the operations of the model are performed; boundedness, i.e., the number of

-)z -

operation performances that can be done concurrently; and the nuﬁber of
control states that are reachable in computations. For schemata all of
these properties are decidable in a manner similar to determinacy, and
become undecidable without repetition-freeness assumed. For computation
graphs rather straightfbrward algorithms for boundedneés and termination
can be derived. In Petri nets boundedness is defined in terms of the
maximum number of tokens that can reside in any place at any moment.

A net is called "safe" if this bound is one. Termination is expresged

by the term "liveness" in a Petri net. A transition in a Petri net is called
"1ive" if from any reachable token distribution it 1is possible to reach a
s8ituation in which the transition is fireable. Boundedness and safeness
folloW‘diregtly from the decidability of a problem in vector addition
systems whereas liveness is equivalent to the "reachability ﬁroblem"

in vector addition systems.

Vector addition systems first arose in parallel program schemata [72]
and later were seen to be, in some ways, equivalent to Petri nets [54,99,115].
Since they are a simple'mathematical construct, and since the}vunderlie
many problems concerning parallel computation, I will diverge for a few
moments to discuss vector addition systems.

A vector addition system in r-dimensions consists of a pair % = (d,W)
where d is on r-dimensional vector of nonnegative integers, and W 1is a
finite set of r-dimensional integer vectors.

The reachability set R(%/) 1is the set of points in the first orthant
that can be reached from d by successively addiﬁg vectors in W such that

the path of points so formed always remains in the first orthant.

In [72] it was shown that it was decidable, given % and a point x,
whether there existed some point y > x for which y e R(%/). The decidability
of this "simple" problem provided decidability of determinacy, boundedness,
and termination for schemata and boundedness and safeness for Petri nets.

Rabin [13] showed, however, that given two vector addition systems % and @'
it was undecidable whether R(#%/) < R(#"'). Later, using a Petri net
construction, Hack [51] showed that the question of whether R(%/) = R(#')

was also undecidable. The "reachability problem" for a vector addition system
is; given x 1is x € R(#/)? This problem remained open for a number of years.
Hack showed that this was equivalent to‘the liyengss question for Petri nets.
It appears that some recent work of;Sacerdote and'T;nney has succeeded in
proving that the reachability problem is decidable, but that their technique
éives an upper bound substantially above Lipton's lower bound [85]. The
decidability of this problem would substantially aid in the analysis of

Petri nets. |

Returning to the basic properties of models, probably one of the most
basic questions is that of determining whether two models of a certain type,
say two schemata, are equivalent. For schemata this was shown to be undecidaﬁle
by encoding the Post correspondence problem in schemata.

Still other properties are of interest. Can one determine a maximum
parallel version for an instance of a model? Keller [76] and Slutz [136]
have studied maximum parallelism in terms of types of schemata. Scheduling
has been studied for very restricted situations [31,32,70,120] but much still
remains open. Modifying memory use to either economize on memory or increase
parallelism was studied by Logrippo [89,90] under the term renamings in schemata.
Finally the composition and decomposition within a model has been studied

[19,77,97] in an attempt to allow one to model program pieces in one stage

which are later interconnected at a later stage. The questiong of synchronous
versus asynchronous operation are still i1l understood. Many of tﬁe models
are basically asynchronous in nature having a lot in common with Muller's
asynchronous switching circuits [102]. On the other hand, scheduling and
allocation work usually assumes a form of synchronous computation. 1In

[87,88] a bounded time asynchronism was introduced for a linear iterative

type of structure. In tﬁis way the relationship between synchronous versus
-asynchronous computation could be studied, and a bound between the fwo types
of computation was obtained. A similar result is also possible directly in
terms of vector addition systems but this work has not yet been completed.

C. Applications of the Models

The theoretical models for parallel computation are finding their way
into applications in several -different ways. Petri nets and their general-
izations have been used to model‘both hardware and programming systems
[34,35,52,65,74,93,102,108,109,110;114,121,122,133,134,137,145]. Schemata
based models, although more complex have also been applied to various

problems [1,16,31,32,73,80,125-127].

VELECLEU Daivamvpepiay

(1]

(2]

(3]

(4]

[5]

(6]

(71

(8]

(91

(10]

[11]
[12]

[13]

[14]
(15]

. [16]

Adams, D.A., "A model for parallel computations," in Parallel Processor
Systems, Technologies, and Applicatioms, L. C. Hobbs, et al., Ed.
Washington, D.C. :Spartam, 1970, pp. 311-333.

Agerwala, T., "A complete model for representing 'the coordination of asyn-
chronous processes," Hopkins Computer Research Report #32, Computer
Science Program, The Johns Hopkins University, (July 1974),

Agerwala, T., "An analysis of controlling agents for asynchronous pro-
cesses," Hopkins Computer Research Report #35, Computer Science Program,
The Johns Hopkins University, (August 1974).

Agerwala, T. and Flynn, M., "Comments on capabilities, limitations, and
‘correctness' of Petri nets," in Proceedings of the lst Annual Symposium
on Computer Architecture, Lipovski, G.J. and Szygenda, S.A. (Eds.)
University of Florida, (December 1973), pp. 81-86.

Anderson, D.W., F.J. Sparacio, and R.M. Tomasulo, "Machine philosophy and
instruction handling," IBM J. Res. Develop., Vol. 11, Jan. 1967, pp. 8-24.

Aschenbrenner, R.A.; Flynn, M.J.; and Robinson, G.A., "Intrinsic multi-
processing," Proc. AFIPS, 1967 Spring Jt. Computer Conf., 30, AFIPS Press,
Montvale, N. J., 1967, pp. 81-86.

Baer, J.L. and E.C. Russel, "Preparation and evaluation of computer
programs for parallel processing systems,'" in Parallel Processor Systems,
Technologies, and Applications, L.C. Hobbs, et al., Ed. Washington, D.C.:
Spartan, 1970, pp. 375-415. |

Baer, J.L., D.P. Bovet, and G. Estrin, "Legality and other properties of
graph models of computations," J.Assoc.Comput. Mach., 17, July 1970,
pp. 543-552.

Baer, J.L., "A survey of some theoretical aspects of multiprocessing,"
ACM Computing Surveys, Vol. 5, No. 1, March 1973, pp. 31-80.

Bihrs, A.A., "Operation patterns (an extensible model of an extensible
language)," Int'l Symp. Theoretical Programming, Novosibirsk, USSR,
Aug. 7-11, 1972, Lecture Notes in Computer Science, Vol. 5, Springer-
Verlag, 1974, pp. 217-246.

Baker, H.G., "Petri nets and languages," Computation Structures Group
Memo 68, Project MAC, M.I.T. (May 1972).

Baker, H.G., "Equivalence problems of Petri nets," S.M.Thesis, Department
of Electrical Engineering, M.I.T., (June 1973).

Baker, H.G., "Rabin's proof of the undecidability of the reachability set
inclusion problem of vector addition systems," Computation Structures Group
Memo 79, Project MAC, M.I.T., (July 1973).

Barnes, G.T., et al., '"The ILLIAC IV computer,”" IEEE Trans. Comput., Cl7
pp. 746-757, August 1968.

Bernstein, A.J., "Analysis of programs for parallel processing,"
IEEE Trans. Electron. Comput., EC15, pp. 757-763, October 1966.

Bradshaw, F.T., "Structure and representation of digital computer systems,"
Ph.D. dissertation, Case Western Reserve Univ., Cleveland, Ohio, Jan. 1971.

bl

[34] Dennis, J.B. and D.P. Misunas, "A Computer Architecture for Highly
Parallel Signal Processing," Proceedings ACM Annual Conference,
November 1974, pp. 402-409.

[35] Dennis, J.B., "Modular asynchronous control structures for a high performance
processor," in Rec. Project MAC Conf. Concurrent Syst. and Parallel Computation.

New York: Assoc.Comput.Mach., 1970, pp. 55-80.

[36] Dennis, J.B., and E.C. Van Horn, "Programming semantics for multiprogram-
med computations," Comm. Assoc. Comput. Mach., 9 pp. 143-155, Mar. 1966.

[37] Dennis, J.B., J.B.-Fosseen, and J.P. Linderman, "Data flow schemas,"
Int'l Symp. on Theoretical Programming, Novosibirsk, USSR, Aug. 7-11, 1972.
In Lecture Notes in Computer Science, Vol. 5, Springer-Verlag, 1974,
pp. 187-216. ’

[38] Dijkstra, E.W., "Co-operating sequential processes," in Programming
Languages, F. Genuys, Ed. New York: Academic, 1968. :

[39] Dijkstra, E.W., "Solution of a problem in concurrent programming control,"
Comm. Assoc. Comput. Mach., 8, pp. 569-570, September 1965.

[40] Dill, F.H., "Alternative computer architectures using LSI." IBM Research
Report RC 5555, June 1976. :

[41] Estrin, G., B. Bussell, R. Turn, and J. Bibb, "Parallel processing in
a restructurable computer system,'" IEEE Trans. Electron. Comput., EC-12,
pp. 747-755, Dec. 1963. :

[42] Flynn, M.J., A. Podvin, and K. Shimizu, "A multiple instruction stream
processor with shared resources," in Parallel Processor Systems, Technologies,
and Applications, L.C. Hobbs, et al., Ed. Washington, D.C.: Spartan, 1970,
pp. 251-286.

[43] ¢i11, S., "Parallel programming," Comput J., pp. 2-10, April 1958.
Lomput .

(44] Goldstine, H.H., L.P. Horwitz, R.M.Karp, and R.E. Miller, "On the
parallel execution of macroinstructions," IBM Research Report RC-1262,
August 17, 1964.

[45] Gonzales, M.J. and C. V. Ramamoorthy, "Recognition and representation of
parallel processable streams in computer programs,' in Parallel Processor
Systems, Technologies, and Applications, L.C. Hobbs et al., Ed. Washington,
D.C.,:Spartan, 1970, pp. 335-371.

[46] Gonzales, M.J. and C.V. Ramamoorthy, "Program suitability for parallel
processing," IEEE Trans. Comput., C-20, pp. 647-654, June 1971.

[47] Gosden, J.A., "Explicit parallel processing description and control in
P P
programs for multi- and uni-processor computers,' in 1966 Fall Joint Comput.
Conf., AFIPS Conf. Proc., 29. Washington, D.C.: Spartan, 1966, pp. 651-660.

[48] Graham, W.R., "The parallel and the pipeline computers,' Datamation,
pp. 68-71, April 1970.

[49] Graham, W.R., "The impact of future developments in computer technology,"
presented at the Joint Air Force and Lockheed Aircraft Conf. Comput.
Oriented Analysis of Shell Structures, Aug. 13, 1970.

[50] Gregory, J. and R. McReynolds, "The SOLOMON computer,'" IEEE Trans. Electron.
Comput., EC-12, pp. 774-781, Dec. 1963. '

[51] Hack, M., "The equality problem for vector addition systems is undecidable,"
Computation Structures Group Memo 121, Project MAC, M.I.T., 1975, pp. 1-32.

b3

[52] Hack, M., "Analysis of production schemata by Petri nets," S.M.Thesis,
Department of El. Eng., MIT; also MAC TR-94, Project MAC, MIT, (Feb. 1972),
Errata Hack, M., "Corrections to 'Analysis of production schemata by Petri
nets'," Computation Structures Note 17, Project MAC, MIIT, (June 1974).

(53] Hack, M., "A Petri net version of Rabin's undecidability proof for vector

addition systems,'" Computation Structures Group Memo 94, Project MAC,
MIT, (Dec. 1973).

 [54] Hack, M., "Decision problems for Petri nets and vector addition systems,"
Computation Structures Group Memo 95-1, Project MAC, MIT, (Aug. 1974).

[55] Hack, M., "The recursive equivalence of the reachability problem and the
liveness problem for Petri nets and vector addition systems,' Computation
Structures Group Memo 107, Project MAC, MIT, (Aug. 1974), 9 pp; also in
15th Symposium on Switching and Automata Theory, IEEE, New York.

[56] Hack, M., '"Petri net languages," Computation Structures Group Memo 124,
Project MAC, MIT, (June 1975). -~

[57] Hansal, A. and G.M. Schwab, "On marked graphs III," Report LN 25.6.038,
IBM Vienna Labs, Vienna, Austria, (Sept. 1972).

[58] Henhapl, W., "Firing sequences of marked graphs," Report LN 25.6.023,
IBM Vienna Labs, Vienna, Austria, (Feb. 1972).

[59] Henhapl, W., "Firing sequences of marked graphs II," Report LN 25.6.036,
IBM Vienna Labs, Vienna, Austria, (June 1972).

[60] Harper, S.D., "Automatic parallel processing," Proc. Computing and Data
Processing Society of Canada, Second Conference, (June 1960), 321-331.

[61] Holt, A.W., et al., "Applied Data Res. Inc., Rep. AD676972, Inform. Syst.
Theory Project Final Rep., Rome Air Devel. Cen., Contract AF30(602)-4211,
Sept. 1968. " :

[62] Holt, A.W. and F. Commoner, "Events and conditioms," in Rec. Project MAC
Conf. Concurrent Syst. and Parallel Computation. New York: Assoc. Comput.
Mach., 1970, pp. 3-52.

[63] Holt, R.C., "On deadlocks in computer systems," Ph.D. dissertationm,
Cornell Univ., Ithaca, Jan. 1971; also Dept. Comput. Sci. Tech. Rep. 71-91.

[64] Horwitz, L.P., R.M. Karp, R.E. Miller and S. Winograd, "Index Register
Allocation," IBM Research Report RC-1264, August 20, 1964. ACM Journal,
Vol. 13, No. 1, pp. 43-61, January 1966.

[65] Irani, K.B. and C.R. Sonnenburg, "Exploitation of Implicit Parallel-
ism in Arithmetic Expressions for an Asynchronous Environment,'" Dept.
of Elec. and Computer Engineering, Univ. of Michigan Report, Ann Arbor
Michigan, 1975.

[66] Izbicki, H., "On marked graphs," IBM Lab., Vienna, Austria, Rep. LR 25.6.023,
Sept. 1971.

[67] Izbicki, H., "On marked graphs II," Report LN 25.6.029, IBM Vienmna Labs,
Vienna, Austria, Jan. 1972.

[68] Jones, N.D., L.H. Landweber, and Y.E. Lien, "Complexity of some problems
in Petri nets," 1976.

[69] Karp, R.M. and R.E. Miller, "Properties of a model for parallel computations;
determinacy, termination, queueing,'" IBM Research Report RC-1285, September
1964. Also, SIAM J, Vol. 14, No. 6, pp. 1390-1411, November, 1966.

b4

[70]

[71]

[72]
(73]

[74]

[75]
[76]

(771

(78]

[79]

[80]

(81]

[82]

[83]

[84]

(85]

Karp, R., R. Miller, and S. Winograd, "The organization of computations
for uniform recurrence equations," IBM Research Report RC-1667, 1966.
Also JACM, Vol. 14, No. 3, July 1967, pp. 563-590. -

Karp, R. and R. Miller, "Parallel program schemata: A mathematical model
for parallel computation," IEEE Conf. Record 8th Annual Symposium on
Switching and Automata Theory, pp- 55-61, October, 1967.

Karp, R.M. and R. E. Miller, "parallel program schemata," IBM Research
Report RC 2053, 1968. JCSS 3, pp. 147-195, May, 1969.

Keller, R.M., "Look-ahead processors," ACM Computing Surveys, 7, No. 4,
December 1975, pp. 177-195.

Keller, R.M., "Vector replacement systems: A formalism for modeling
asynchronous systems,' Princeton University, E.E. Technical Report
No. 117, December, 1972. Revised Jan. 1974.

Keller, R.M., "Parallel program schemata and maximal parallelism,"

J.ACM 20, 3 (July 1973) 514-537; and J.ACM 20, 4 (Oct. 1973), 696-710.

Keller, R.M., "On maximally parallel schemata," in Conf. Rec., 1970 IEEE
11th Annu. Symp. Switching and Automata Theory, pp. 32-50.

Keller, R.M., "On the decomposition of asynchronous systems," in
Conf. Rec., 1972 IEEE 13th Annu. Symp. Switching and Automata Theory
ppo 78—890

Knuth, D., "Additional comments on a problem in concurrent programming
control," Comm. Assoc. Comput. Mach., Vol. 9, pp. 321-322, May 1966.

Kosaraju, S.R., "Limitations of Dijkstra's semaphore primitives and Petri
nets," Technical Report 25, The Johns Hopkins University, (May 1973),
also in Operating Systems Review, Vol. 7, No. 4, (Oct. 1973), pp. 122-126.

Kosinski, P.R., "A data flow programming language,'" IBM T.J. Watson
Research Center Report RC-4264, Yorktown Heights, N. Y., March 1973.

Kotov, V.E., and A.S. Maringani, "on transformation of sequential programs
into asynchronous parallel programs' in Proc. IFIPS Congr., 1968,

Kotov, V.E., "Towards automatic construction of parallel programs," Int'l
Symp. on Theoretical Programming, Novosibirsk, USSR, Aug. 7-11, 1972.

In Lecture Notes in Computer Science, Vol. 5, Springer-Verlag 1974,

pp. 309-331.

Kuck, D.J.; Muraoka, Y.; and Chen, S.C., "On the number of operations
simultaneously executable in FORTRAN-like programs and their resulting
speed-up." IEEE Trans. Computers, C-21, 12 December 1972, 1293-13009.

Lehman, "A survey of problems and preliminary results concerning parallel
processing and parallel processors,' Proc. IEEE, Vol. 54, Dec. 1966,
pp 1889-1901.

Lipton, R.J., "The reachability problem requires exponential space,"
Yale Univ., Computer Science Dept., Research Report #62, Jan. 1976
(to appear in Theoretical Computer Science J.).

b5

[86] Lipton, R.J., L. Snyder, and Y. Zalcstein, "A comparative study of
- parallel computation," Proceedings, 15th Annual IEEE Symposium on
Switching and Automata Theory, October, 1974.

[87] Lipton, R.J., R.E. Miller, and L. Snyder, "Introduction to linear asyn-

chronous structures,'" to appear in Proc. of Symposium on Petri Nets and
Related Methods, M.I.T., Cambridge, Mass., July 1-3, 1975.

[88] Lipton, R.J., R.E. Miller, and L. Snyder, "Synchronization and computing
capabilities of linear asynchronous structures,' in Proceedings of the
Sixteenth Annual Symposium on Foundations of Computer Science, Berkeley,
Cal., October 13-15, 1975, pp. 19-28. Also full version to appear in JCSS.

[89] Logrippo, L., "Renamings in program schemas," in Conf. Rec. 1972 TEEE
13th Ann. Symp. Switching and Automata Theory, pp. 67-70.

[90] Logrippo, L., "Renamings in parallel program schemas,'" Ph.D. dissertation,
: University of Waterloo, Waterloo, Canada, February 1974. >

[91] Luconi, F.L., "Output functional computational structures,"” in
Conf. Rec., 1968 IEEE 9th Ann. Symp. Switching and Automata Theory,
pp. 76-84.

[92] Martin, D.F., and G. Estrin, 'Models of computations and systéms _—
Evaluation of vertex probabilities in graph models of computations,"
J. Assoc. Comput. Mach., Vol. 14, pp. 281-299, Apr. 1967.

[93] Merlin, P.M., "A Methodology for the Design and Implementation of
Communication Protocols,'" IEEE Trans. on Communications, Vol. COM-24,
No. 6, June 1976, pp. 614-621.

[94] Miller, R.E., "Some undecidability results for parallel program schemata,"
IBM Research Report RC 3371, May, 1971. Also, SIAM Computing Journal,
Vol. 1, No. 1, pp. 119-129, March, 1972.

[95] Miller, R.E., and J. Cocke, '"Configurable computers: A new class of general
purpose machines,' IBM Research Report RC 3897. Invited paper presented at
the Symposium on Theoretical Programming, Novosibirsk, USSR, August, 1972.
In Lecture Notes in Computer Science, Vol. 5, "International Symposium on
Theoretical Programming,'" Springer-Verlag, New York, 1974, pp. 285-298.

[96] Miller, R.E., "A comparison of some theoretical models of parallel compu-
tation," IBM Research Report RC-4230. Also IEEE Transactions on Computers,
Vol. C-22, No. 8, pp. 710-717, August, 1973.

[97] Miller, R. E., and W.A. Brinsfield, "Insertion of parallel program schemata,"
Proc. of the 7th Annual Princeton Conference on Information Sciences and
Systems, March, 1973.

[98] Miller, R.E., "Eight Lectures on Parallelism: I, Configurable Computers
and the Data Flow Model Transformation; II, Computation Graphs and Petri
Nets; III-VII, Parallel Program Schemata; VIII, Relationships between
Various Models of Parallelism and Synchronization.'" Presented at CIME
International Mathematical Summer Center on "Theoretical Computer Science,"
June 9-14, 1975, Bressanone, Italy. In Proceedings. pp 5-63.

[99] Miller, R. E., "Relationships among models of parallelism and synchroniza-
tion," (Revision of RC-5074) to appear in Proceedings of Symposium on
Petri Nets and Related Methods, M.I.T., Cambridge, Mass, July 1-3, 1975.

b6

[100]
[101]
[102]

[103]

[104]
[105]

[106]

[107]
[108]
[109]
[110]
[111]
[112]

[113]
[114]

[115]

[116]

Miller, R.E.. and J.D. Rutledge, "Generating a data flow model of a
program," IBM Tech. Disclosure Bull., Vol. 8, pp. 1550-1553, 1966.

Miranker, W.L., "A survey of parallelism in numerical analysis,"
SIAM Rev., Vol. 13, pp. 524-547, Oct. 1971. -

Misunas, D., "Petri nets and speed independent design,' CACM, 16, No. 8,
August 1973, pp. 474-481.

Morris, D.; and Treleaven, P.C., "A stream processing network,"
Sigplan Notices 10, 3, (March 1975), 107-112.

Munro, I. and M. Paterson, "Optimal algorithms for parallel polynomial
evaluation," in Conf. Rec., 1971 IEEE 12th Ann. Symp. Switching and
Automata Theory, pp. 132-139. Also JCSS, Vol. 7, No. 2, pp. 189-198.

Murtha, J.C., "Highly parallel information processing systems,' Advances
in Computers, pp. 1-116, 1966.

-

Narinyani, A.S., "Looking for an approach to a theory of models for
parallel computation," Int'l Symp. on Theoretical Programming, Novosibirsk,
USSR, Aug. 7-11, 1972. In Lecture Notes in Computer Science, Vol. 5,
Springer-Verlag, pp. 247-284.

Nash, B.0., "Reachability problems in vector addition systems," The
American Mathematical Monthly, 80, 3, 292-295, March, 1973.

Noe, J.D., "A Petri net model of the CDC 6400," Report 71-04-03, Computer
Science Dept., Univ. of Washington, (1971); also in Proc. of the ACM
SIGOPS Workshop on System Performance Evaluation, ACM, New York, (1971),
pp. 362-378.

Noe, J.D. and G.J. Nutt, "Macro E-nets for representation of parallel
systems," in IEEE Trans. on Computers, Vol. C-22, no. 8, (Aug. 1973)
pp. 718-727.

Patil, S.S. and Dennis, J.B., "The description and realization of digital
systems,'" Computation Structures Group Memo 71, Project MAC, M.I.T. (Oct.
1972); also in Sixth Annual IEEE Computer Society Int'l Conference

Digest of Papers, LEEE, (1972).

Patil, S.S., "Coordination of asynchronous events," Ph.D. dissertation,
M.I.T., Cambridge. (Project MAC Rep. TR-72, Sept. 1967).

Patil, S.S., "Closure properties of interconnections of determinate
systems," in Rec. Project MAC Conf. Concurrent Syst. and Parallel Comput.,
New York: Assoc. Comput. Mach., 1970, pp. 10-116.

Peterson, J.L., "Petri Nets," U. of Texas msc., July 1976.

Peterson, J.L., 'Modeling of Parallel Systems," Ph.D. Thesis, Elec. Eng.
Dept., Stanford University, January, 1974.

Peterson, J.L., and T.H.Bredt, "A comparison of models of parallel
computation," Inform. Processing 74, Proceedings IFIP Congress 1974,
466-470, August, 1974.

Petri, C.A., "Communication with automata," Suppl. 1 to Tech. Rep.
RAD C-TR-65-337, Vol. 1, Griffiss Air Force Base, New York, 1966.

- (Translated from Kommunikation mit Automaten, Univ. Bonn, Bonn,

Germany, 1962.)

b7

[117] Ramamoorthy, C.V. and M.J. Gonzalez, "A survey of techniques for
recognizing parallel processable streams in computer programs,' in
1969 Fall Joint Comput. Conf., AFIPS Con. Proc., Vol. 35, Montvale,
N.J.: AFIPS Press, 1969, pp. 1-15. .

[118] Reddi, S.S. and E.A. Feustel, "A restructurable computer system,"
Report, Laboratory for Computer Science and Engineering, Rice Univ.
Houston, Texas, March 1975.

[119] Reigel, E.W., "Parallelism exposure and exploitation," in Parallel
Processor Systems, Technologies, and Applications, L.C. Hobbs et al.,
Ed. Washington, D.C.:Spartan, 1970, pp. 417-438.

[120] Reiter, R., '"Scheduling parallel computations,"‘J. Assoc. Comput.
Mach., Vol. 15, pp. 590-599, 1968.

[121] Riddle, W.E., "The modelling and analysis of supervisory systems,"
Ph.D. Thesis, Computer Science Dept., Stanford Univ., (March 1972),

[122] Riddle, W.E., "The equivalence of Petri nets and message transmission
models," SRM 97, The Univ. of Newcastle upon Tyne, (Aug. 1974).

[123] Rodriguez, J.E., "A graph model for parallel computation;" Ph.D. disserta-
tion, M.I.T., Cambridge, Sept. 1967. (Also M.I.T., ESL, and Project MAC
Rep. ESL-R-398, MAC-TR-64, Sept. 1969.)

[124] Rohrbacher, D.L., "Advanced computer organization study," Rome Air Devel.
Corp. Tech. Report RADC-TR-66, 7 (2 vols.) AD 631 870, and 631 871
(April 1966). ;

[125] Rose, C.W., "A system of representation for general purpose digital
computer systems," Ph.D. dissertation, Case Western Reserve Univ.,
Cleveland, Ohio, Sept. 1970.

[126] Rose, C.W., "LOGOS and the software engineer," in 1972 Fall Joint Comput.
Con., AFIPS Conf. Proc, 41. Montvale, N.J.: AFIPS Press, 1972, pp. 311-323.

[127] Rose, C.W., and F. T. Bradshaw, "The LOGOS representation system,' Case
Western Reserve Univ., Cleveland, Ohio, Rep., Oct. 1971.

[128] Russell, E.C., "Automatic program analysis," Ph.D. dissertation, Univ.
California, Los Angeles, 1969.

[129] Rutledge, J.D., "Parallel processes, schemata and transformations," IBM
Res. Rep. RC 2912, June 1970.

[130] Rutledge, J.D., "Program schemata as automata, part I," in Conf. Rec. 1970
IEEE 11th Annu. Symp. Switching and Automata Theory, pp. 7-24.

[131] Schwartz, J., "Large parallel computers," J. Assoc. Comput. Mach., pp. 25-32,
Jan. 1966.

[132] Senzig, D.N. and R.V. Smith, "Computer organization for array processing,"
in 1965 Fall Joint Comput. Conf., AFIPS Conf. Proc., Vol. 27. Montvale, N.J.:
AFIPS Press, 1965, pp. 117-128.

[133] Shapiro, R.M. and H. Saint, "The representation of algorithms,'" Applied
Data Res., Inc., Rome Air Develop. Cen., Tech. Rep. TR-69-313. Vol. 2,
Sept. 1969.

[134] Shapiro, R.M. and H. Saint, "The representation of algorithms as cyclic
partial orderings," Meta Information Applications, Inc., NASA Final Rep.,
Contract NASW-2097, July 1971.

b8

[135]

[136]
[137]

[138]
[139]
[140]

[141]

[14zj
[143]

[144]

[145]

Slutz, D.R., "Flow graph schemata,'" in Rec. Project MAC Conf. Concurrent
Syst. and Parallel Computation. New York: Assoc. Comput. Mach., 1970,

pp. 129-141.

Slutz, D.R., "The flowgraph schemata model of parallel computation,"
Ph.D. dissertation, M.I.T., Cambridge, September 1968.

Sonnenburg, C.R., "A configurable parallel computing system," Ph.D.
Dissertation, University of Michigan, Ann Arbor, October 1974.

Stone, H.S., "A pipeline push-down stack computer," in Parallel Processor
Systems, Technologies, and Applications. Spartan Books, Washington, D.C.,

1970, pp. 235-249. :

Syre, J.C., "From the single assignment software concept to a new class
of multiprocessor architectures," Report, 1975 Department d'Informatique,
C.E.R.T. BP4025, 31055 Toulouse Cedex, France. .

Tjaden, G.S. and M.J. Flynn, "Detection and parallel execution of
independent instructions," IEEE Trans. Comput., Vol. C-19, pp. 889-895,
Oct. 1970.

Thurber, K.J., "Associative and Parallel Processors," Computing Surveys,
Vol. 7, No. 4, Dec. 1975.

van Leeuwen, J., "A partial solution to the reachability-problem for
vector-addition systems," Proceedings, 6th Annual ACM Symposium on
Theory of Computing, 303-309, May, 1974.

Vantilborgh, H. and A. van Lansweerde, '"On an extension of Dijkstra's
semaphore primitives," Information Processing Letters, 1l, 181-186,
October, 1972.

Winograd. S., "Parallel iterative methods," in Complexity of Computer
Computations, R. E. Miller and J. W. Thatcher, Ed. New York: Plenum, 1972.

Yoeli, M., "Petri nets and asynchronous control networks," Applied
Analysis and Computer Science Research Report C5-73-07, University
of Waterloo, Waterloo, Ontario, Canada, April, 1973.

b9

CS314a : Lecture #2 September 16, 1976

Today: Parallel and Pipelined Machines
Next Time: Data Flow Transformation and Configurable Computers
References: Thurber [141]
Keller [73]

Chen [22]*

- * Numbers refer to Bibliography in "Math. Studies...".

=

" 'The Idea of Pipelining

A simplistic view of how a program is executed on a computer is
that in any one moment of time only a single instruction of a single
program is in some phase of its operation. This view is often
_aufficient to analyze a program and it is close to how e#rly
computers actually operated. Many techniques have been introduced,
however, for overlap and look-ahead to increase the rate of
processing instructions. These include interlgaved memory, local
buffer registers, cache memories, and tagged bus systems. The
earliest use of instruction overlap consisted of doing the instruction
fetch and other preparation of the 1 + 1St instruction at the same
time as. doing the functional execution of the ith ’instruction.

This created a speedup of almost a factor of two; as expected
when the instruction preparation and execution tiﬁes are equal.
Pipélining is carrying this notion of overlap even furthér. For
example, the instruction preparation could be viewed as a sequence

of three separate events.

Where A = instruction address generation
B = ingtruction fetch

C = insruction decode and operand address generation.

[

This would then be followed by a time, say D, for instruction

execution. For serial operation we would get a time chart of the form:

I A F B I ¢ l D I A 1 B .-
- —_] I
th ” st

i instruction 1i+1 instruction

For the simple overlap of imstruction preparation with instructibn

execution we get:

[F . —

Here we always aré generating some instruction address; several
instruction fetches are going on simultaneously, which may be
possible using interleaved memory; and there are points in time where
- two instructions are being decoded. To accomplish this decoding the

decoding circuit could be split into two serial stages, as:

(™)

Partial ______5) Decode

__9

N

7

Decode Completion |—
>

with the center circuit, called a "station," being a buffer.to
isolate the two stages. Then instruction 1 éould be in the
completion decode stage at the same time‘ag instruction i+ 1
is8 in the partial decode stage.

Similarly other circuits, including the instruction execution
circuits, could be pipelined or multiple units used to accomplish
this pipelining of instructions.

Naturally, there are limitations upon how much pipelining can
be done. We must consider:

1. Some independence between instructions is required to
accomplish pipelining:
E.g. (a) a conditional branch instruction must be
| performed before the next instruction in the

stream is known.

(b) an operand can only be fetched if it is known
that no other currently executing instruction

is still computing that as a result.

2. An isolation station between stages of a pipeline requires some

time to react, thus increasing the number of pipeline stages

also increases the overall instruction execution time.

I

3. If k is the depth of the pipeline, i.e., one can have
instructions i, 1 + 1, ...i + k = 1 concurrently being
executed in the pipeline, then as k increases the probability
of 1n£erference of type 1 increases.

4. The operation times for each stage must be matched throughout
the pipeline, and it is convenient to have this unit of time
some submultiple of the storage access time.

"5, Some functions, such as adders, multipliers, decoders, etc.,
have a natural number of stages beyond which it is inconvenient

to partition them.

Each of these considerations limit and constrain the amount of pipe-
lining that is possible. Also, considerable analysis of the program
is required to insure the required independence between instructions.
In pipelined machines this is done by héving a set of buffer registers
to store a stack of instructions, and this "window" of instructions is
analyzed. That is, a local analysis of the program is done dynamically
during execution. Data dependencies and conditional branches can
cause inefficient use of the pipeline. Some examples of pipelined
computers are the CDC 7600, CDC Star, and the IBM 360/95 and 195.

A variety of techniques have been developed for attempting to
maintain an even flow of instructions through pipelined computers.
A simplified view of such a structure is shown in Figure 2 (next page).
Here the operation and operand buffers isolate‘the AU's from storage
and control. Théy can operate in a semiautonomous way, assuming that

these buffers have suitable encoding to associate the operations and

jwn

Interleaved Storage Modules

T

A

Data from Storage

Y

Instruction

Buffers

ulll

Control-

Instruction N
Fetch & Issue

Data

\ Buffers

111K

Operaqion Ogééand Oper;}ion Op; and
Buffeks Buffers Buffe? Buffers

Instruction & Data

Handling

Bus

Instruction Operation

Figure 2: A Simplified View of Pipelined Machine

operands. From an AU point of view it is operating only on

inputs from the operation and operand buffers and supplying results

only to data buffers.

Each AU itself might be a pipelined unit.

The instruction and data handling section controls how data is

accessed in memory and how instructions are loaded into the instruction

buffers. Naturally, with a stack of instruction buffers one now has

the capability of storing a whole loop in the buffers. Detection of

this during operation is worthwhile since in such a case further

instruction fetching can be disbanded during loop execution and this

decreases the traffic to memory.

Another feature is the possible

prefetching and partial decoding of instructions along one or both

paths exiting the loop so that an even flow of instruction executions

o

could continue even on loop exit.

" "Parallel Machines

Suppose we make a simple assumption about a computational job
that it takes T units of time on a single processor buf that it
can be broken into two parts with Ty =1 + Tys where the 131 part
could be done in parallel with n processors in time 'rl/n but the

T, part could not be speeded-up by parallelism. Then on an

n-processor machine the time required for ‘l'n is: 'tn = tlln + 12.
n-1
T 1, /ntt T, (—) T
The ratio of R-tn-’l'_'_.[z 8o R--l-‘l,]"._n_t =1—-1'L(1-%l.
1 2 1 2 8
, . T
The speed-up factor is: S = - -_;-9-
n
S = -]-'- = < 1
4 1 1
R 1= T a- ;)
8
"1 1
If we assume T " .9 and n =32 then S = W13 < 8. Plotting the
s
speed-up factor vs :]_._ values we get the dilution curve shown in
T
2

Figure 3.

28
24
20
16
124

179 187465 0
Figure 3: Parallelism Dilution Curve Tl/Ta
Similar curves can be drawn for any assumed value of n. ‘This simple
argument illustrates the problem that even with a very little ﬁon-
parallel part to the computation any parallél machine can lose considerable
efficiency. Here at 'rl/'rs = .9 we are fully utilizing only somewhat
less than 8 of the 32 processors. Thus, for fuller utilization
.an attempt must be made to mold the computing problem into a suitable
computation. Otherwise, it could be better to run independent problems
on each of the n processors.

The vector and array type of pérallel machine are based on
natural parallelism in data structures. The VAMP machine [132] (for
Vector Arithmatic yplti-g;ocessor) was an early such proposal. The

arithmatic unit (or mill) is depicted in Figure 4,

Vector — W

‘ Accumulator |

1 | EE—
Connections
b 2 — to and from
®
-é l Memory
g 3] ’
o -
< :
193] -
(7 o l
» (4]
L
00
)
o) n o
.8 R u AU's

Figure 4 VAMP mill

The mill has n arithmetic units, two n-bit registers s and u and
one k-bit accumulator register w, where the word length is assumed to
be k. The n arithmetic units are assumed to perform the same
operation on n data items simultaneously. Each AUi has a floating
point adder, a storage register zi of k-bits attached to the memory
but not program addressable, an accumulator register Xi of 2k-bits.
Instructions for loading, doing arithmatic and Boolean operations in
vector form are basic to the machine. The s register has a bit 8y
associated with each AUL. 1f s, = 1 then AU 1is active and will

i

perform the instruction being executed. If s, = 0 then AUi is

inhibited. This allows different parts of arrays to be treated in

different ways, and allows one to fit the problem appropriately into

o

the machine. The u register records results of logical operations
and tests, and is connected to the s .register so that the subsequent
screen can be the result of a previous logical operation or test.
The vector accumulator w allows one to form the sum, product, min
or max of the values in the X; fegisters. Also, various APL
operations are included as instructions for restructuring of data.

The meﬁory of VAMP uses interleaving and has both vector direct
and indirect modes of access.

Some mention is made of using pipelined units to simulate the

behavior of the n-AU's.

CS31l4a : Lecture #3 September 21, 1976

Today: Illiac IV, Data Flow Transformation and Configurable Computers

Next Time: Language Constructs for Parallelism

The Illiac IV array processor [14] consists of an array of 64 processing

elements. Each processing element P.E. has an arithmetic unit and a memory for

data. PEi can only directly access it's own memory, but in one step can access

words in the logically surrounding PE's: PE(i—l) PE(1+1) PE(i 8) and PE(1+8)
b] £l - 0

This is depicted in Figure 1.

N

PEO H PEl e > <& _..} PE63' é___

PE PE PE
Memory Memory e Memory
o 1 63

 Figgre 1 T1liac IV PE strdcture.

—é—

Access to other PE's must be accomplished through a sequence of such
routing steps. The separate PE memories differ gubstantially from VAMP's
single memory directly accessable to all arithmetic units. As with VAMP
it has a single instruction stream control and bits which can inhibit par-—-
ticular PEfs. Orginally Illiac IV was designed to have four 8 x 8 arrays
of PEs, each with its own instruction control, (Figure 2) but only one of

the four arrays was constructed.

Array O ' .~ Array 2
' , & N
——> | 64 P.E.'s ~ 4 64 P.E.'s <
+ 1 Control + 1 Control
Array 1 . Array 3
5| 64 P.E.'s <& > 64 P.E.'s <
+ 1 Control ' + 1 Control

[1/0 Coi@rollerj<%_
>

Peripherals

B6500 [—

I/0

Figure 2 Early Illiac IV proposed organizatidn

The individual memories associated with each P.E. is an organization
that provides fast and easy access byiPEi of data in PE Memoryi. Memory
address generation 1s easier than in VAMP and there is less chance of
memory conflict. However, the routing steps necessary to bring data from
oné PE memory to another can require as many as seven routing instrﬁctions.
Thus considerable effort can be expended in trying to mold the data

structures to fit well into the Illiac array structure.

Various multi-instruction stream machines have also been proposed
[42, 48, 84, 131]. Here, the problems of detecting and‘controlling the
multi-instruction streams and the queues of tasks to be performed lead to
 some complex control problems. in [141] Thurber also describes a number of
parallel systems based on associlative processing techniques. The notions of
data dependéncies have led to data flow type proposals for machines also,
which in some cases have the machine dynamically change their structure
[34, 95, 118, 124, 137, 139]. To explain these briefly we first introduce

the notion of transforming a program into a data flow structure.

Data Flow Structures and Related Machine Organizations

(See related references (34, 37, 80, 81, 95, 98, 100, 118, 137].)
We first describe a simple approach to transforming a sequential program
into a parallel form in which the sequencing depends upon operand and result

availability rather than instruction sequencing [98, 100].

The basic steps of the transformation are:
1. Partiﬁion the program into "basic blocks" and move each block. A
basic block is a contiguous segment of code which can be entered only
through the first instruction of the block, must be executed by exeéuting
each successive instruction in order, and can be exited only ffom the last
instructioﬁ of the block. That is, it is a "straight line"vsegment of code.
2. Determine the immediate predecessors and successors of each block.
This 1s done through the transfer instruction labels plus the normal assumed
sequencing of the sequential program, and produces a flowchart - like
structure for the program.
3. Generate a "data flow segment'" for each block.

A data flow segment consists of:

(1) An input list which consists of the variables needed as inputs
by the block.
(11) An output list which consists of the names of results at the
eqd of block execution that were produced by the block.

(i1i) An interconnection of modules for the block which are the

operations and flow of data from result to operand locations
as formed by block execution.

Step 3 can be performed for each block in arbitrary order. A dictionary
of the language is used which specifies for each instruction what the inputs
and outputs of the instruction are, what the operation module is, if any,
and what registers are used by the operation. Thus Step 3 is concerned only

with structure internal to the blocks.

4. Interconnect data flow segments. This step uses the predecessor
and successor information from Step 2 to perform interconnections from
output lists to input lists, through a matching of naﬁes. Also, it
updates input and output lists for data that is available at the input
of a block but is not used by the block. This is required so such data

that is "passing through" a block may be required by some succeeding block.

Without attempting a formal definition of this transformation we

simply illustrate it by a very simple example.

An Example

As an example program we consider the problem of evaluatihg_the
function f(x) = a¥ + bx + c. We assume that x, a, b, and ¢ are inputs
stored in the symbolic locationé x, a, b, and c respectively, and also
assume that x 1s a positive integer. A simple program to perform this
evaluation is shown below. The program language used is simple and should

be self-explanatory.

Statement # Program Comments
1 CLA x ‘ set accumulator to X.
2 STO COUNT "~ put x in location COUNT.
3 CLA a put a in accumulator.
—4 TRA 6 transfer to statement 6.
» 5 MPY a multiply accumulator by a.

___%> 6

Decrement CQUNT

Branch on COUNT
(to 5 on # 0)

decrease COUNT by 1.

conditional transfer.

Statemént # (continued) Program Comments
8 STO T store a~ in T.
9 CLA x placé x in accumulator.
10 MPY b | form bx in accumulator.
11 : CADD T form a“+bx in accumulator.
12‘ ' ADD C form a*+bx+c in accumulator.
13 STO R 7 store result in R.

The basic blocks for Step 1 can-be directly determined using the following

definition.

Definition: A basic block is a continuous segment of code whose last
instruction is one of the following types:

(a) a branch instruction, .

(b) an "end" instruction, or

(c) the predecessor of an instruction with more than one predecessor.

The first instruction of a basic block is the first imstruction preceding
the last instruction which is one of the following types:

(a) a starting point,

(b) an immediate successor of some branch instruction, or

(¢) an instruction with more than one predecessor.

Applying the definition of basic block to this program we find that
instruction 4 is the end of a basic block because it is a branch instruction.
Instruction 5 is the end of a basic block because it is the predecessor of

instruction 6 but instruction 6 has more than one predecessor, namely 4 and 5.

Instruction 7 is the end of a basic block because it is a branch instruction
and instruction 13 is the end of a basic block because it is the "end"
instruction for this program. Working back from these final instructions for
basic blocks we find instructions 1,2,3,4 form a basic block with instruction
1 being the start of the program. Similarly instructions 6,7 form a basic
block, 8,9,10,11,12,13 form a basic block and 5 alone forms a basic block.

These blocks are depicted and named BBl through BB4 in the following diagram.

1 CLA x
2 STO COUNT
BB1
3 CLA a
4 TRA 6
BB3 5 MPY a
6 Decrement COUNT
BB2
7 Branch on COUNT (to 5 on * 0)
8 STO T
9 CLA x
10 MPY b
BB4
11 ADD T
12 ADD ¢
13 STO R

Step 2 of the algorithm determines immediate successors and immediate

predecessors as shown in Figure 3.

BB4

Figure 3.

Step 3 of the algorithm gencrates a ''data flow segment" for each basic
block. The idea here is to generate a list of items needed as inputs

to the block, the outputs created by the block and the operations used

to create these outputs along with the flow of data between the operations
within the Block. These items have names associated with them through the
program 1anguage definition, these names we call '"source names." During
generation we assign 'local data names" to items also. Consider, for
example, basic block 2, (BB2). This block starts with instruction 6 --
Decrement COUNT. By definition this instruction needs an input with source
name "COUNT" and produces a new output also cailed "COUNT" which has a value
one less than the\original value of COUNT. Thus COUNT is placed on the
input list, and we associate a local data name with this input value. We
use the name BB2,1; i.e., the first local data name in BB2. 1In the output
1ist we then have COUNT with a new value and name this new value BB2,2

as a local data name. The operation performed is a SUBTRACT 1 so this
operation gets placed in the module structure with input BB2,1 and output
BB2,2. The second instruction of BB2 is Branch on COUNT. This instruction
uses the current value of COUNT, namely BB2,2 and tests it for =0 or *0.
This is indicated in the output list as changing item COUNT-BB2,2 to two
values COUNT BB2,2T1 and COUNT BB2,2T2 for the outcome of the test either
being outcome Tl or T2. A test module is added to the module structure --
‘we call it test T —— with the two indicated outputs. This completes Step 3

for BB2. Our result is summarized below.

BB2 Data Flow Segment

Input List COUNT - BB2,1

Output List ' -GOUNF-—--BB252~
COUNT - BB2,2T1

COUNT - BB2,2T2

Module Structure BB2,1

T2

BB2,2T2

Similar calculations‘are done for each of the other basic blocks producing

the following results.

BBl Data Flow Segment

Input List x - BBl1,1
a - BB1,2
Output List -ACGUM-—-BB15E

COUNT - BB1,1
ACCUM - BB1,2

no modules.

BB3 Data Flow Segment

Input List » ACCUM - BB3,1
a - BB3,2
Output List ACCUM - BB3,3
BB3,1 BB3,2
MPY

Module Structure BB3,3

BB4 Data Flow Segment

Input List ACCUM
x
b
C
‘Output List T

~-AEEBM~—-BB452-
~-AGEUM---BB454~
~ACEUM--~-BB435~

BB4,1
BB4,2
BB4,3
BB4,6

BB4, 1

ACCUM - BB4,7

R

Module Structure

BB4,7

BB4, 2 BB4,3
!

MPY

BB4,1 BB4, 4
v

ADD

BB4,6 ! BB4,5

ADD

Tome

Step 4 of the transformation interconnects these module structures by

using successor and predecessor

information and making output to input '

connections through common source names.

The result of making these

interconnections and inserting test points T1 and T2 for places where

data passes only conditionally on the outcome of test T is shown in

Figure 4. Note that even in_this simple example some possibilities for

parallelism are exhibited. For example, the two multiplications and the

subtract 1 operations could all be performed concurrently.

~-11-

[Eubt
=0 Test
Tl
=0
T2

Count T
Figure 4: Data Flow for the Example

Even though this transformation detects potential parallelism in the
algorithm it is unlikely that ordinary computers could make use of this
parallelism since their basic operation is predicated on perscribed
instruction sequencing. The configurable computer concepts described next,

however, are pérfectly suited for such data-flow programs.

Configurable Computers

One of the main features of digital computers since their inception
has been the concept of their automatic control through a program stored in
memory. We discuss here a major departure from this coﬁcept. Rather than
running directly under program control a configurable computer has the
machine structure change to conform to the structure of the algorithm being
performed. 'We briefly describe two approaches to attaining this structure
change;némely a so-called "search mode" and an "interconnection mode."

Many variants of these approachés seem possible and some have been studied

to some extent. Some of the advantages of configurable computers over other

forms of parallel machines should be evident even now. For example, fast

operation over a broad.range of problems, and utilization of standard
programming followed by automatic transformation to data-flow form for
machine éxecution.

The basic organization for a search mode configurable computer is

shown in Figure 5.

Memory

Searcher

Active
Operational
Units

Figure 5: Search Mode Configurable Computer

The operational units consist of general or special purpose units
which perform computational tasks, condition determinations, and data
geﬁeration. Tﬁe units are "active" in the sense that when one of them
completes a task it requests the searcher to find another task for it to
perform. The searcher is thus a different type of computer control unit.
Upon being asked to supply a new task to an operational unit it inspects memory
to find such a task. The memory is thus assumed to be organized in such a way
that it stores task specifications; their operands, and their state of readyness
to be performed. That is, a task is ready to be performed when its operands
are available -- a data flow organizatio;. An example machine instruction to

be stored in memory is shown in Figure 6. This should aid in understanding

how the searcher would inspect memory.

-13-

Operation Status First Second "Address" for
Code Bits Operand Operand Result

Figure 6: Search Mode Instruction Format

Here we show the format for an arithmetic operation with two operands and
oﬁe result. The operation code bits specify the type of operation to be
performed. Thus, when the searcher is looking for an 6peration to be
performed for an operational unit, i% the operational unit is not general
purpose it would have to check that the operation code specified an
operation that could be performed by the operational unit. The status bits
keep a record of whether operands currently reside in the operand locations
of the instruction and whether the location for the result is available for
-storing a result. Thus the searcher also must inspect the status bits.

The operand fields actually hold 6perand values and the address for the
result field specifies where the result is to be stored, i.e. as an operand
of one or more subsequent instructions. Clearly such an instruction format
eliminates the need for the normal form of instruction sequencing. The
sequencing is "data driven" and, at any particular moment in time there may
be many instructions that are ready to be performed.

The operation of the searcher requires some additional discussion since
it is clear that wrongly implemented it could create a bottleneck in the
operation. A search for a single task could require a long sequence of
memory accesses until a ready task was found. To circumvent this difficulty
one might use a high speed cache memory which can be searched associatively

over the operation code and status bits. Also, one might build up within

the searcher a queue of ready operations for each class of operational unit

-14-

so that all that is necded to satisfy a request from an operational unit
is a popping of the appropriate queue. We should note in passing that
the readiness status of an instruction goes normally from completely not
ready (no operands availablé) to a monotonic build-up of operands. Each
time an operand is stored the instruction is accessed. Thus the status
bits might be inspected at these times, and it is at the insertién of the
last operand when the instruction becomes '"operand" ready to be performed.
The complete readinéss, of course, also depends upon result storage
availability which may not fall into this nice semt-monotonic form.
Another form of configurable computer called the interconnection mode
configurable -computer attempts to implement the data flow form in a more
direct interconnection of operational units through electronic switching
networks somewhat like telephone switching networks. A.block diagram of

such an organization is shown in Figure 7.

Memory
Setup Data Access
Control Control
nxn
Interconnection Operational
Network Units

Figure 7: Interconnection Mode Configurable Computer

In this organization the interconnection network is used to directly

interconnect outputs of one operational unit to inputs of another operational

-15-

unit as was depicted by the data flow form of the algorithm. The basic
steps for using such a machine, assuming programs given in a normal

programming language are:

1. Decompose the program into blocks of appropriate size s6 that
each block can be set up as a single interconnection on the machine.

é. Transform each block into a data flow form.

3. Store the blocks, so transformed, in memory as set-up instructions
for the interconnection network.

4. Choose a block to be performed (to start with this is the block
containing the start of the program and subsequently the block is

- specified by the exit taken from the previous block) and set up
the interconnections.

5. Perform the block execution. Note that during execution only data
has to be fetched and stored in memory. No instructions are
required. Also, many temporary results never get stored in memory,
they are simply transferred from the output of an operational unit
to the input of another operational unit through the interconnection
network.

6. Termination of a block specifies the next block, return to 4.

Both the search mode and intefeonnection mode structures provide machine
organizations well suited to flexible data flow operation. The natural
parallelism of algorithms can be exploited. Also,'as languages develope for
directly representing parallel operation they should be readily implemented
on the configurable machines. These machines ha?e the potential speed advantages

of special purpose devices, especially the interconnection mode machine that at

-16-

any point in operation actually is special purpose at that moment. Other
features are also interesting. The failure of a single operational unit,

if known, could be tolerated by just not assigning that unit any tasks or

by not including it in the interconnections. Complex control units are

not required for the machines as seem to be required for highly pipelined
machines. Finally, much of the data flow form of analysis is identical to
that developed for code optimization in compilers. Thus the knowledge gained
through compiler optimization can be directly applied to obtaining better

algorithms fof forming data flow programs.

CS3l4a Lecture #4 September 23, 1976

Today: Language Constructs for Parallelism

Next Time: Start discussing graph Theoretic Models of
Parallel Computation

Classification of Types of Parallelism

Parallelism can be classified in various ways; for example, in ferms of -
the algorithms or in terms of the machine. A machine approach of Flynn is
reported in Thurber and Wald [141]. If we define an "algorithm" to be a
set of "procedures" that operate on data structures in some prescribed
sequence, then we can classify parallelism of an algorithm in terms of the

procedure and data structures as:
1) Parallelism within a procedure:

a) Within a data structure:
Here each element of the data structure is treated
identically. Examples of this include vector and matrix
operations and machines of the VAMP and Illiac v type are
specifically designed to exploit such‘parallelism.

b) Local parallelism: |

More than one addition, multiplication, etc. in a single

procedure can be performed concurrently, where the
concurrent operations need not be identical. Pipelined
machines exploit such parallelism within a local region of
the procedure through the instruction staék. Also, the
data flow thransformation displays such pafallelism
globally over the program.
2) Parallelism between instances of a procedure:
The same procedure may be used on several different sets of
data structure values, as exemplified by the multiple use of
a subroutine. Questions of interferences between instances
of the process, and of correct interlocks arise here.
3) Parallelism between procedures:
a) Independent procedures or algorithms:
Examples include multiprogramming and timeshafing.
b) Dependent procedures:
Here several procedures can be in operation if suitably
interlocked. A classical example is the:mutuél

exclusion problem.

The classification in terms of machines is based upon the procedure

and data streams.

1) Single instruction stream single data stream (SISD). This is
the classical uniprocessor, single port memory type of computer-

2) Multiple instruction stream single data stream (MISD). This is
exemplified by some pipelined processors.

3) Single instruction stream multiple data stream (SIMD). Both the

Illiaé IV and VAMP are examples of this type of machine.

4) Multiple instruction stream multiple data stream (MIMD).
Configurable computers, as well as multiprocessor systems, can be
viewed as MIMD. Also, the Carnegie-Mellon C.mmp machine which is

on interconnection of PDP-11's is of this form.

Other classifications of parallel machines are also described by Thurber
and Wald. The reason for giving these two here is to illustrate that there is
a broad spectrum of possible types of parallelism, and that given any particular
machine the problem is to try to fit problems (or algorithms) into a format
suitable for the machine.

-

Instructions for Parallelism

One of the early constructs for parallelism was proposed by Conway [28]
and later discussed by Dennis and Van Horn [36]. These are FORK and JOIN
constructs which enable one to initiate and merge multiple instruction streams.

Figure 1 illustrates a simple flow chart FORK and JOIN construction.

(Start)

FORK

JOIN

- G|

Figure 1: Simple FORK and JOIN| D

The FORK instruction is to occur at the completion of procedure A, and

it is used to initiate two instruction streams, here illustrated by
procedures B and C. The JOIN is to indicate that procedure D can be
initiated only after both B and C are completed. This explains the
1ogiéai flow of control that the FORK and JOIN constructs are trying to
implement. There are several forms of FORK and JOIN instructions. To
produce tﬁo instruction streams from one a simple single address FORK can
be used of the form: FORK t.

If this instruction is statement m of a program then the two streams
enabled by the fork are: one stream starting with statement mt+l of the
program and the other starting with statement t. In general, n-1 such
FORK instructions can be used to start n streams. Examples for n = 4 are

shown in Figure 2.

)L (a) FORK b
0 (o

NS o/
a+l) FORK b , (b) FORK d
(at2)| - (c)] |(b+1) (d)
A Bl | c D
|
(a) FORK b J/
_ O} (b)
)L\ (a+1) FORK c
© c
(a+2) FORK d C '
(at+3) (d) ~L

T

Figure 2: 4 streams started by FORKS.

Up———

The JOIN instruction realized in a single address format as : JOIN ¢
assumes a counter to be implemented in location c. The JOIN c tests the
value of the counter. When a JOIN c instruction is performed it tests the
value in c. If this value is greater than 1 (indicating that more than one
parallel stream is still in progress) then one is subtracted from location
¢ and the procedure in which JOIN c was executed is terminated. If the
value of location ¢ is 1 then it is set equal to zero and a new procedure
starting at location c+l is allowed to start. This form of JOIN then
assumes that the counter value in location ¢ is initially correctly set to
the number of streams being joined. For example, in Figure 1, in A or the
start of the program a set c = 2 instruction would be required, and JOIN c
instructions could be placed at the end of both B and C, with procedure D
starting in location c+l. The reader may wish to consider how JOINS could
be used to merge the Figure 2 cases of four streams together into a single
stream. In some cases the recombination of a stream is not required so a
STOP or QUIT instruction could be used. Also, if for the case of Figure 1
it is known that procedure C will always finish before procedure B then a
QUIT instruction (rather than a JOIN) can be placed at the end of Cand D
can be made to directly follow B with no JOINS required.

Some variants of FORK and JOIN are:

1) (a) FORK b,c,Vv
specifies a FORK to locations a+l and b to start two
streams and also sets up a counter in location c¢ to value v.

This eliminates the need for presetting the counter value

as required above for the JOIN instructionms.

2) (a) JOIN c,d
specifies the same sort of JOINing condition as before
except that if this instruction is encountered and the
value of ¢ is'> 1 then the procedure starting in loc;tion
d is executed.

3) (a) FORK b,c
specifies a FORK to locations a+l and b and increases by 1
the counter value located at c. This type of FORK is useful

when the number of streams can be variable depending on which

side of a conditional branch is taken.

An early form of interlocking procedures is given in Dennis and
Van Horn [36] in terms of LOCK and UNLOCK instructions. Some such type of
control may be necessary when several processes have access to common data
llike in the mutual exclusion problem (see Dijkstra [39]). Suppose, for
example, that we have two procedures, the first updates a file and the
second reads the file. 1In such a case it is unwise fo allow simultaneous
access to the file by both proceaures since the second procedure may end up
reading a mixture of old and new file information. To interlock procedures
we introduce the two instructions LOCK w and UNLOCK w. Here w is assumed
to be either 0 or 1, and it is assumed that only a single LOCK or UNLOCK
instruction can be accessing w at any time.

LOCK w operates as follows:

If w = 1 the procedure waits at the instruction (continually

testing w) until w = 0. If w # 1 then the instruction sets w to 1 and the

procedure continues.

UNLOCK w simply sets w = 0.
Application of these instructions to the two procedure example we

discussed earlier is depicted in Figure 3.

Procedure 1 Procedure 2
LOCK w LOCK w
Mutually
exclusive
sections

Figure 3: Interlocking procedures.

The concept of semaphores (which are somewhat similar to the lock bit w
just discussed) was introduced by Dijkstra [38] to provide a more flexible
means for coordinating the sequencing of cooperating sequential processes.
Such problems as mutual exclusion, the readers-wtiters problem, and producer-
consumer problems were easily controlled by semaphores.

A semaphore s is a nonnegative integer valued variable which can be
accessed by program processes only through two specialized types of
instructions P(s) and V(s) as defined below.

P(s) is an indivisable operation on a semaphore s. P(s) at location L
is defined as: |

L: 1if s < 1 go to L else s « s-1-

V(s) is an indivisable operafion on a semaphore s defined as:
s < s+l

The indivisability is like the assumed access to a iock bit w.
Once either a P or V operation is started on s then that operation must
be completed without interaction or interference from any other P or V
operation for s. The situation can be somewhat more general, however.
For example, if Vl(s) and VZ(S) were both attempting to act on the same
semaphore s "simultaneously" this could be allowed as long as the value
of s were increased by 2 after the completion of both Vl(s) and‘VZ(s).
If, on the other hand, a semaphore value was 1 and two P operations were
attempting to operate on it, only one of the two (arbitrarily detgrmined)
would be allowed to proceed and that would decreaée the value to 0. The
‘other P operation would have to wait until the semaphore value was again
increased before it could operate, and at that time it would have to compete
with other P operations on that semaphore that were now attempting to be
performed. If the original value of a semaphore were k, then up to k P
oerations could proceed simultaneously, as long as the ending value was a
decrease by exactly how many P operations were allowed to continue. The
two procedure example shown in Figure 3 would now appear, using a single

semaphore s as shown in Figure 4, where the preset . value of s was s = 1.

Procedure 1 l Procedure 2

P(s) P(s)
Critical sections

mutually exclusive

V(s) V(s)

Figure 4: Semaphore for interlocking

In this simple example the semaphore value only ranges over the
values 0 and 1, however in more complex synchronizing situatioms, like
for example multiple readers-writers problems, semaphore values greater
than 1 are encountered.

" Quite a few variations on semaphores have been proposed in the literature.
First, one could have P's and V's that change a semaphore value by more than 1.
For example, P(n,s) and V(n,s) to indicate a change of value of + n to
semaphore s. Another variant is a P(T,W,S) defined as:

L: if s < T go to L else s « s-W.

And constraining W < T implies tﬁat the semaphore s would not be allowed to
become negative. Often it is convenient to have conditions in several semaphores -
be required to hold for a proceés to be initiated. One could propose to ‘
have a sequence‘of P operations on the various semaphores to accomplish this,
but this runs the danger of creating deadlock situations in complex

sequencing problems. For this reason P's and V's on sets of semaphores have
been proposéd. For example, wé could have P(Sl’52’°"’sk) and V(sl,sz,...,sk)
be operations to indicate indivisible testing and setting of the set
{sl,sz,...,sk} of semaphores. One of the problems with these types of
semaphores, as well as other synchronization primitives, is insuring in the
system the requirement of indivisibility of the operations. If ome is

testing or setting a single semaphore, for example, it might be feasible to
assume indivisibility simply from the fact that all this could be performed
in a single access cycle to the semaphore stored in memory and there is

only a single access port to the variable. However, this may no longer hold
when more complex operation on the variable is proposed or when sets of

variables need to be treated as z single entity.

-10-~

Another aﬁnoying factor is the requirement for waiting, and continually
testing when a P(s) operation is encountered with s = 0. This "busy wait"
state seems logically totally unnecessary. It would be more desiréble to
free the systemkof "busy waits" so that it could do other necessary
processing. L

Some of these problems have led to proposals for other synchronizing
primitives. In (2) Hoare proposes the notation {Qlllell...!IQn} to
denote parallel operation for processes Ql’QZ""’Qn' Essentially this
notation means we have a FORK-JOIN pair on the n processes. In (2)
additions are made to this notation to allow one to specify a common
resource to be used by the processes and also to have conditional entry
to critical regions. In (1) Hansen proposes a similar scheme. The
instruction

var v: shared T
is used to declare a shared variable of the type T, where concurrent
processes can only refer to, and change, shared variables within critical
regions. A critical region is defined by

region v do S.

This aséociates the statement S with the shared variable v. Thereby
critical regions referring to the same shared variable must be run in a
mutually exclusive fashion. A "conditional critical region" is specified
by a statement:

region v when B do S.

This specifies that the critical region (S) using shared variable v is to be
executed only when condition B holds. B can be a complete Boolean expression,

rather than a simple semaphore test as we had for P's on semaphore. Thus this

-11-

provides quite a general means forbspecifying conditional entry into a
region. The testing of B, and entry into the region, are supposed ﬁo be
controlled as follows, as described by Hansen. When the conditional
critical region statement is encountered B is tested. If B is true
the process is allowed to execute S. If B is false, the process leaves
the critical region and is delayed until another process has successfully
completed a critical region using the same shared variable. At this point
the delayed process is again allowed to evaluate B. This cycle continues
until B is true and S is executed.

It is through this delaying of the process that one attempts to
circumvent the "busy wait" condition, since there is no sense in continually
testing a condition B until one or more of its variables (the shared

variables) has been changed.

-12-

(1) Hansen, Per Brinch, "A Comparison of Two Synchronizing Concepts',

Acta Informatica, Vol. 1, 1972, ppl90-199.

(2) Hoare, C.A.R., "Towards a Theory of Parallel Programming', in
‘Operating Systems Techniques, Academic Press, 1971, pp6l-71.

CS314a Lecture #5 September 28, 1976

Today & Next Time: Graph Models of Parallel Computation

Some References: [52, 56-59, 61, 62, 66, 67, 69, 74,
92, 96, 98, 99, 102, 113, 120, 145]

Directed gr;phs are a natural model for representing computation. The
most common such representation being the flow chart for sequential programs.
We will concentrate first on computation graphs and Petri net models of
parallei computation, but there are many other models as well. The Petri net
model is the most studied of all models of parallel computation. we define

this first and look at some of its properties.

Petri Nets

Definition 1: A Petri net P = (H,Z,R,Mo) consists of:

1) a finite set 1 called places,
(ii) a finite set I called transitionms,
(1ii) a relation Rc(NIxIZ)u(ZxI), and

(iv) a mapping Mo: I +~ N, called the initial marking, where N

represents the set of nonnegative integers.

Dsually a Petri net is represented by a graph in which pljzces and transitiomns
are represented by nodes, R 1is represented by directed edges, and Mo is
represented by dots in the place nodes. To distinguish the place. and

transition nodes, circles C) are usually used for places and bars | are used

for transitions. If el and 0eI where wxceR, then mx0 is represented
by an edge directed from the node for = to the node for o. Similarly for
a oxmeR by an edge from o to w. Places are used to hold markers called
tokens and Mo assigns an initial number of tokens to each place. Several
examples of Petri nets are shown in Figure 1.

For a given place those transitions ¢, for which (Oi,ﬂ)ER are

i

called the input transitions of m and those oi for which (n,oi)eR are

called the output transitions for m. Similarly, for a given o0cZ, those

L for which (ﬂi,O)eR are called the input places of 0 and those Lo

for which (o,ﬂi)eR are cllled the output places of o. The Petfi net is thus

a fixed graphical structure which is supposed to represent the allowed
sequencing of parallel processes. Usually the transitions are viewed as
processes and the tokens on the input places of a transition are used to
control the initiation of the process. A transition o 1s called active or
fiéeable if and only if each of its input places contains one or mdre tokens.
An active transition ¢ may fire, and this can be interpreted as the execution
'of the process represented by o. When cv fires it reduces by 1 the number of
tokens in each of its input places, and increases by 1 the number of tokens in
each of its output places. The firing of a transitidn thus changes the
distribution of tokens on places. Such a distribution of tokens is called a
marking. Through the marking change other transitions may become active. 6 It
is the sequence of transition firings that is used to represent the computation

sequence in a Petri net. A sequence of transition firings is called a firing

sequence. It also defines, given an initial marking, a marking sequence.
Since a given place may be in the set of input places for more than one
transition it is possible that a single token in a place causes more than one

transition to be fireable. To prevent the number of tokens upon transition

‘ll'l O'l 1\’2 0'2 Tf3 0i|

@ ~O———>0 XO—
11'7 -

N\ J

T4 %% Ts s "6 %

(b)

(c)

Figure 1; Petri net examples

firing to become negative it is assumed that a token is used in only a
single transition firing. This is assumed formally in yet another way,
namely by definiﬁg firing sequences to be a sequence of transition labels,
implying that even though several transitions are simultaneously fireable,
no simultaneous firing is allowed in the formal study. Thus the next element
in a firing sequence is one of the transition labels as picked arbitrarily
from the current set of fireable transitionms.

The examples of Figureil are helpful in understanding these definitions
and conventions. In part (a) the set of places is I = {ﬂl,wz,...,n7} and
the set of transitions I ='{01,02,...,06}. The initial marking is Mo(ﬂl)
= Mo(ﬂé) = Mo(ﬂ7) = 1 and zero elsewhere. From the initial marking both
a; and qé are fireable. 1f o, fires then the new marking M has
M(ﬂl) = 0 and M(ﬂz) = 1, with all other places marked as before. Now both
a,. and g are fireable. If a, fires then tokens appear in LEYLEY and
T and both gy - and Og are fireable. Now, however, 02 and O cannot
fire simultaneously since N7 has only a single token, thus their firing
must be sequential. This differs from the case of 01 and 04 being
initially fireable since in that case no single token was playing a role in
causing the two transitions to be fireable. For the case when o, and 65
are simultaneously active we say that O, and O “eonflict" under this
marking. We say in general that a pair of transitions o5 and cj are in
conflict under a given marking M if both IQi and ¢, are active in M and

J
there is some place Py belonging to the input places of both

o and oj with
M(pk) = 1. It is precisely under the conflict situation that although both
transitions are simultaneously active they cannot simultaneously fire.

The Petri net of part (b) of Figure 1 is an example that shows that the

number of tokens may grow unboundedly in a place. Here a single firing of both

o, and g causes Ty to have two tokens.v A single firing of O3 places

tokens back in LAY and T, leaving one token in LES Repeating this cycle
of transition firings causes the number of tokens in LB to grow to as large
a number as desired.

Part (c) of Figure 1 gives an example of a very special kind of Petri

net. A Petri net P 1is called a marked graph if and only if each place
of P has exactly one input transition and exactly one output transition.
- When this'festriction is made on Petri nets the graph can be simplified by
absorbing each place into an edge and then’letting the place marking be
represented by a marking on the édge.

Similarly, restricting a Petri net so that each transition has exactly
one input place and one output place gives a special class of Petri nets

called state machines. This is readily seen by simplifying the graph as done

by letting each transition now be represented by a directed edge from its

input pléce to ité output place. This then assumes the structure of a

tr;nsition diagram of a finite state machine, but here the edges are not
labelied. If one assumes an initial marking now as a single token in a single
place (representing the start state) then state to state transitions correspond
to transition firings. The analogy is too obvious to belabor. Both the

marked graphs and state machines are subclasses of Petri nets that are
considerably easier to analyze than general Petri nets. Other subclasses of
Petri nets have also been defined and extensively studied. A number of properties
of Petri nets are of interest and warth defining. First we note that any marking
M of a Petri net P with n places can be viewed as an n-dimensional vector
in which the value of the ith coordinate of the vector is the number of

h

tokens in the it place of P.

Definition 2: The reachable set of markings R(P,Mo) of a Petri net P = (H,E,R,MO)

is defined as:

R(P,Mo) = {MI Ha marking sequence starting with Mo and ending with M},

Definition 3: A Petri net P 1is called safe if MeR(P,Mo) implies that

each coordinate of M is either zero or one.

Thus a safe net is a net in which the number of tokens in any place

never exceeds one. This property is of interest when for some practical

considerations one is interpreting the Petri net to represent a set of

interrelated events and conditions, where conditions are represented as places.
A condition is interpreted as holding if the place contains a token, and as

not holding if the place does not contain a token. For such situations it is

‘senseless to have more than one token in a place, so one wants to know that

the net representing events and conditions is a safe net.

A natural extension of safeness ié k-bounded or k-safe.

Definition 4: A Petri net P is called k-safe if MeR(P,Mo) implies that

each coordinate of M takes on values from the set {0,1,2,...,k}.

A second property of Petri nets is related to the current or eventual

fireability of transitions.

Definition 5: A transition ¢ of a Petri net P ='{H,Z,R,Mo} is called
live if and only if for every MeR(P,Mo) there is some firing sequence
continuing from M which fires o. The transition o 1is called dead with

respect to M 1if there is no firing sequence continuing from M which fires o.

Definition 6: A Petri net P is called live if every transition of P is live.

The relavence of the property of liveness is evident when one interprets
the transitions of the Petri net as representing processes. Liveness of a
transition means that there is no way in which a sequence of process executions
can cause the system to get into a state from which the given process can
never again be executed. Thus both the liveness and deadness properties of
Petri nets are related to the concept of deadlocks in operating systems.

Given~any Petri net P we would like to know how to determine if P 1is
safe, k-safe, live, or what transitions aré dead, and with respect to what
markings. We will approach these problems via vector addition systems

introduced in [72].

e e SR e e S e e 5 13 = s e e e s i e s - - e e e e e e e e e . e e

CS3l4a Lecture #6 September 30, 1976

Last Time: Petri Nets

Today: Vector Addition Systems and their Relation to Petri Nets

Last time we gave a definition for conflicting transitions that
only held for the special case of pairs of transitions. The follbwing

easy generalization covers conflict for any set of transitions.

Definition: A subset {01,02,...,ok} of transitions of a Petri net, where

k=2, is said to be in c¢onflict under a‘marking M 1if there exists a place

m in each input set of places of 01,02,...,0k and M(w)<k-1.

Vector Addition Systems

We introduce vector addition systems as a purely mathematical object
and later show how it is related to Petri nets. Later still, we will use
vector addition systems for schemata and possibly other problems in

parallel computation.

Definition 1: An r-dimensional vector addition system is a pair W= (d,W)

where d is an r-dimensional vector of nonnegative integers, and W is a

finite set of r-dimensional integer vectors.

The reachability set R(y) 1is the set of all vectors of the form

d+w_ +w_+...+w_ such that w,eW for i =1,2,...,s, and dtw +w +...+w120

1

for

2 s , i 12
i=1,2,...,s. That is, R(¥) 1is the set of points that can be reached

- from d by successively adding elements of W such that the path of points so

formed always remains in the first orthant.

that

A simple example: r = 2, d = (1,1), W= {(-2,1),(0,1),(3,-1)}. Note

(4,2)eR(W) since (4,2) = (1,1) + (3,-1) + (0,1) + (0,1) and the

successive points (4,0),(4,1) >and. (4,2) are all in the first orthant.

89
(2
3)

(%)

each

from

We use the following terminology:

For r-dimensional-vectors x<y 4if and only if xiSyi for 1i=1,2,...,r.
We sometimes use O to denote the r—dimensional vector of zeroes.

w 1s a symbol such that if n is an integer then n<w and ntw = w.

In some sense « intuitively means "as large as desired."

A rooted tree is a directed graph with some designated node, §, called
the root, which has no edges directed into it, each other nodé has one
edge directed into it, and each vertex can be reached through a directed path
from the root. If £ and n aredistinct nodes of the rooted tree having a
directed path from § to n, then we say &<n. If there is a directed
edge from & to n then n is called the successor of £. If n is

a node with no edge directed out of it, then n is called an end.

For W we construct a rooted tree T(¥) with labelled nodes £(&) for

node &, where £(£) 1is an r-dimensional vector label having components

Nu{w}.

Definition 2: T(¥) consists of: '

(1) a root & with label 2(8) = d.

(2) let n be a node of T(y)

‘ (a)A if for some vertex E&{n 2(£) = 2(n) then n is an end.

(b) otherwise successors of n are formed (one for each weW
for which 2(n) + w=20).

Let nw denote the successor of n associated with weW. Then 2(nw) 1is
determined as follows:

(i) if there is a E<w such that 2(8)<¢(n) + w and (2.(&:))i<(2,(n)+w)i
then (l(nw))i = W,

(ii) 1if no such & exists, then (R(nw))i = (2(n)+w)i.

Thig is a complicated definition which needs some explaining. The
recursive form of definition of T(W) provides a means for recursively
constructing T(¥) starting with the root with label d. Given any node &
of T(W) that has not yet been shown to be an end we first construct trial
successors to &, one for each wiew with temporary label £(&) + W, . I1f
2(E) + wi<0 then it is not a node of T(j), otherwise parts 2b(i) and (ii)
of the definition are used to obtain the bermanent label for this node,
component by component. Having the permanent label one can check to see if
the node is an end. The initial portion of the tree T() £for our example

yector addition system is shown in Figure 1.

Figure 1: T(W) for example W.

L —————— e e 25 ¢ o2 e

The crucial fact about T(W¥) that makes it useful is stated in the next

theoren.

Theorem 1: For any vector addition system W, T(W) is finite.

Proof: Assume T(W¥W) contains an infinite path from its root, G,nl,nz,....
Then 2(6);2(nl),2(n2),... is anbinfinite sequence of labels with coordinate
values taken from Nu{w}. This must contain‘an infinite subsequence of labels
l(nil),l(niz)...; with il<i2 guch that 2(nil)52(n12)5.... (Such a sequence
cap be found by first extracting an infinite subsequence which is nondecreasing
in the first coordinate, then from this one nondecreasing in the second
coordinate, etc.). Since none of these nodes - is an end we never have

Z(nij) = z(nj+l). Thus 2("1j+1) has at least one coordinate greater than
l(nij), and by the T(W) definition, 2b(i), this coordinate must equal W.
Now, the number of coordinates is finite, and at least one coordinate must
change to ® each time in the subsequence, thus no such infinite path can exist.
Also, by construction the number of edges leaving any node is SlWI so it is
finite. An appeal to Konig's lemma shows that T(#) is finite. Q.E.D.

The statement of Kdnig's lemma which we use is:

Kbnig's Lemma: Let T be a rooted tree in which each vertex has only a finite
number of successors and there is no infinite path away from the root. Then

T 4is finite.

Before continuing we note that T(W¥) encodes some information about the
reachability set R(W). If T(W) contains a node { and 2(¢) 4is finite in
all components then the path from & to £ shows how the vector 2(g) can be

reached from d by successively adding elements from W such that the path

always remains in the first orthant. If some coordinates of a node & are

w, this in some sense means that by successive application of some shbsequence
of vectors this coordinate value can be made "as large as deslred," or can be
"pumped." Since several w's in £ can interact with each other care must
be taken in such pumping. With a careful analysis (see proof in [72] of

Theorem 4.2) we obtain the following theorem.

Theorem 2: Let X be an r-dimensional vector of nonnegative integers. Then
the following statements are equivalent:
(1) there is a yeR() such that x<y;

(2) there is a node neT(W) such that x<&(n).

Now, since T(W) is finite, and can be recursively constructed we obtain

a number of decidable properties for vector addition systems.

Corollary 1: It is decidable of a vector addition system W and a point X

whether R(}F) contains a point y2x.

Corollary 2: It is decidable of an r-dimensional vector addition system and
a set 0c{1,2,...,r} whether the coordinates in © are simultaneously

unbounded.

Corollary 3: It is decidable of a vector addition system J whether R(y)

is finite or infinite.

‘Relationship between Generalized Petri Nets and Vector Addition Systems

If we let each place of an n place Petri net be represented by a coordinate

it seems possible to represent the reachable set of markings of a Petri net by an

n-coordinate vector addition system. Here the initial marking vector Mb

would correspond to the initial vector d of W= (d;W) and each transition

¢ would give rise to an element of W in which the coordinates for the input
places for a would have -1 enfries, and the coordinates for the output
places for o would have +1 entries, and all other coordinates would be zero.
This is intuitively the rough idea of a possible correspondence but we wish to
be more preéise. First we would like to allow entries in wiew to be other
than +1,-1 or 0 so we generalize the nétion of Petri net so that tramsition
firings can remove and add more than single tokens, we call such a structure

a generalized Petri net (see Keller [74] and Hack [54]).

CS31l4a Lecture #7 October 5, 1976

Today: Relationship between VAS and Generalized Petri nets.

In the rough relationship between vector addition systems and Petri
nets that we discussed last time we saw that transitions of a Petri net were
represented by elements of W in a vector addition system which had entries
of only 0, -1, or +1l. We generalize Petri nets so that this restriction no

longer holds.

Definition 1: A generalized Petri net P = (H,Z,R,MO,AI,AO) consists of:

(i) a finite set I called places,
(i1) a finite set I called transitionms,
(iii) a relation Rc(IxZ)u(ZxN),
(iv) a mapping Mj: I + N, called the initial marking, and
(v) two functions AI: (ixz) >+ N and AO: (zxII) + N, where for
mell and o€, AI(ﬂ,O) = 0 if and only if (m,0)¢R and Ao(o,ﬂ) =0

if and only if (o,m)¢R.

A generalized Petri net is like a Petri net (conditions (i) through (iv))
with added functions AI and AO. These functions define the amount by which

the number of tokens on a place T change by the firing of a transition O.

A transition is called active or fireable in a generalized Petri net if each

input place T to O contains at least AI(H,G) tokens. The firing of an

active transition O changes the number of tokens on a place m by the amount

AO(G,w) - Al(n,o). We use the same terminology and concepts developed for

-

Petri nets to discuss generalized Petri nets. The only extension being
generalizing the removal and addition of tokens by transition firing to
be other than single token changes. Sec [54, 74, 99] for further discussion
of generalized Petri nets.

The next two definitions describe structural restrictions on generalized

Petri nets.

Definition 2: Two transitions o#c' of a generalized Petri net P are

called equivalent‘transitions if and only if, for all well, AI(n,o) = AI(n,o')

and AO(O,W)/= Ao(o',n).

Definition 3: A generalized Petri net P 1is called irreflexive if and only

if there does not exist any well and o€l such that AI(ﬁ,c) > 0 and

Ao(q,n) > 0.

Suppose P is an irreflexive generalized Petri net without equivalent
transitions, where I = {nl,ﬂz,...,nn} and I ='{01,02,...,0t}. A system

W(P) = (d,W) corresponding to P is defined as follows:

(1) d is an n-coordinate nonnegative integer vector:
d = e o 0 .
(Mo(nl) My (my) s ’Mo("n))
We also use MO to represent this marking vector.
(2) W is a set of t vectors, one for each transition of P. Let wj
denote the vector for transition Oj and (wj)k the kth coordinate

value of wj, then define

Lemma 1: W(P) = (d,W) is an n-coordinate vector addition system.

Proof: Immediate.

Lemma 2: s = O is a firing sequence for P if and only if

e ® o d,
11°%27 %k

each of the points d,d+w, 1,d+w +w, i2° ""d+wil+w12+"'+wik is in RW(P)).

Proof: The proof here is also trivial. A firing sequence gives a marking
sequence starting with the initial marking in which each marking is a
nonnegative n-vector. A typlcal transition is from a marking MlJ 1 to

a marking M,. by o,.. For o,, to be active M, , must contain at least
ij ij ij ij-1

AI(n,o.) tokens in each place w, and by definition Mij coordinates are

ij

1 : ..: 1 A '—A .
related to Mij—l coordinates by a change O(Oij,ﬂ) I(ﬂ,oij) Thus if

the coordinate value for any in Mij*l is nonnegative, so is that
coordinate value for Mij' It must be at least AI(ﬂ,cij) to start with and
at most AI(ﬂ,Gij) is subtracted. Thus inductively a firing sequence creates
a reachable path in the manner claimed. By similar reaéoning a reachable path
creates a flrlﬁg sequence as claimed.

Without going into detail it should be readily séén that for any vector
addition system one can construct a corresponding irrgflexive generalized

Petri net without equivalent transitions. This, plus Lemmas like 1 and 2

give us the result:

Theorem 1: There is an isomorphism between irreflexive generalized Petri nets
without equivalent transitions and vector addition systems which provide an

isomorphism between firing sequences and reachable paths.

The reader may wish to provide the detailé for these constructions and
results which have been omitted here. Note that the irreflexive and equivalent
transition restrictions are important to have the simple isomorphism results.
If a Petri net had equivalent transitions oy and oj then the construction
of W(P) would give the same vector for W, and wj. Since W 1is a set

the information about equivalent transitions is lost in the mapping from the

the generalized Petri net P to W(P). Thus there would no longer be an
isomorphism between firing sequences and reachable paths. The irreflexive
property of P means that in transforming a vector addition system

to a generaliied Petri net that a nonzero entry (wj)k in wjew imﬁediately
indicates the interconnection of place T with tyansition dj. I1f

(wj)k = Q0 there is no direct connection. If (wj)k = a >0 then T is

in the output set of places for Gj and has AO(Oj,ﬂk) = a, If (wj)k =a<20
then “k is in the input set of oj and has AI(nk,cj) = "a., Irreflexitivity

insures that no confusion can exist from the general relation AO(Gj,nk) -
Al(ﬂk’oj)°'
From Theorem 1 relating reachable points in #(P) and reachable markings

in P we immediately obtain:

Corollary 1l: For any irreflexive generalized Petri net without equivalent

transitions RW(P)) = R(P,MO).

Thus many properties about generalized Petri nets can be studied via
the corresponding vector addition system. For example, the coordinate values
of ;eachable points in R(W(P)) determine safeness and K-safeness.

For the remainder of this lecture when we use P for Petri net we will
mean an irreflexive gencralized Petri net without equivalent transitions. A

simple restatement of safeness now is:

Corollary 2: P 1is safe if and only if each reachable point in R(W(P))‘
has coordinate values that lie in the set '{0,1}, and P is k-safe if and

only if the coordinate values lie in the set >{O,l,...,k}.

Corollary 3: The properties safe and k-safe for P are decidable.

Proof: Inspect nodes of T(W(P)). For safeness labels on the tree must
have coordinate values only from {0,1}, and for k-safeness from {0,1,...,k}.
Naturally all of T(W(P)) may not have to be constructed to prove that a
given P is not safe or not k~safe.

A much less immediate corollary, which was shown by Hack [55] through a

complex series of constructions using Petri nets, is:

Corollary 4: The questions of liveness of a Petri net P and of whether

xeR(W) in a vector addition system are recursively equivalent.

The corollaries stated for vector addition systems —- using the (W)
tree —— are also directly translated into results for Petri nets. Namely,
for any marking M it is decidable whether there is an M' 2 M in R(P,MO).
It is decidable, for any subset of places, whether markings. can be reached
where the number of tokens ih these places are simultaneously unbounded.

It is decidable whether R(P,Mo) is finite or infinite.

Consider now the property of whether a given transition o is dead
with respect to a particular marking M. A simple modification of W(P)
allows one to decide this. Construct W'(P) = M',W') exactly like W(P)
but add one extra coordinate to represent the firing of o. .Let M' be the
initial marking which is equal to M, and with 0 the extra coordinate value.
Now for the ' weW' representing 0 let thé extra coordinate value equal one,
and for all other weW' that coordinate value is set equal to zero. Now o is
dead with respect to M if and only if there is no peR(W'(P)) with a value
in the extra coordinate greater than zero. This can be tested by inspec;ion
of T(W'(P)). This technique of adding coordinates to count or test certain

properties is useful for testing other properties as well.

A slight generalization of vector addition systems was made by
Keller [74] called vector replacement systems. These systems use a pair of
vectors (ui’vi) rather than a single vector W, - One of these is a "test"
vector, the other a "replacement" vector. The tree construction, and finiteness
result, immediately carry over to vector replacement systems, and this allows
one to have a correspondence between vector replacement systems and
génerélized Petri nets without equivalent transitions giving analogous results

to those we have discussed; see Keller [74] and Miller [99].

CS31l4a Lecture #8

Today: Computation Graphs

We now switch to discussing a different g .

computation called the computation graph. This .

and studied and extended in a number of furthe:s

Basic Definitions

Definition 1: A computation graph G is a fi:n:.

of:

(1) nodes D sMgseee e

(ii) edges dl’d2’°"’dt’ where any given !

a specified node ni_ to a specified # "o

(1ii) four nonnegative integers Ap,Up,wp,T_
1\

edge d , where T 2 W_.
P P P

In a computation graph each node ni is usrl

i
Thus an edge dp directed from n, to nj rep: .
flowing from n, to nj. Results of operation

placed in the queue and may later be used as ¢

-represented by n,. The four parameters on edge

3

follows:

(1) Ap is the number of items initially in the

(2) Up is the number of items added to the que:-

terminates.

(3) Wp is the pumber of items removed from ti:

0, and each edge is used to represent a first-—i:

October 7, 1976

ical model of parallel
s introduced in [69]

idies; e.g., [1, 96, 120].

directed graph consisting

dp is directed from
n,.
J

associated with each

to represent an operation
first-out queue of data.
cents a queue of data
represented by n, are
ands for operation Oj

are interpreted as

ueue from n, to n..

each time operation Oi

-ueue each time operation

Oj initiates.

(4) Tp is a threshold giving the minimum number of items required in

the queue before operationb 0j can initiate.

Computations are represented in a computation graph as sequences of
operation performances. An operation Oj’ associated with node nj is

said to be eligible for initiation if and only if each branch dp directed

into nj contains at least Tp items in its queue . It is assumed that
no two performances of a given operation Oj can be initiated simultaneously.

When O is initiated Wp items are removed from the queue of edge dp

3
for each such edge directed into nj. When 0j terminates each edge d
directed out of n, has Uq items added to its queue -

These definitions of operation initiation and termination describe how
computations of the coﬁputation graph are sequenced. Note that the actual
times required for operation performance are not specified. They are, in
essence, asynchronous. The possible sequences of initiations for computation
graphs are called executions. An execution is represented as a sequcpce,of
séts E = Sl’SZ""’Sn"" such that each § is a subset of {l,2,...,£},’
the set of node indices. If jeSn then this means that Oj is initiated
at step n iﬁ execution E. To be more precise we define x(j,n) for

je{1,2,...,2} and n = 0,1,2,... as:

0

it

x(3,0)

x(j,n) the number of sets Sm, 1<m<n, for which j 1is an element.

That 1s, x(j,n)‘ is the number of initiations of operation j in the
prefix Sl’SZ""’Sn of execution E. With this notation we can define

executions more precisely.

Definition 2: The sequence p = Sl’SZ""’Sn"" is an execution of the

computation graph G if and only if, for all n, the following conditions
hold:
(i) 4if jesS

ot and G has an edge from n, to nj, then

A +Ux(i,n) - Wx(@j,n) 2T
. p(,) p(J,) .

(ii) if E is finite and of length r, then for each nj there exists
an n. such that d_ is an edge from n, to n, and
1 P 1 J
A + U x(@i,r) - Wx(j,r) <T_ .
. p(,) p(J,) .

Definition 3: An execution E 1is called proper if the following implication

holds:
(1ii) if, for all n, and every edge dp directed from n, to nj
A +Ux(i,n) - Wx({{,n) 2T
p,p(,) p(j) p’

then jeSr for some r > n.

In an execution the occurrence of a set Sn in the sequence denotes the
simultaneous initiation of 0j for all jsSn. This model is one of the kew
that formally (rather than just informally) allows for simultaneous
initiation of operations.

Thus, an execution F 1is viewed as a sequence of sets of events, not
necessarily equally spaced in time, where an event is the initiation of an
operation of G. As performances of operations in G proceed they generate
an execution prefix. Each time an event, or set of simultaneous events,
occurs an new element of the execution is generated.

The linear forms
A +Ux(@i,n) - W=x@,n
P p(,) po,)
associated with each edge dp of G and each Sn of an execution gives

the number of items in the queue associated with dp at this point in the

execution if we assume that all of the operations up to this point in F

have actually terminated. Thus, part (i) of the definition for executions
insures that sufficient items are in the queues for 0j to initiate.
Condition (ii) insures that an execution will terminate only when no
further operations are eligible for initiation. Part (iii), for proper
executions, insures that if an operation becomes eligiblé for initiation
at a certain step, then it will actually be initiated after some finite
number of steps. This property, often called the "finite delay property,"
occurs in various forms in different models of parallel asynchronous
computation and was apparently first introduced via asynchronous logic
circuits by D.E. Muller.

In an execution E terminations are not explicitly mentioned. This
does not mean, howe&er, that an execution‘physically is a set Sn of
opérations that all initiate simultaneously and then all terminate before
any further initiations. For example, if the inequality (stronger than that
of (i) in Definition 2)

AP + Up(x(i,n)—l) - pr(j,n) 2 Tp,
holds then it is possible that the x(j,ntl)st initiation of 0j may
actually occur before the x(i,n)th termination of Oi' No violation of the
execution definitions would result.

Any computation graph G may have a large set of executions, and this
corresponds to the parallel and asynchronous nature of the model. This set
vof executions is, thus, the object to study since in some way it represents
the behavior of ‘G.

We now consider some simple examples of computation graphs, shown in

Figure 1, to illustrate our definitions.

n 1 A,U,W,T

(a) m (2,1,1,2)

a =y ta

A
list

0,1,2,2) (100,0,1,1)
(200,0,1,1) 1
(b) ' 0,1,1,1)
(0,1,0,100)
cyg = a5y e thy
for 1 =1,2,...,100.
(c) ,
, (0,1,1,1) (1,1,1,1)
)
(0,1,1,1)
(1,1,1,1) (0,1,1,1) (1,1,1,1)
1 (0,1,1,1)
(1,1,1,1)
[od Cc
Yo 1,1,1,1) Yo
p _JC p P
yn+1 yn—l + thn(xn’yn)
c_ C hep, Py, hee c v
Yo ° Yn-1 + 2fn(kn’yn) + 2fn-l(xn—l’yn-l)

Figure 1: Example Computation Graphs

In Figure 1 we have indicated within the graphs, and by equations,
a particular interpretation of the computation graph of interest. of
course, the computation graph model does not include any particular
interpretation of operations, it models only the sequencing of the operations.
e Figdre 1(a) shows a single node single edge computation‘graph with
initially two data items in the queue. Each performance of the operation
'removesdone item and places one item on the queue, and two items are
required as the threshold for operation initiation. " Here we get only a
single execution E = {1},{1},...,{1},... . 1If we assume Ol éo be an
add, and the two initial items each to be the integer 1, then FE computes
the Fibonacci sequence. In part (b) of the figure we can view the operation
as adding two lists together (sce equation) in which the A list has 200
items, the B list has 100 items and the C list, which is formed on the edge
‘entering the end node, has 100 items. Note that many different sequences
of execution exist for this graph.

Part (c) of Figure 1 depicts a parallel predictor-corrector scheme
of computatioq'for an ordinary differential equation devised by Miranker
[101]. The compdtation graph can be analyzed to determine the amount of

parallelism possible in this computation.

Relationship Between Marked Graphs and Computation Graphs

Previously (lecture 5) we defined a marked graph to be a special type
of Petri net in which each place well has exactly one input transition and
one output transition. Thus, the places in a marked graph can be absorbed
into edges from transition to transition where tokens are then thought of

lying on the edges. Our example marked graph

then becomes:

This graph can now be considcred to be a computation graph, of the same

node and edge structure.. The number of tokens on an edge become fhe ﬁumber
of items‘in tﬁe queue associated with the edge, and the transition firing
rules directly transform into the restriction that for any edge dP of

the éomputation graph Up = Wp = Tp = 1. The AP values correspond to the
initial marking MO. A formal correspondence, which sﬁould be obvious from
this informal di'scussion, thus could be given. Thereby each firing sequence

of the marked graph would correspond to an execution of the computation

graph. Executions of the computation graphs having sets Sn with

ISnl > 1 would not, however, correspond directly to a single firing sequence

but rather a subset of firing sequences where each such Sn would result in
an arbitrary ordering of firings. Our example marked graph then becomes the

following computation graph,

on
(0,1,1,1) . (0,1,1,1)

(l’l,l’l) (l’l’l,l)

where: ni corresponds to oi, i=1,2,3.

Through this correspondence results of computation graphs can be
directiy applied to marked graphs. See [96]‘for an exéméle; we will not
ampiify this here.

. It should be noted that marked graphs for géneralized Petri nets
(i,g., same restriction on the graphical structure, but usiﬁg the AI and
AO functions) would also provide a correspondence with computation graphs.
Let P - represent such a marked graph and G fepresent the analogous
coﬁputation graph. Here»each transition Gj of P corresponds to a node

n, of G. Each place ﬂp of P corresponds to an edge dp of G where

h|
d is directed from n, to =n, if and only‘if (0.,7)eR and (m_,0.)eR..
P 1 J i~ p : P 3
The restriction to marked graphs makes this well defined. The edge parameters
on d are now defined by, A =M (7 U =A4_(o,,r W =T =A_(rn_,0.).
P A > Up T %0l% p = T 1529

Thus marked graphs of generalized Petri nets correspond directly to computation

graphs in which Wp = Tp for each edge dp.

CS31l4a Lecture #9 ’ October 12, 1976
Today: Computation Graphs, continued.

Determinacy of Compuration Graphs

We now consider computation graphs with the added constraint that

any operation 0, corresponding to a node n, of G is assumed to create

k|]

a unique ordered set of data values on any edge l=aving nj for any uniqde

3 That is Oj is a

function from input values to output values. (The formidable indexing

ordered set of Tp values on each ed;= entering n

required to be precise is omitted here.) Under these conditions one can
ask how the sequence of values appearing in each of the queues is effected
by which execution, from the set of executions, is chosen. We will show
that the sequence of data items is the same for all proper executions of G
with given initial data. We call this property dc:ierminacy of computation
graphs. |

We use the folloﬁing terminology. L, 1is defined as the set of ordered

|

pairs (i,p) such that dp is an edge from n, to nj. Operation 0j

associated with n, 1s assumed specifi:d as a function. Also, we let

3

d?v denote the vth data item placed on edge dp in execution F, where

d are the initial values on dp.

d veoyd
P’ P2’ pAy
. Theorem 1: Let E = 81,82,...,Sn,... snd E' = Sl',Sz',...,Sn',... -be
two proper executions of a computation zraph G. Let x(j,n) and x'(j,n)

' ' ' '
be the number of occurrences of j in {51’82"°"Sn} and {Sl »5y seeesS }
respectively. Then for all jé{1,2,...,2} and all S there exists 2n Sr'

such that x{J,n) = x'(J,r).

Let no+l O

that for some j (call it jo) x(jo,n

Proof: By contradiction.

the first point in £ where the number

0 exceeds the number of initiations -

Jo

and E' are arbitrarily named we can

that since jOESnO+1 we have Ap+pr§'
Since n.+1 is minimal there .

L. .
€ Jo 0
' ' s
_etjo x'(i,n) 2 x(i,no) and x (jo,h;
x(3gsngtl) = x(igsn)+l so i(jo,no)+:
X(Jo’no)"'l > x'(jo,n). Using these tu.
x(jo,no) = x'(jo,n). We substitute 1ir

which is 2 x(i,no) and x'(jo,n) whic
Ap + pr'(i,n) - pr'(jo,n) p-] Tp

for all (i,p)eZ, . Therefore, since

Jo
exist an r>n such that joesr'. But
cbntradicting our assumption and provi:

This theorem proves that the numb:

0. 1s the same for all proper executi.

3

Theorem 2: Let F = sl’SZ""’sn""

two proper executions of a computation

1SVSAP, then, for all p, d

pv pv

Proof: Let n0 be the least n with

1eS the x(i,n)th performance 0

.me this occurs in E.

;)‘wpx(jo ’no) 2 Tp

= d' f»

ce the first positive intéger such

) > x'(jo,r) for all r. That is,

* initiations of some operation

0 anywhere in E'. Since £

jo

Now note

for all (i,p)

s an n such that for all (4i,p)

x(jo,no). By assumption, however,

x'(jo,r) for all r giving

#qualities on x'(j,,n) we obtain
0

Tp inequality both x'(i,n)

. uals x(jo,no) and obtain

is a proper execution there must

; gives x'(jo,r) 2 x(jo,no+1)

@ theorem.

¢ performances of an operation

E' = sl',sz',.;;,sn',... be

oh G. If for all p,d_=4d'_,

PV 134

- any value for which dpv is defined.

- following property: for some

1ces an output dpv ~such that .

dpvzd'pv. By minimality of this n, all arguments dqw of this performance
of 0i satisfy dqw = d'qw’ since they are either original data or were
formed at an earlier step of E. Since 0i is assumed to be a function

the value determined by a given set of arguments is unique. This
contradiction proves the theorem.

From Theorems 1 and 2 we have that for each edge a unique sequence of
values occurs in the queue associated’with the edge, no matter what proper
execution occurs. Thus, the computation graph G is &eferminate. We can
conclude that the asynchronous nature of the sequencing in a computation
graph has no effect on the values computed. Thus, whenever a computational
processvcan be represented by a computation graph it is automatically
known to be determinate. ’

These determinacy results for computation graphs are somewhat expected
when we consider the restrictions that the computation graphs impose. First,
there is no ability within the model to represent conditional branching, and
second all memory is "private" to pairs of operations in a result to operand

relation as imposed by the queues. Thus no sharing or conflicts can occur

in memory utilization.

Relationship between Cormputation Graphs and Vector Addition Systems

We restrict our attention here to computation graphs which are:

1) productive, i.e. for each edge di Ui>0 and Wi>0.

(11) irreflexive, i.e. no edge is a self loop.

(111) conservative, i.e. for each edge di Ti = Wi'

(iv) nonequivalent edge: two edges dm and dn are called equivalent

if Um=Un’ Wﬁfwn and they are both directed between the same pair

of nodes n, to n,.

i 3

For any productive, irreflexive, conservative, nonequivalent edge
computation graph G with £ nodes and t edges there exist a corresponding

t-dimensional vector addition system W(G) defined as follows:
W(G) = (d,W) where:

d - (Al’Az "0 L] ’At)

W is a set of £ t-dimensional vectors wl,wz,...,wz, where
w m W 4if d is directed into n

wydy = | 3 1

Uj if dj is directed out of ng

0 otherwise.

From this correspondence one readily sees that points in R(W(G))

. correspond to simultaneously achievable queue length values. Thus, from
the T(W(G)) results we immediately determine which queues are bounded,
what their upper bound is, and which subsets of queues are simultaneously
unbounded. By adding an extra coordinate to "W(G) for each node nj to
"count" the number of performances of 0j one can also determine from the
tree on this modiifed vector addition system whether any operation or set
of operations necessarily terminate, and for any‘ 0j that terminates the
number of performances of Oj’

In [69] other algorithms for determining termination and queue length
are described which, although their complexigies have not been analyzed,
are probably simpler than the general tree constructions for vector addition
systems. Of course, the class of vector addition systems obtained from

computation graphs is quite restricted, and the tree construction for

[3
this class of vector addition systems may itself be rather simple to
conétruct. The restriction in the class of vector addition sysééms is
that in any coordinate the set of W vectors has exactly one vector with
a strictly positive value and exactly one vector with a negative value.
This comes from the'fact that a coordinate corresponds to an edge of the
computation graph which is directed into exactly one node and is directed

out of exactly one node.

Producer-Consumer Systems and their Relationship

"to Semaphores, Computation Graphs and Generalized Petri Nets [See 99]

Producer-consumer problems are an important class of synchronization
problems that arise when one considers the interconnection of a set of
processes. Essentially, the idea of a producer-consumer system is that
a given process of the system produces results that are used (consumed) by

some other process. We first define a restricted system we call unshared.

Definition 1: An unshared producer-consumer system S consists of:

(1) a‘finite set B = {pl,pz,...,pz} of processes,
(i1) a finite set S ='{sl,sz,...,st} of semaphores,
(i11) a finite set a: S -+ BxB which associates an ordered pair of
processes with each semaphore,
(iv) thrée functions u: S + N
n: S+ N
v: SN

where for a semaphore s with a(s) = (p,,p.), n(s) 1is the
i™]

number of P(s) operations in the beginning of pj, v(s) 1s the number of
V(s) operations at the ending of Py> and u(s) is the initial value

assigned to s.

In an unshared producer-consumer system each semaphore 1s associated

with a pair of processes as shown below:

process process

semaphore s

.

Here the process P; 1s thought of as the "producer” of results for "consumer"
pj, where P and V operations are used to indicate to the'consumer when
sufficient items have been produced for the consumer to start.

This unshared producer-consumer system is a very restricted usage”of
semaphores. The semaphore is "private" to the producer-consumer pair rather
thaﬁ being shared by several producers or several consumers. However
a8 process may be considered to be a producer'(or consumer) for several
processes, just as long as one semaphore is used for each producer-consumer
pair.

A fairly direct representation of unshared producer—éonsumer systems
byvcomputation graphs should be evident. For an unshared producer-consumer
system S of ¢ processes and t semaphores we can construct a computation

graph G, with £ nodes and t edges.

S

Each process of g 1s represented by a node n, of GS’ and each

Py 1
semaphore 8y is represented by an edge dk of GS directed from n, to

nj if vq(sk) = (pi,pj). The parameters Ak’Uk’wk’ and Tk are Qefined as:

A = u(sk)

Uk = v(sk)

Wk = k =7 (sk) .
With this representafion, the performance of an operation 0j associated
with n, of GS corresponds to the performance of process pj of S.

k|

An execution of GS corresponds to an allowed sequence of process perforﬁances
in S5, where termination properties of the two systems correspond, and where
queue length of dk corresponds to attained semaphore value of S«

This correspondence also shows why the generalized P and V operations

" of the form P(n,s), V(h,s) and P(T,W,s) (see Lecture #4) are natural

extensions of P's and V's to consider.
An example of the computation graph GS for an unshared producer-

consumer system is shown in Figure 1.

P(s
P(s4)

P3

V(s

P(sl)
@s | 2 Py
(gzl, -
P P2
V(s3) V(sl)
V(sa) V(sl)
V(SA)

u(s;) = u(s,) = 2

u(gz) = u(s3) =0

(b) GS

- Figure 1: Unshared Producer-Consumer System S and Corresponding

Computation Graph GS'

2,2,2,2)

-9-

This system S, by definition 1 is:

B = {p;,p,or5} § = {s),8,,85,8,}

a(sl) = (pz.pl) n(s)) = 2 "(81) =2
“(82) = (p3,p1) ﬂ(sz) =1 v(s,) =1
a(s3) = (pl,pz) ﬂ(s3) =1 _ V(s3) =1
a(s,) = (p>P3) | w(s,) = 2 v(s,) = 2

We see that in this example initially only process Py can start.

When ﬁ3 terminates and updates s then P, can start. When Py

2

finishes and updates s, and ‘84 then both P, and Py can start.

3
Process P, can initiate again only when both P and P have finished.
" The "unshared" aspect of the systems we have just defined is quite

restrictive. We generalize.

Definition 2: A producer-consumer system S consists of:

(1) a finite set B = {pl,pz,...,pz} of processes,
(1i) a finite set S ='{sl,sz,...,st} of semaphores,
(111) three functions u: S =+ N
| n': SxB > N
v': SxB + N
where for any seS and peB, u(s) 1is the initial value of
s, n'(s,p) 1is the number of P(s) operations at the beginning
of p, and v'(s,p) 1is the number of V(s) operations at the

end of p.

Here the #' and v' functions let a semaphore be used by any process.

-10-

As before, however, we assume all P operations to occur at the start of
a process and all V operations to occur at the end of a process. A
formal correspondence between producer-consumer systems and generalized

Petri nets is depicted below:

Generalized Petri
net P with

Producer-Consumer
System S with

B -b {pl’pz, ceo e ,pz}
S = {81,82,...,8t}

T H_{°1’°2""’°£}
= {"1’"2’.) ,'ﬂ't}

~ g

P3 3
®1 1
ﬂ'(si,pj) 20 ("1’°j)€R
v'(si,pj) 2 0 (oj,wi)eR
u(s,) My ()
‘a'(si,pj) AI("i’Oj)
v'(si,pj) Ao(oj,wi)

Although this correspondence between producer-consumer systems and
generalized Petri nets gives an isomorphism between the two models, we will
show that it does not automatically provide an isomorphism between behaviors.
This is shown by the next sample. Consider the three process preducer—

consumer system with p(sl) = p(Sz) =0 and u(s3) = 1:

P(sl) P(Sz)

P(s3) P(sz) P(sl)

Pyt —— Pyt —— Pyt ——
V(sl) V(s3) V(S3)

-11-

This corresponds to the Petri net:

This producér—consumer system has a deadlock. Note that éfter process
P is performed both él and s,y change to a value of 1. Then p, can
execute P(sl) and p, can execute P(sz) which deadlocks the system.
No deadlock occurs in the corresponding Petri net, however. Rather, after
% fires then both 9, and o become active. There is a conflict between
9, and 03, but the global rules for firing transitions do not allow both
o, and 0, to fire. Thus, the conflict situation in the\Petri net is
related to the deadlock in the producer-consumer system. More complex
examples, like the Cigarette Smokers Problem of Patil show that even a
rearrangement of P(s) operations in the processes cannot always circumvent
the deadlocking problem. The simultaneous taking of tokens from several
places by a transition firing, which prevents the firing of conflicting
transitions, is what gives rise to the desire to generalize P operatioﬁs
to operate simultaneously (or in an indivisible manner) on arbitrary
subsets of semaphores.

This example should amply demonstrate that one needs to carefully
analyze correspondence between models to be sure that the desired properties

carry over in the correspondence from one model to the other. Here we see

-12-

they did not. A weak relationship between conflicts and deadlocks was

noted but this has not been precisely described.

CS3l4a Lecture #10 October 19, 1976

Today: Bernstein Analysis of Parallel Processing [15]
Next Time: October 19: Richard Lipton
Complexity of the VAS Tree Construction
October 21: Larry Snyder
Linear Asynchronous Structures
October 26: Fred Sayward
Parallelisﬁ Ideas ip Operating Systems
October 28: Parallel Program Schemata

(first of several lectures)

In the Bernstein approach we assume a semi-formal model of programs
and machines. A program is broken up into blocks (tasks, procedures)
which in a sequential program have sequencing as specified by a flow-chart
like control. For example, a simple case might be three sequential blocks

P, P and P

1° P depicted in Figure 1.

3

Pl

P

P,
Figure 1

Here P, 1is to follow P., and P3, the remainder of the program, is to

2 1
follow P2. How can one tell if either the order of exechting P1 and
P2 can be interchanged, or whether Pl and P2 could be executed in

parallel? These situations are depicted in Figures 2 and 3 respectively.

o le—
N
| VI

+— L
—

! P1 P2
P1 lﬁf(
2 Py
Ps
Figure 2: Commuting Pl and P2 Figure 3: Parallel Operation
of Pl and P2

Note that the commutativity of P1 and PZ’ as shown from Figure 1 to

Figure 2, is not exactly the same as parallel operation of P1 and P2

shown in Figure 3. For example, considering Pl,le, and P3 as computing
functions fl’ f2’ and f3 on a variable x it could Be that f3(f2(f1(x)))
was, by commutativity of fl and f2’ equal to f3(f1(f2(x))). This would
not imply that parallel operation would be ailowed, however, since in parallel
operation both P1 and P2 would take x as input computing fl(x) and
fz(x) but then, depeﬁding on whether P1 or P2 finished last, P3 would
operateveither on fl(x) or fz(x) giving f3(fl(x)) or f3(f2(x)) and

neither of these would necessarily equal f3(f2(f1(x))) = f3(fl(f2(x))).

Undecidability of Parallelism Detection

One would like, given any program with a program block structure,
to be able to have an algorithm which would answer the question: For

P1 and P, blocks of the program can P, and P, be done in parallel?

J i]

Or similarly can Pi and P, be commuted? Unfortunately, no such

]
algorithms exist. We show this for the parallelism question.

Theorem 1: The parallelism of two program blocks is undecidable.

Proof: If we had an algorithm to decide block parallelism we show this
implies that the halting problem for Turing machines is decidable (i.e.
there exists an algorithm for it). Since this is impossible it follows,

then, that our parallelism question is undecidable.

Consider the program of Figure 4.

Store nk in

location A

Does T stop in n or

fewer operations?

Store

in

location C

NO YES
N
2
(A) Store (A)
in
location A

Figure 4;

P

|

Store (A) in

location D

DUndecidability of Parallelism Deteétion

Here n 1is assumed to be an arbitrary integer stored on an input tape,
o is assumed to be the k most significant digits of n, locations
A, C, and D are assumed to be three different locations used only as
mentioned in Figure 4, and (A) means the value in location A.

We are assuming we have an algorithm to test for parallel blocks and
apply this to Pl and P2 of Figure 4. We also assume that T 1is an
arbitrary Turing machine read into the pfogram as input. Now, if T never
halts, then for all inpuﬁ data n, Pl takes the NO branch. 1In this case
Pl and P2 can be done in parallel, storing (A) in locations C and D.
If T eventually stops, however, for some n, then P1 takes the YES’
branch for these n. That is, T could sometimes stop, and sometimes not
stop. In this case Pl and P2 must be performed serially sincebthe YES
brancﬁ in Pi causes the value in location A to change, and this changed
value is needed by P2 to place in location D. Thus, Pl and ~P2 can be
done in parallel if and oniy if T never halts. Since the halting problem

is undecidable so 1is the parallel block problem. Q.E.D.

Similar reasoning shows that commutativity of blocks is also undecidable.

Sufficient Conditions for Parallelism Detection

Theorem 1 shows that we cannot obtain necessary and sufficient conditions,
which are decidable, for parallelism detection, thus we look for rather éimple
decidable conditions on blocks that are sufficient, when satisfied, to enable
the blocks to be done in parallel. These conditions will be based on what
memory locations each block uses in various ways.

For our analysis we assume that each program block fetches and stores

into a common memory of the machine. We assume that these effected memory

locations can be predetermined, and are fixed for each block. Thus, for

each block P, we distinguish four different sets of locationms.

i
1) Wi is the set of memory locations that are only fetched during
execution of P_.

i

2) Xi is the set of memory locations that are only stored into

during execution of Pi'

3) Yi is the set of memory locations which have first a fetch

reference and then some succeeding store reference during the

execution of Pi'

4) Z1 is the set of memory locations which have first a store reference

followed by some fetch reference during execution of P

i.
Note that execution of Pi does not modify values in locations of
the set Wi. Modification can occur only in locations which are in Xi,

Yi or Zi and not elsewhere in memory. We do not actually know, nor will

we attempt to determine, whether each element fetched by Pi is actually
used in the execution of Pi or whether each location that Pi stores

into actually has its value changed or not. Nevertheless, we assume that
since these values may actually be used or be changed, that any transformation
 from sequential to a parallel or commuted form will have to insure that fhere
was no way these changes could effect the final outcome of the program.

Thus, if we wish to go from sequential to parallel form, i.e. from Figure 1

to Figure 3, for blocks Pi and P2 we require:

(Wiqu)n(ququZZ) = ¢. (1)

That is, that what Pl uses as input values (W UYl) cannot be changed

by values stored into by P (X 2uzz) Similarly, P, should not

2 2

destroy results of P, which may be needed later during the performance

1

of Pl; thus:

z n(xqu uzz) = ¢, (2)
These two conditions (1) and (2) combine into the requirement:
(W vY uzl)n(xqu UZZ) (3)

In the parallel form of operation P2 no longer necessarily follows Pl’

and thus P2 should not require results of P1 as input data. Thus:
CXlquuzl)n(quYz) = ¢ (4)

Also P should not overwrite a result that P2 has written and later

1

needs to use. Thus:

(xluY uzl)nz2 = ¢, ; (5)
Combining (4) and (5) we obtain:

(x vY uZl)n(wqu uzz) (6)

Finally, we must insure that when P3 is entered the values it requires as
input; namely, (W UYS) are not affected by the order in which P1 and P2
were executed. The locations that are so affected are those common locations

into which both P1 and P2 write; na2xely,

(xlquuzl)n(ququzz).
This leads to the requirement:
(xlquuzl)n(xquzuzz)n(w3uY3) = ¢. (@)

Thus, conditions (3), (6) and (7) should be sufficient for transforming

P, and P2 from sequential to parallel form. Conditipn (7) can be

1
simplified, however. Note that from (3) we require (Yluzl)n(xquzuzz)
= ¢ and from (6) that (xluYiUZl)n(YZUZZ) = ¢. Thus,
&Yz)n XpuY,uz,) = XnX,, (8)
and applying (8) to (7) we get: g
X X0 (WY) = ¢ | (9.
We conclude that (3), (6) and (9) are sufficient to allow P1 and P2

to be done in parallel. Summarizing, we say that _Pl and P2 can be

done in parallel if system I holds:

(wlquuzl)n(xquzuzz) = ¢ 3
1 (inYluzl)n(WZUYZUZZ) = ¢ (6)
.Xlnxzn(w3uY3) = ¢).

We now turn to whether Pl and P2 can commute (Figure 1 to Figure 2)

with no change in the program. The conditions we have just considered are

again useful. Since the input to P. should not be changed by what P

1 2
computes condition (1) is still required. Condition (2) is not required

since for commutativity the executions of Pl and P2 are not arbitrarily

D O SO A i B 1 . e o e 4 e+ i 4

interleaved. Continuing this reasoning we see that only (1), (4) and (7)
are required for commutativity. Similar to our previous simplification

(1) and (4) can be seen to give:

(X uY uzZ)n(x vY uzz) (Xluzl)n(xzuzz).

This then simplifies (7) to
x uzl)n(xzuzz)n(w30Y3) = ¢,
The final set of sufficient conditions to insure commutativity are then:

(wlqu)n(x vy uzz) = ¢
11 (W vY)n(X UY (VYA) = ¢ .

(X vz)n(quZZ)n(W3uY3) = ¢

Systems I and II give simple sets of sufficient conditions for allowed
transformation from sequential to parallel or commuted form respectively,
wheﬁ the flow structure is originally as depicted in Figure 1.

We note that in both I and II we are testing for "overlap"‘of memory

utilization between two processes P1 and P2. Our approach was made simple

by assuming that we could determine, with no ambiguity, the sets Wi

and Zi' This, of course, may not always be possible. For example a block

Pi may contain conditional branching for which memory utilization is

different on each branch. 1In this situation all paths in Pi must be

analyzed. If one branch only fetches from some location, and another branch

s Xi’ Yi

only stores into that location then, to be safe, one needs to have that

location as elements of both Wi and Xi.

Using similar reasoning this sort of approach can be used to derive

conditions for other forms of branching and looping structures. Bernstein
[15] does some of this and also treats another meémory organization using
private slave memories for temporary results. The points of interest here
are the "domain" and "range" locations in memory that are read or written
bi the processes, and the order in which processes do this reading and
writing. The lack of conflicting uses of common memory locations determine
vhether these simple transformations to parallel or commuted forms are
possible. We will see similar, but more formal, treaﬁment of this via

parallel program schemata in subsequent lectures.

CS31l4a Lecture #13 October 26, 1976

(Fred Sayward)

Today: Parallelism in Operating Systems

0., Introduction

Among the various reasons for studying parallelism is the fact that
some computer applications are more easily viewed, designed, and imple-
mented as parallel algorithms. This is most evident in operating systems
where thé underlying computer actually consists of parallel hardware.

For e#gmple, a CPU and data channels as on the IBM/360 or a CPU and ten
peripheral processes as on the CDC 6600. |

In today'sllecture we will argue why oﬁerating system organization
is best viewed as cooperating sequential processes and then examine the
merits of three forms of interprocess comunication: semaphores, condi-

tional critical regions, and monitors.

1. Why Cooperating Sequential Processes?

Cooperating sequential processes are a system consisting of concur-

rently executing processes, sharable resources, and primitives for inter-
process comunication. Each process is a sequential program which is always
executing at some unknown non-zero rate. A process may at any time acﬁess
a resource. Harmonious accessing of resources is accomplished via inter-
process communication (i.e., cooperation).

Most commercial operating systems for second and third generation

computers have been designed as a system'of‘interrupt driven processes:

processes are started, stopped, and re-started as a result of interrupts

generated from both within and external to the system. The indeterminacy

2

and irreproducability of interrrupts makes system testing and debugging
at best a very difficult task and at worst an impossible task. Moreover,
when programming at the level of interrupts, the added complication of

speed dependent errors arises. A classic example of this was the presence

of bugs in 0S/360 running on the IBM 360/65 which didn't appear when
0s/360 was running on the slower IBM 360/40.
The major advantages of viewing an operating system as cooperating
sequential processes as opposed to interrupt driven processes are thus:
(1) it is easier to express the natural synchronizations which take
place in the operating system (e.g., no information is used
before it is created)

(2) the operating system is easier to prove correct (debug).

2. Hypothetical Four-Level System

The vast majority of current computer systems consist of one (or a
few) interruptable CPU and several peripheral devices which generate
interrupts. The question is: How can the benefits of cooperating
sequential processes be realized? Dijkstra (3) first addressed this
question. He views an operating system as levels of abstraction, the
hardware being level O, with‘each level creating a more attractive system
to those levels above iﬁ. At some level the system is the cooperating
sequential processes and interrupts have been abstracted away. It is at
this level that the vast ﬁajoritx of the user service routines ére found.
Obviously, given the system hardware constraints, we cannot completely
ignore the interrupt; however, we have isolated it and put it in its proper
perspective.

For the purpose of this lecture we will consider a hypothetical four-

3
level System. At level 0 is the system hardware, with which we will have
little concern, At level 1 ig the so-called "implementation of cooperating

sequentiél Processes." Thig level controls the system hardware, responds

the Cooperating sequentia]l Processes systgm: the scheduling of processes
to be €xecuted on the CPU ang the implementation of interprocess communi-
‘Cation pPrimitiveg, At level 2 is the cooperating Sequential Processes
8ystem. Thig level controls the Processing of yger Jobs, the details of
which wil] not concern us, We will be concerned with the choice of
communication Primitives apg the affectsg this has witp respect to correct-

ness and efficiency at levels 1 ang 2. Level 3 is the job Stream. Thig

e

level 3

level 2

level 1

level O

Figure 1:

Job Stream

Sharable Resources
Concurrent Processes

Communication Primitive

Implementation of Cooperating

Sequential Processes

System'

Hardware

Hypothetical Four-Level System

Scheduling of Processes

Execution of the
Communicatibn Primitive

Interrupts, CPU,

memory, peripherals, etc.’

R

3. The Key Issues

As alluded to above, our major purpose in this lecture is to evaluate
the affect of the choice ©f interprocess communication priﬁitives with respect
to the ease of showing system correctness and the system's efficiency. More
specifically, we will treat the following issues: '

Levei 2)

(1) Mutual Exclusion - although, by definition, all processes may be

simultaneously accessing a given resource R, a common type of
synchronization is that at most one process accesses R at any
given time.

(2) Deadlock - mutual exclusion implies that a process Pl might
have to wait to access a resource R 1f another process P2 is
currently accessing R. Deadlock is when this wait never ends.
‘Note that this includes deadly-embrace as well as other types of
level 2 infinite waits.

(3) Self-Imposed Priorities - aside from mutually exclusive, normally

processes must access the resources in some given order (or set of
orders). For example, when a card reader process and a disk writer
process use a single memory buffer to do spooling, the order is
alternation with: the reader process first.

(4) Correct Use of Resources - apart from synchronization, how hard it is

to prove that the resources, treated as data objects, are operated on

correctly.

Level (1)

(5) Implementation of Communication Primitives - how difficult are they to

implement,énd how difficult is it to prove the implementation correct.

(6) Scheduler Fairness - the scheduling of processes is fair if a process

6
which is eligiblg to aécess a resource eventually does so.
Although this resembles deadlock, we note that deadlock freeness
at level 2 does not imply scheduler fairness at level 1 and vice
versa.

“(7) Busy Wait - by definition, all processes are always executing in‘
their level 2 environment, even when they are waiting to access a
resource which is currently in use. Busy wait avoidance is seeing
fhat the scheduler never assigns the CPU to a process which is in

such a waiting state.

4., Semaphore-Based Communication

Semaphore-based interprocess communication was first designed and
implemented by Dijkstra (3) in the THE operating system. Semaphore vériables
and operations on them are added at level 2. These primitives have been
defined in a previous lecture but for completeness we briefly review them here.
Semaphore variables are non-negative integer variables which can only be
operated 6n by two operations: P and V. P andv V are non-interruptable
and at any time at most one process may be éperating on a given semaphore.

‘At level 2 the P and V operations appear as follows:

P(S) L: if S>0 then S«S-1 else go to L
v(S) S+S+1

Level 2 under semaphore-based communication is summarized in figure 2.

@ - - - Sharable Resources
@ I v Semaphore Variables
P and V Operations

Py =7 - . Sequential Processes

(G

level 2

Figure 2: Level 2 with Semaphore Communication

We now give4a typical implementation of semaphores; in fact; the imple-
mentation described in (3). Each process is always in one of two states:
active or sleeping. At level 1 there are 2+1 queues: a sleeping queue,
denote qsi, associated with each semaphore variable and an active queue
which we denote by q,- Processes in q, are eligible to be executed on the

CPU, others are not. Initially all processes are active. At level 1 the

P and V operations are as follows:

P(S,) 1: s; « 571
2: if §,<0 then put P, on 4q else P, remains active
| = %7 = 3 s, — 3
V(Si) 1: Si « Si+1 o
2: 1if S,<0 then choose some P in q to activate
= 1 -_— k 5,

where P _is the process executing the operation.

3

In evaluating the communication primitives we will give a list of pros

and cons with respect to our key issues.

Pros :)

1. Ease of Implementation - as seen above the code for the semaphore

operations is short and efficient. If there is but one CPU then that
one process accesses a given semaphore at any time is trivial.

Indivisibility of the operations can be done by inhibiting all interrupts.

8

2. Scheduler Fairness - this is most easily accomplished by making all

queues FIFO.

3. No Busy Wait - although there is conceptual busy wait at level 2, at

level 1 only active processes may get the CPU.
Cons

1. Mutual Exclusion - this is hard to prove under semaﬁhores. It is easy

to make programming errors and the compiler can be of little help since
there is no relationship between resources and semaphores.

2, Absence of Deadlock - again difficult to prove and easy to make

programming errors.

3. Self-Imposed Priorities - very difficult to program semaphores to realize

complicated synchronizations. Consequently, very hard to prove this aspect.

4. Correct Use of Resources - since the accessing of a given resource R may

be scattered throughout any number of processes, this aspect is difficult

to formalize and hard to prove.

5, Conditional Critical Region-Based Communication

Hoare (5) proposed the conditional critical regions as a way of elimi-
nating some ofvthe cons of semaphores and their use in operating‘systems has
been described by Brinch Hansen (2). They have been defined in a previous
‘lecture and are summarized below.

Under conditional critical region communication the structure of level 2
is as described in figure 1, there are no special common variables. Pfocesses
access the shared resources wiﬁh either the critical region or the conditional
critical region statement, the former being a subcase of tbe latter. Their
syntax and semantics are as follows:

CRITICAL REGION

~Iegion R, do statement end

9

Semantically, a critical region says: "With exclusive access to Ri

execute 'statement' (which accesses Ri) and then release the exclusive

access to Ri'"

CONDITIONAL CRITICAL REGION

region Ri when B do statement end

Semantically, a conditional critical region says: "With exclusive access

to R, evaluate the predicate B (which accesses Ri)' If B 1is true,

i
then execute 'statement' (which accesses Ri) and then release the exclusive
access to Ri' If B 1is false then release the exclusive access to Ri
and re-execute the conditional critical region."
Note that instances of the conditional critical region may be nesté&.

A typical implementation of conditional critical regions is not much
different than one for semapﬁores. Suppose we have semaphores at level 2 as
was illuétrated in figure 2. Our conditional critical region level will be
2', At level 2 we associate a semaphore Si with each resource Ri' Initiaily
each Si=1. In terms of level 2, the level 2' interprocess communication

primitives become:

CRITICAL REGION ‘ CONDITIONAL CRITICAL REGION
1: P(S)) 1: B(s,)
2: statement 2: if B then statement;y(s,)
3: V(Si) , 'S else 'V(Si)3 goto 1
Pros

1. Ease of Implementation - only slightly more difficult than semaphores.

2. Scheduler Fairness - same as for semaphores.

3. Mutual Exclusion A Priori - the implementation guarantees that

10
syntactically correct processes (can be checked by the compiler) have
the mutual exclusion property.

4. Deadlock Avoidance - although the problem has not been completely solved,

the compiler can detect potential deadlocks and the programmer is less
likely to commit errors which lead to deadlocks.
| Cons

1. Self-Imposed Priorities - the programming of complicated synchronizations

is only slightly easier than with semaphores.

2. Correct Use of Resources — the accessing of a given resource is still

scattered among the processes.

3. Inherent Busy Wait - in our typical implementation of conditional critical

regions in terms of semaphores there is a potentially very inefficient
busy wait. At level 2 (part of the implementation).when statement 2 of
the conditional critical region is executed with B resulting

“in false, we have wasted CPU time. Furthermore, this waste is potentially
unbounded since we known nothing about the speed of the process which will
eventually alter Ri to make B true. One could argue that thié is a
product of our naive typical implementation. However, although it has been
shown (10) how to alleviate the problem, it is in general impossible to

‘completely remove it.

6. Monitor~Based Communication

The use of monifors for interprocess communication which we now describe
was suggested by Dijkstra (4), formalized by Hoare (6), and first implemenfed
by Brinch Hansen (1). In monitor communication processes cannot directly |
access the shared resources; rather, they access resources via ﬁmonitor calls."”

At level 2 there is a monitor process associated with each shared resource

11
(the shared resource is local to the monitor) and the cooperating sequential

processes system is visualized as in figure 3.

R1 R2 - Rm
Ml M2 Mh
L e e e e e 4 indirect accessing of
Pl ‘PZ - - Pn 4 resources
level 2

Figure 3: Cooperating Sequential Processes with Monitors

A monitor process consists of three parts: data, procedure calls
(monitor calls), and code for data initialization. The data also consists of
three parts: the shared resource, local variables, and queue variables; A
queue variable (call it q) may only be accessed by a monitor procedure
(not the initialization section) via the operations 'q.wait'" and "q.signal,"
the semantics of which will be defined below. Figure 4 illustrates this
organization. For a ménitor with a name of "monitorname' a process accesses

the associated resource via an ALGOL-like procedure call:

monitornama.procedurename (actual parameters)

12

Shared Resource

Local Variables Data

Queue Variables

proc 1 (formal parameters)

proc 2 (formal parameters) Procedures

. / ' (Monitor Calls)

proc & (formal parameters)

Initialization Data Initialization

/

Figure 4: Monitor Organization

The rules under which the monitor processes, the sequential processes,
and the implementation operate are now summarized:
(1) The implementation maintains m+l queues: an active queue "AQ"
and for each monitor Mi a waiting tn enter monitor queue "WEMQi."
As in previquély described implementations, only processes in AQ
are eligible to be executed on the CPU.
(2) The implementation guarantees that for a given monitor at most one
 process is executing a monitor call at a time. ‘ |
(3) Before any process is activated each monitor executes its initialization
section and is thereafter considered inactive.
"(4) A process execnting a monitor call is considered to be active. It is
actively executing a procedure in the traditional sénse.
(5) The implementation maintains a queue for each queue variable declared
in a monitor. A monitor may only access these queues via the signal
‘ and wait operations alluded to above. To see tne semantics of these

operations, let's assume that process "proc" is executing a monitor

13
call in which one of these queue operations is executed on

"q." The affect is:

(1) q.wait ~ put "proc" on "q" and suspend this monitor call
at the point of the gq.wait (a la coroutines) thus free-
ing the monitor to be called by other processes.
(11) q.signal - (a) terminate this monitor call, and (b) if
q 1is non-empty (i.e. some processes were put there as a
result of’ q.waits) choose some process on q and complete
its monitor call.
Hence, q.signai gives ériority to processes in level 2 queues over
those processes in the level 1 queue WEMQ. Note also that it is
impossible for a monitor to signal without terminating.

To solidify these complex definitions we now give a simple example of
using monitors: a single buffer producer/consumer. The producer is a card
reader process which deposits card images in a common memory buffer and the
consumer is a disk writing process which takes card images from the buffer

and writes them on a disk. This situation, commonly found in spooling

systems, is illustrated in figure 5.

Card Producer Memory Consumer

Reader Process Buffer Process

Figure 5: Single Buffer Producer/Consumer

The monitor process which controls the single memory buffer has two
monitor calls: an "inbuf" for depositing a card image into the buffer and

an "outbuf" for taking a card image from the buffer. Clearly, the monitor

must be constructed so that (1) the producer and consumer alternate in the

AR T M A v g o w0 R e e e . ——— RN f—

14
buffer accessing, (2) an inbuf monitor call must wait if the buffer is full,
(3) an outbuf monitor call must wait if the buffer is empty, and (4) the
ﬁuffer is initially empty. Parts (2) and (3) will be done via two queue
variables, "cannotin" and "cannotout," and the state of the buffer by a local
variable "empty." Satisfying points 2-4 will satisfy point 1. The monitor
process is given in figure 6.

The producer and consumer processes have the following structure:

PRODUCER 1l: read card reader
2: singlebuffer.inbuf (card image)
3: goto 1l

CONSUMER 4: singlebuffer.outbuf (card image)
| 5: store on disk

6: goto 4

In the implementation there are four queues: the cannotin and cannotout
queﬁes which are conceptually at level 2, the waiting to enter the single-
buffer monitor queue WEMQ at level 1, and the active queue AQ. To see
hpw they interact let's assume that there are two inbuf monitor calls
followed by two outbuf calls: ... inbuf 1 ... inbuf 2 ... outbuf 1...

outbuf 2 ... Initially we have the following situatiom:

Level 2 I empty I I empty I l emptyl I truel
EMPTY

CANNOTIN CANNOTOUT BUFFER
producer
Level 1 I empty l consumer
WEMQ

AQ

After the execution of inbuf 1 we have only changed the state of the buffer

15

singlebuffer: monitor

begin character buffer (80); {shared resource}
boolean empty; {local datal

queue cannotout, cannotin;

procedure outbuf (card)

begin character card (80);

if empty then cannotout.wait;
card: = buffer;

empty: = true;
cannotin.signal;

end outbuf;

procedure inbuf (card)

begin character card (80);

if =* empty then cannotin.wait;
buffer: = card§

empty: = false;
cannotout.signal;

end inbuf;
empty: = true; "~ {initializing of local data}

end singlebuffer;

Figure 6: Monitor Process for Accessing the Buffer

16

and the local variable empty:

lcard 1| | false I

BUFFER EMPTY

When inbuf 2 gets processed, since the buffer is full, the monitor call must be

suspended and we arrive at the following:

producer
(inbuf 2) ' empty I | card 1 I I false I
CANNOTIN CANNOTOUT - ' BUFFER EMPTY
Iempty | ‘ ' consumer I
WEMQ ' AQ

Next, outbuf 1 gets processed and it terminates via a cannotin.signal. The

state is as follows:

producer

(inbuf 2) I I empty l : empty I l true l

V'CANNOTIN CANNOTOUT BUFFER EMPTY
I empty l l consumer 1

WEMQ AQ

‘The monitor signal rules say that the pending fbuf 2 monitor call must now be resumed.
Even if the WEMQ were non-empty this would still be the case. This also prevents

the monitor call outbuf 2 from beginning. After inbuf 2 finishes we get:

| empty l l empty I , l card 2 |. ' : I false |

CANNOTIN ‘ CANNOTOUT BUFFER EMPTY

producer
consumer

'l empty I '

WEMQ AQ

17
Only now can the monitor call outbuf 2 begin. If we look at the processing

of the monitor calls by the implementation with respect to time we get the

following;
inbuf 1 B_E
inbuf 2 B S o eoo.-. E
outbuf 1 B E
B E
outbuf 2 , r-___]
time

where B represents begin, E end, S suspend, W wakeup, solid lines the
pfocessing of the monitor call, and broken lines a suspended monitor cail.
In evaluating monitors with regard to our key issues we hdfe that
monitors‘may call other monitors and hence deadlock is possible. The PROS
1list now contains all seven criteria. In (9) it is described how monitors
may be efficiently implemented. The only apparent drawback is in actually
pro&ing the implemengation and monitors themselves correct. This is illus-

trated by the complex proof of fairness given in (8).

7. A Weakness of Hoare/Brinch Hansen Monitors

_ When Hoare (6) formalized the monitor concept he questioned his own
definition of the monitor signal operation: "The duestion whethervsignai
should always be the last operation of a monitor procedure is still open."
The answer to this question has recently been shown to be no as ;he folldwing
problem of Howard (7) indicates:

JOINT CHECKING ACCOUNT PROBLEM

A husband and wife share a joint checking account. The dnly operatibné

they may make are (i) deposit (k) which increases the account balance by k

T T

18
dollars and (ii) withdraw (k) which decreases the account balance by k
dollars. Furthermore, the account balance should never exceed M dollars
for fear of bank failure. However, deposit and withdrawal of k>M dollars
are allowed. 1In this case, deposits and withdrawals are to alternately fill
and empty the account, signaling as they go.
The problem is to write a monitor program to represent this action where

the monitor will have the following structure:

Account Balance

cannot deposit queue local data

cannot withdraw queue

deposit (k)
monitor calls

withdraw (k)

balance = 0 j; initialization

bank monitor

Husband Wife

Process Process

Note that the only allowed bank operations by the husband and wife gré
monitor calls. A bank.deposit (k) is a single'operation in their doﬁain.

If the monitor cannot do the transaction it must suspend the monitor call by,
using the cannotdeposit queue. The situation is similar for withdrawals.

Now consider the following state. The account balance is 0, the husband
is in the cannotwithdraw queue, and the wife executes a bank.deposit (M+1)
monitor call. Then the monitor deposit procedure must do the following three‘
things: (1) increase the’balance to M, (2) cannotwithdraw.signal and (3)

cannotdeposit.wait (with one dollar pending). (1) can easily be done.

19

However, if (2) is done next then by the Hoare/Brinch Hansen signaling
rule the monitor‘call terminates, (3) never gets done and the wife thi;ks
that the entire deposit of M+l dollars has taken place. Alternatively,
i1f (3) is done first then both the husband and the wife are waiting and the
system deadlocks. Hence the problem cannot be soived.

Howard (7) had proposed and studied several possible extensions to
the Hoare/Brinch Hansen signaling rule which allow the joint checking account
problem to be solved. Note that the problem is a bit contrived. For example,

- how do you prevent the deadlock situation of both the husband and wife trying to

withdraw when the account balance is zero without giving out information
which'alloﬁs‘a solution to joint checking account problem? Nevertheless, it
indicates that there ére situations when following a signal the monitor
procedure would prefer to have the calling process govinto a monitor queue

rather than terminate the monitor call.

References:

(1) Brinch Hansen, P., "The Programming Language Concurrent Pascal," IEEE
Transactions on Software Engineering SE-1 (2), June 1975, 199-207.

(2) Brinch Hansen, P., Operating System Principles, Prentice-Hall, 1973.

(3) Dijkstra, E.M., "The Structure of 'THE' Multiprogramming System,"
Comm. of the ACM 11 (5), May 1968, 341-346. '

(4) Dijkstra, E.M., "Hierarchical Ordering of Sequential Processes," in
Operating Systems Techniques, Academic Press, 1971, 72-93.

(5) Hoare, C.A.R., "Towards a Theory of Parallel Programming," ibid., 61-71.

(6) Hoare, C.A.R., "Monitors: An Operating System Structuring Concept,"
Comm. of the ACM 17 (10), October 1974, 549-557.

(7) Howard, J.H., "Signaling in Monitors," presented at the Second Inter-
national Conference on Software Engineering, San Francisco, October 1976.

(8) Karp, R.A. and Luckham, D.C., "Verification of Fairness in an Imple-
mentation of Monitors," ibid. '

S W o T 40 o Wt £, 4w e

(9

(10)

YO s ot o e 1o

20

Saxena, A.R., "An Efficient Implementation of Monitors and Condition
Variables," Stanford University Digital Systems Laboratory Technical
Note No. 72, August 1975,

Schmid, H.A., "On the Efficient Implementation of Conditional Critical
Regions and the Construction of Monitors," AcTA Informatica 6, 1976,
227-249,

7

cs3léa Lecture #14 | October 28, 1976

Today: Introduction to Parallel Program Schemata .

‘The parallel program scheﬁa model [72] is an abstract formulation
of parallel programs. It is a complex model, incorporating a very general
form of operation sequencing.and operations which fetch operands and store
results in a common memory. Various types of program schema models have
been proposed,[19, 37, 72, 75, 80, 81, 82, 90, 94, 97, 129, 130, 135, 1361
this yeing the most general one which includes parallel operation. The
term "schema" is used to indicate that the model is an abstraction which
concentrates on the sequencing aspects of the program and leaves unspecified
certain functional aépecté of the program. By doing this, certain properties
of thé program which are invariant over the functional specification can be
more readily studied.

We will first introduce the formal schema definitioms, then later prove

some theorems.

Definition 1: A parallel program schema S = (M,A,T) consist of:

(1) M, a set of memory locations,

(11) A, la finite set of dgerations A = {a,b,c,...} where for eachv
" aeA we have:
(a) a positive integer K(a) called the number of outcomes of a,’
(b) D(a) c M, a specified set of domain locations,
(c) R(a)

(141) T = (Q,qo.Z,T), the control, where:

In

M, a specified set of range locations.

Q 1is a set of states,

qer is éhe initial state,

U {3}, the initiation
ae€A :

I = Ziuzt, the event aiphabgt with Zi =

© meemey

2

symbols, and I = EzL{al,az,...aK(a)}, the termination symbols.

t is the transition function which is a partial function from

QxZ into Q which is total on szt.

A parallel program schema is thought to operate as follows. A compu-
tatiog is a sequence of events, where events are initiations and terminations
of operations., When an operation a initiates it reads its operands from
its domain locations D(a). The initiation of operation a in a computation
is indicated by the symbol a. Sometime after initiation operation- a may
terminate. This is indicated by one of its termination symbols 815855000
aK(a)’ which also indicates the conditional branch outcome as well. Upon
termination the operation stores the results of its performance in its range

locations R(a). The example of a schema control shown in Figure 1 is worth

considering.

ol

" Figure 1: The control structure for a simple schema.

3
This schema has three operations {a,b,c}. All initiation symbol tran-
sitions are shown but only those termination symbol transitions that are
possiblelin computations are shown. For our discussion we do not need
to spgcify M or the domain and range locations for the operations.
Here, starting in state 9 the only operation that can initiate is a,
where a takes us to q,- In 9, only terminations of a can occur.
If a, occurs it takes us back to 9, and we are in a loop with
repeated performances of operation a. If a, occurs we "branch" to
9q,° In 9, either b or c can initiate. Essentially this is a
FORK situatibn with b and ¢ being the next two operations which
can be done in parallel. From the figure we see that b and c¢ can be
performed in parallel (their initiations and terminations being inter-
spersed in any order). When 930 is finally reached both b and c
have been performed, and 930 indicates a JOIN. From 90 other events
’might procede. Some of the possible computations for this example are

(1) aazaalbblcc1

(2) aalscblc1

(3) aalchlcl
Note that in (2) and (3) after the fourth symbol both b and c¢ are in
concurrent performance. In (1) the sequence of events was such that no

parallel performance occurred.

We now continue with more definitions so that we can be more precise

about what computations are.

Definition 2: An interprétation I of a schema S consists of:

(1) a function C associating a set C(i) with each 1eM, specifying

4

the set of values allowed in location 1.

(11) the initial memory contents o€ X c(1).
ieM

(111) For each aeA, two functions:
Fa: X C(i) ~» X c(i)
ieD(a) ieR(a)

ca: X c@) ~» {al,a

seoesd).
ieD(a) 2 K(a)

The Fa function specifies the value that operation a computes
for its range values R(a) with given domain values from D(a). The Ga
function determines the outcome, or conditional branch, as a function of
the domain valqes in D(a). Now, when we talk about a computation of a
schema under a given interpretation we wish the sequence of events tb be
consistent with both the schema control and with the Ga function in the
interpretation.

As is common in formal automata theory models, the complete state or
"instantaneous description" of the model is useful in determining the step-

wise action of the model.

Definition 3: An I-instantaneous description o 1is a triple (c,q,n)

in which:
(1) caxieMC(i) is the current memory contents, and c(i) designates
the contents of location 1i.
(11) q 1s the current state of the scbema control.
(111) u 1s a function associated with each aeA a finite sequence

of elements from X C(i). For each a, this is a queue of
1eD(a) '

domain values for each initiated but not yet terminated performance

of a.

5
The initial I-instantaneous description ag = (co,qo,po) _where o :
is the initial memory contents of interpretation I, 99 is the initial

state, and Ho is a set of empty queues.

The precise sequencing of operations is now defined in terms of
a -+ operation which, given any event o€l andinétantaneous<description

a, produces a new instantaneous description.

Definition 4: A partial function a+g, for an I-instantaneous description

o and oel is defined by:
(1) (Initiation symbol case) o = a, a = (c,q,u): a*a 1is defined
iff 1t(q,a) is defined. If so: a3 = (c',q',n") where
c'=c
| q' = 1(q,a) and
for bza p'(b) = u(b) and n'(a) is the qﬁeue u(a)

with X c¢(i) added to the end.
ieD(a)

(2) (Termination symbol case) o = aj, o = (c,q,u):

a*a., 1s defined iff wu(a) 1is nonempty and Ga()) = ay,

|
where } denotes the first element in the u(a) queue.
In this case aray = (c',q',u") where:
(1) for 1 ¢ R(a) c'(1) = c(i) a
(1) for 1 € R(a) c'(1) is the component of Fa(})
corresponding to location 1 | |
(111) q' = 1(q,ay)
(4v) p'(b) = u(d) for b=a and u(a) =} p'(a); that is,

p'(a) 1s the tail of u(a) after the first element

? is deleted.

6

* .
For yeI , a*y 1is defined in the normal way by letting

a*xo = (a*x)°0.

CS31l4a ~ Lecture #15 November 2, 1976

Last Time: Parallel Program Schemata
defn., examples

interpretation T

I-instantaneous description o a' = a‘o fdnction‘

Today: I-computation, history, determinacy,equivalence, boundedness

With the a*c definition from last time we are now'reédy to give a

precise definition of an I-computation for a schema.

Definition 5: A finite or infinite word x over the alphabet I is an
JI~computation for schema S 1ff:
(1) for every prefix y of x, an°y is defined;
(11) 1if x 4s finite, then for all oeI, a,°x0 is undefined;
(11i) (Finite delay property) If y 1is a prefix of x and oel
with the property that for every z such that yz 1is a prefix
of x, a0°y20 is defined, then for some z' ‘yz'o‘ is a prefix

of x.

Part (1) of this definition insures that an I-computation is consistent
with the’ a*x definition; that is, that it is consistent with both the schema
control and with the interpretatioh. Part (ii) indicates that a computation
~ can end only if no‘other évent could occur, and (iii) says that if after
some point in the computation an event can "constantly" occur, then it
eventually does occur after some finite delay.

If x 1s an I -computation it gives rise to a sequence‘of iﬁstantaneous

descriptions called the history of x, némely

Y(x) = ao,ao-lx,ao-zx?...,ao-kx,...

2

where X is the prefix of length 1 of x. Also we let ¢i(x) denote

the subsequence of ¢(x) starting with % containing the successive

ao'kx is

in wi(x) i1ff x, = aj where a 1is an operation such that ieR(a).

values of V¥(x) that "store values" in location 1. That is,

For- a = (c,q,u) we also let ni(a) = c(1), 1eM; Ha(a) = u(a), aeA, etc.
where these I's are projéction operators. The projection operators also

apply to sequences of instantaneous descriptions, for example Hi(ao,al,az,...)

= Hi(ao),ni(al),ni(az),.... In particular we denote by Qi(x) = Hi(wi(x))

for an JI-computation or prefix of an I-computation x. We call Qi(x)

the contents sequence of cell i for x. Note that Qi(x) gives the

éuccessive values that appear in location 1 during the computation x.
With these definitions we are now ready to define some of the basic pro-

perties of schemata.

Definition 6: A schema S 1is determinate if whenever x and y are

I-computations for the same interpretation I, then:

VieMa, () = (3.

Determinacy establishes that the entire sequence of values stored in
ahy single location is determined by the interpretation and is not dependent
upon which particular I-computation occurs. It provides a rather strong

form of "proper behavior."

Definition 7: Two schemata S = (M,A,T) and S' = (M,A,T') are called

equivalent if, for each 1ieM and each interpretation I3

{Qi(x) | x is an I-computation for S}

= {Qi(y) | y 1s an I-computation for S'}.

3
That is, the schemata are equivalent if they produce equal sets of cell

content sequences, cell by cell.

Definition 8: A schema S 1is called bounded if there is a constant K

such that, for every I, and every I-instantaneous description (c,q,u)
which occurs in the history of an JI-computation, the sum of the lengths
of all the queues u(a) 1is bounded by K. If K can be taken equal to

1 then S 1is called serial.

A bounded schema has a limit of K on the parallelism in computations.
The serial property corresponds to the safeness property of Petri nets.

In whatffollows we wiil give some necessary and sufficient conditions
for determinacy and then investigate the decidability of these various

schemata properties.

Necessary and Sufficient Conditions for Determinacy

We have defined a strong form of determinacy. In effect it means
that no matter what the interpretation, when one focuses on any particular
memory location, any computations for that interpretation will provide
identical sequences of values to occur in that memory location. Of course,
this insures that two weaker forms of determinacy hold; namely (1) that for
terminating computations the final memory contents will be equal, and (2)
that for any specified subset of memory (e.g. a set which might be called
the éutput or result locations) the final values are identical.

We will stick with this stronger form of determinacy on sequences of
values. No work oﬁ parallel program schemata has been done using the weaker,

A}

but possibly.practically interesting, forms of determinacy.

4

Our aim in this section will be to prove the following theorem.

Theorem 1: Let S be a persistent, commutative, logsless schema. Then
S 1is determinate if and only if, for all interpretations I, condition
(A) holds:

(A) 1f a0~uoﬂ and aoouﬂc are both defined, then aguoT =

*
QG UTo, where w, 0el and uel .

We will presently define the properties persistent, commutative and
lossless, but first we consider what this theorem says.. - It says that if
we reach some point in a computation that two events (0 and T) can
Qécur in eitﬁer ofder, or_intuitivély simultaneously, theﬁ the results of
this race as appearing in memory cells is independent of which event occurs
first. |

The properties listed in the hypothesis of the theorem aré defined as

follows:

Definition 9: A schema S 1is persistent if and only if whenever o and

T are distinct elements of £ and 1(q,0) and 71(q,m) are both defined,

then 1(q,on) and t(q,m0) are also defined.

Definition 10: A schema S 1s commutative if and only if whenever t(q,0m

and t(q,m0) are both defined then t(q,m0) = t(q,0m).

Definition 11: A schema S 1is lossless if for all aeA, R(a) = ¢.

A number of lemmas are required to prove theorem 1. The first is to
introduce the concept of a one-one interpretation. Essentially, a one-one

interpretation is one that records in each memory cell the complete history

5
of events that effect that cell. It can be shown that for any interpretation
I, one can obtain a one-one interpretation that has the same set of com-

putations as I. This then leads to the lemma:

Lemma 1: Condition (A) of Theorem 1 holds for every interpretation if

and only if it holds for every one-one interpretation.

This result, see [72] for details, then allows us to consider only
one-one interpretations for the rest of our consideration in proving

Theorem 1.

CS3l4a Lecture #16 November 4, 1976

Today: Proof of Theorem on necessary and sufficient condition
~oday

for determinacy of schemata.

We repeat the statement of Theorem 1.

Theorem 1: Let S be a persistent, commutative, lossless schema.
" Then S is determinate if and only if, for all interpretations I,
" condition (A) holds: , ' j
(A) If o UOT and ay'umo are both defined, then aqcuoT =

*
ao-uno, where mweI, gel, and uel .

The proof of this theorem proceeds by proving a sequence of lemmas.
. Last time we mentioned one-one interpretations and the lemma that allows
us to consider henéeforth only one-one interpretations. We now prbve
some properties of the behavior of the * relation for initiation and

termination symbols.

Lemma'éz Let S be a pefsistent, commutative, lossless schema, I a
one-one interpretation, and d = (c,q,u) an I#instantaneous_de5cription.
Then for each pair of operations a and b:
(a) If o<ab and o-ba are defined then a-ab = a;BE;
(b) If a+3b, and orb)3 are defined then a-aby = abd 1f and
only.if (1) R() n D(a) = ¢ or (1i) ~bz is a repetit;on; i.e.
Tacpy () = Tgpy (@°By)s | |

(é) If a-a ~ and a°bza are defined then: (i) for a=b,

k) ay ar |
a'ajbz = q-bzaj if and only 1f R(a) n R(b) = ¢, (i1) for a=b,

j=2 and. a‘aza£‘= a-azazf

& P b o

Proof:

(a)

(b)

- Here ¢

The proof is by cases:
If a=b then a¢aa = a*aa is obvious. In both cases u(a)
has two equal tuples of D(a) values added to the ﬁueue. If
azb then
(C.q.u)?is = (c,(q,30),u") and (c,q,n)b3 = (c,7(q,F8),u".
Now c is unchanged since initiations do not change memory.
1(q,ab) = 1(q,ba) by commutativity, and all that remains is to
show that u'=yp". For d#a,b yu'(d)=y"(d)=u(d). u'(a)=u(a), Hn(a)(c)
and p"(a)=u(a), HD(a)(c) since thg b initiation
does not change memory, thus u'"(a)=u'(a). Similarly

u'(b)=p"(b) so acab=a*ba completing part (a) of the lemma.

Let a#b. We have

(e,q,8)*3b, = (c',7(d,3b,),u') and

(c,q,u)*b,a =}(C",t(q,b£55,u")- |
'=c" since a does noﬁ change memory so the b, termination
is the only thing that causes a change both times acting with the
first element of the u(b) queue. By coﬁmutativity T(q,Ebz) =
T(q,bEE), and again only the u lists nged to be checked.

For d#a,b u'(d)=u"(d)=p(d). By definitién a does not

changé the u(b) 1list so u'(b) is p(b) with the first element

of u(b) deleted. Thus, clearly, u'(b)=u"(b){’ Now u'(a) =

| u(a)nD(a)(c) and u"(a) = u(a)nD()(c"). These are equal if and

only if HD(a)(c) =1)(c") and since the interpretation is

D(a

‘one-one this only happens if ¢ is equal to c¢ on D(a). That

is, only when D(a)nR(b) = ¢ or bl is a repetition. Next

consider part (b) for a=b. Here, (C,q,u)'ﬁal = (c',r(q,Zaz),u')

3
and (c,q,u)°a2§ = (c",T(q,a£5),p"). Now c'=c" since a,
is the only termination. By commutativity T(q,Eal) = T(q,aza),
and by an argument essentially the same as above, u'=p",

concluding part (b) of the lemma.

(¢) (i1) If a=b then u'ajb£ and a'bzaj are both defined only
if %=j, since the first outcome is uniquely determined by Ga'

Thus we have a-ajaj and obviously this equals a'aja .

3

(¢) (1) If a=zb, let
(C.q,u)~ajb£ = (C'.r(q,ajbz),u') and
(c,q.u)'blaj = (C",r(q,bzaj),u")-
Using the one-one interpretation we see that c'=c" if and only
if R(a)nR(b) = ¢. t(q,ajbl) = T(q,bzaj) by commutativity, and
] n

u'=p" since in each case the only changes from u are a simple

removal from the u(a) and u(b) 1lists in both cases.

This completes the proof of Lemma 2.

Lemma 3: Let S be a persistent, commutative, lossless schema, I a one-

one interpretation, and aq the initial instantaneous description. Let
* *

vel , and o,mel such that ag vom = ao-vﬁc. Then, for any wel uz®:
(a) vomw is an I-computation if and only if wmwow is;

(b) for any ieM, Qi(vopw) = Qi(vnow).

The proof of part (a) of this lemma follows from the * relation
definition, persistence and commutativity. By checking the cases of

Lemma 2 whenever ay Vo = a,*vTe part (b) follows.

Lemma 4: Let S be a persistent schema, I an interpretation and e

4
. * * W
the initial instantaneous description. Let u,vel , wel Ul and oel.
(a) 1If aycud is defined, ofv and ayuv is defined, then
ao'uvo is defined.

(b) If a.°uc 1is defined and ww 1is an I-computation then oew.

0

The proof of part (a) of this Lemma follows from persistence, and

part (b) follows from persistence and the finite delay property.

We now are ready to prove the theorem. Suppose (A) holds, then we
wish to prove that S 1is determinate. Assume S 1is not determinate.
That is, that there exists an interpretation I such that x and vy
are I-computations and for some location ieM, Qi(x) # Qi(y). We shall
prove that for any nsz(x)f there is an I‘computation z(n) such that:
(1) z(n) has the same cell sequences-és y. That is, Qi(z(n)) =

Qi(y) for all i1ieM.

2) (@) = x

Since this is true fer all n<2(x) we obtain n(Qi(z(n))) = n(Qi(x)) =

/

n(Qi(y)) so for no n can gi(x) differ from Qi(y). This provides'a
contradiction proving that

View o, = o,
so condition (A) implies determinacy.

The proof of properties (1) and-(2) for z(n) is done inductively

on n.
Basis: Assume 2z(0)=y. Then (1) and (2) hold for n=0.

Inductive Assumption: Assume (1) and‘(Z) hold for n=k and 2&(x)=2k+l.

T 2(x) 1is the length of x.

5

Then u0°(kx)xk+l is defined so a0°tik+l is defined, where t=k(z(k)),
and ao-(kx)xk+l = ao'txk+1 since by the inductive assumption (2) holds
for n=k. By Lemma 4 z(k) = tvxk+1u, X 41€0° That is, X4 Aappears
somewhere in the sequence since ao-txk+l is defined. If v 1is null then
let 2z(k+l) = z(k) and (1) and (2) hold. If v 1is not null then
v=wm, weZ*, mel., Since aptx, . ‘is defined it follows from (a) of
Lemma 4 that ao'thk 1 and aO.twan+l are defined. Also, since
. ao-tww is defined, ao-thk+lw is defined. But by assumption (A) holds,
80

ao'twﬂxk+1 = ao'thk+ln.
Thus, by lemma 3, thk+lnu is an I-computation, and has the same cell
contents sequences és z(k). That is, for all ieM, Qi(z(k)) = Qi(thk+1wu).
We have thus succeeded in moving X441 One place to the left in the
sequence. By identical reasoning we can continue to "slide" X4 tO the
left until we obtain txk+lvu which is an I;computatién and has the same
cell contents sequences as z(k), and therefore the same as y also. We
set z(k+l) = txk+lvu and note that it satisfies (1) and (2). This
completes the inductive step so we have that condition (A) implies deter-'
minacy. The "sliding argument" used here is a technique used in other
sqhema proofs also, as well as in other Church-Rossen type theorems.

To complete the proof we must show that determinacy implies
condition (A). Assume determinacy but that (A) does not hold. That is,
that U UOT # 0 UTT. Then by the cases of Lemma 2 it can be seen that
a difference in Qi(ucn) and Qi(uno) must exist for sdme ieM. This

contradicts determinacy, however, and completes the proof of the theorem.

This theorem shows how determinacy, a property on cell contents

"6
sequences, is equivalent to a type of commutativity of events in
I-computations. That is, when a "racing"bof several opefation performances
does not create a change in behavior.

An immediate corollary of this theorem and the preceeding lemmas is:

Corollary: Let S be a persistent, commutative, lossless schema. Then »
S 1s determinate if and only 1if, for each interpreta;ion I with initial
instantaneous description ay:
(1) 4if aj-uab, and ajcub,a are defined, then R(b)AD(a) = ¢ or
"R(b)(“o'“bz) = “R(b)(ao.u)’ and
(11) if ao'uajbz and o
R(b)nR(a) = ¢.

'ubza are defined, and a#b, then

0 3

We say that S 1is repetition-free if whenever vawax is an

I-computation for some I, then ®w contalns some termination symbol ¢
such that R(c)nD(a) # ¢. This allows us to reduce determinacy to a
non-memory conflict situation. For this we introduce a relation pcAxA

defined as follows:

apb <==> R(a) # ¢, R(b) # ¢ and [D(a)nR(b)IJulR(a)nD(b)IulR(a)nR(b)I=¢.
With these definitions we can state another corollary for determinacy.

Corollary: Let S5 be a schema which is repetition-free, lossless, persistent,
commutative, and permutable. Then S 1is not determinate if and only if
for some interpretation I, with initial instantaneous description ao,

* ‘ - -
there exists wel , acA and beA such that apb and a,°wa and ao~wb

0
are both defined.

It is striking to note the similarity of the p relation and its

relation to determinacy, and the Bernstein conditions on memory conflict

AP 7 2 1 et

7
which are sufficient to have two processes operate in parallel. They
are very closely related. In essence, the p relation is the schema

equivalent to the Bernstein conditioms.

CS31l4a ' Lecture #17 v November 9, 1976

Last Time: Necessary and Sufficient Conditions for Determinacy
in Schemata

Today: Decidability of Determinacy

Today we are aiming at proving the theorem: \\

Theorem 1: It is decidable whether a repetition-free, lossless, persis-

tent, commutative, counter schema is determinate.

Our proof will be based on encoding the problem into vector addition
systems and then appealing to the finite tree construction to provide

-decidability. First, we must define counter schema.

Definition: A schema is repetition-free if whenever an 7r-computation

contains two initiation symbols of the same operation, as in vawaxr then
¥ contains a termination symbol of some operation c¢ for which R(C) n

D(a)=¢.

Definition: A counter schema S = (M,A,T) has T defined by:

(1) a nonnegative integer k, the number of counters,

(2) a finite set I,

(3) a finite set S with distinguishedvelement So»

(4) ; vector weNk,

(5) a function v from I into Nk such that if ert' then
v(o) 2 0.

(6) a partial function 6:SxI -+ S which is total on szt.

Here T = (Q,qo,z,r) where:

2
Q= SXNk, q, = (so,ﬂ), t((s,x),0) 1s defined if 6(s,0) is
defined and x+v(o) 2 0, and in that case 7t((s,x),0) =

(6(s,0) ,xtv(0)).

Thus a counter schema is a parallel program schema with a control
specified in a particular way. The state part of the schema control is
a péir, the first element being an element of a finite set S and the
second element being a set of k counter values. Each 1nitiation and
termination causes a change of state in the S part and an incrementing
or decrementing of counter values.

We now construct a vector addition system to simulate the counter
schema. For a given counter schema S we construct a vector addition

system Wé = (d,W) as follows:

Wb has ISI + k + |A| coordinates. The ISI coordinates represent
the state behavior of S, the k coordinates directly represent the
counter values, and the |A| coordinates represent the u 1list lengths

for each aeA. Thus, each coordinate represents a particular state,

counter, or operation. We define d as follows:

d(so) =1,
d(s) =0 for seS and 578,
d(1) = Tes i=1,2,...,k

d(a) = 0, acA.

The vectors in W are described by looking separately at the form of the
vectors for each part |S|, k, and |A].

We concentrate on a transition from a state (sj,n) to a state

(si,n') under an event aJ.
The |S| part of a reachable point has a 1 in the coordinate
representing the current state s, and zeros elsewhere. Thus, for an

]
element of W the ISI part has a form

’0...-010...0—10...0 ,

/

where the +1 (say in coordinate i) indicates the state s that is

i
being entered, the -1 (say in coordinate j) indicates the state s

]

that is being left under the transition 6(s,,0) = s

3 1

The k part of the reachable point contains the current counter
values T and ?(0) 1is entered in the appropriate coordinates of the
k part of the element of W to show the change of counter values caused
by event o.

For the |A| part of the element of W: if o =a then +1 is
entered in the coordinate for operation aj; 1if o = a, then -1 1is
entered into the coordinate for operation a.

A vector is placed into W for each pair (s,0) seS and o€l for
which 6(s,0) is defined. Since both S and I are finite sets we see
that W 1is also a finite set as required. Thus Wb is clearly a vector
additlion system.

To summarize, the a vector in R(WS) can be seen to represent:
(1) the current state s of the schema by the position of a 1 in the

ISI part of the vector;

(2) the current counter values by the k part coordinate values;

(3) for the coordinate representing a€A in the IAI part of the

number of performances of a that are currently in progress.

4 ’

Now, starting from d in Wb and applying successive elements

of W a path onreachable points is formed and this corresponds directly
to a computation for Sf The nonnegativity condition for vector addition
systems insures first, that for the |S| part only vectors can be
added which correspond to the current S state, second, that for the
k part the counter values will always remain nonnegative, and third,
that for the IAI part a termination will be allowed only if there is
a currently.outstanding performance of the operation to terminate.
We are now ready to show decidability of determinacy, we will do

this informally.

Theorem 2: It is decidable whether a repetition-free, lossless, persis-
‘tent, counter schema S 1is determinate.

/

Proof: Given S we can cénstruct Wg and the tree T(W;). From the
necessary and sufficient conditions for determinacy, in particularly
Cérollary 1, we see that S 1s not determinate if and oﬁly if there is
a palr of operations a and b such that:
(1) R(b) nvD(a) * ¢v and there exists a y such that ad-usbz and
ao°ub2§' are both defined, or |
(2) é # b, R(b) n R(a) # ¢ and there exists a u such that

ao'uajbz and ao-ublaj are both defined.

Now, there is only a finite number of such conflicting pairs of
operations and T(Wb) can be inspected to see if for any such pair (a,b)
¥ lists for a and b are simultaneously greater than 1. The schema
S will be determinate if and only if no such'pair exists.

In [72] many other properties of schemata are shown io be decidable

5
through this encoding to vector addition systems.” For example, the

following should be clear:

Theorem 3: It is decidable whether a given repetition-free counter

schema is bounded or serial.

CS314a : Lecture {18 November 11, 1976

Todaz:' Undecidability Results for Parallel Program Schemata

We now turn to proving undecidability of schema equivalence,
determinacy and other properties (see [94]). We use a construction
based on the Post correspondence problem, showing that if the schema
property being considered were decidable then the Post correspondence
problem would also be decidable. Of course, the Post correspondence
problem is one of the basic undecidable problems so through such a
construction it follows that the schema property must also be undecidable.

The form of the Post correspondence problem‘that we use is as

follows:

- Given two n-tuples of words

X = xl,xz,...,xn

Y = yls}’z,' oo syn
over the alphabet {blbz} it is undecidable whether there exists

a sequence of indices 11,12;...,ip such that:

xix

OQCx
1 i

=Y, Y, oY, o
2 ip i1 12 1p

As a simple example of such a Post correspondence problem let n=4

where:
(%) = bibyby [¥1 = b0y
~x. =b.b, y. = b
x 472" P12 d727 0
x5 = byb,b, Y3 = bybyby

*s = P1P1 Y, = bbby

2

Now consider the sequence of indices 2,3,4. Here
X X X, = blbzbzblbzblbl and Yo¥q¥, = b1b2b2b1b2b2' Thus
x2x3x4 z Yo¥a¥,e The two words differ in their last two symbols. But
is there any other sequence of indices tha; gives equal words? The
decision problem is to give a uniform procedure for deciding this for
any Post correspondence problem over {bl,bz}.v To use the undecidability
of this problem we start with "encoding” the problem into schema terms.

For a Post correspondence problem P(X,Y) wé construct schemata
S(X) and S(Y) in which M = {1,2}, A = {a,b}, D(a) = R(a) = 1,

D(b) = R(b) = 2, and K(a) = K(b) = 3.

Since neither operation affects the domain location of the other,
the sequence of outcome of a and b depend only on the interpretation
and not on how the performancés of a and b are interspersed. Since
S(X) and S(Y) are constructed in an identical manner we describe the
construction for S(X) only. We say that an interpretation I 1is

consistent with (X,1i 12,...,ip) 1ff:

1’ ‘
(1) if a could be executed repeétedly beginning in qy and

starting with the initial memory contents as specified by
I in location 1, then the sequence of outcome of a would

have as a prefix:
i.-1 1i.-1 i-1

2 = P
a,;” aya;” ‘aj...a;” aja,,
and,
(2) if b could be executed repeatedly starting in S0 and with
initial memory contents in location 2, then the sequence of

outcomes would have a prefix:

-..xi b3o

iz P

1

3
Thus, S(X) 1s constructed so that for a consistent interpretation
the outcomes of a generate a sequence of indices 11,12,...,1p and
the outcomes of b generate the word of X indicated by the 11,12,...,ip
sequence. The actual I-computation starts in 4, apd ends in 9, if and
only if it 1is a consistent interpretatioq,and'it takgs on the form

11—1 12-1 . ‘
al a2xi a1 azxiz...xipa3b3.

i, a's 1i_ a's
The control of S(X) which generates such a sequence is given by
example for X = X)X, where X = bzbl and X, = bzbzbl‘ This is

shown in Figure 1.

Figure 1: S(X) construction.

4
In general S(X) is constructed to have a "loop" for each X, . The
outcomes of a choose the appropriate loop and then the loop is
completed only if the b outcomes are consistent. The a35b3 exit
indicates the end of the sequence. It should be clear that this
construction generalizes to any X whatever. Figure 1 shows all
transitions for the consistent part of the schema. If any termination

which is not consistent occurs, it takes a transition to a "sink" region

that has the form of Figure 2.

Figure 2: Sink construction for S(X).

From this construction it should be evident that S(X) 1is serial, and
for any interpretation there is only one computation. If the interpretation
is consistent that computation ends in g otherwise it goes to the sink
region and is infinite in length.

We are now ready to assume for P(XY) we have constructed both S(X)

and G(Y). From these we construct a schema g(XY) as shown in Figure 3.

D, O
A‘= {a,b,r}
D(r) =0

R(r) = {1,2}
D(a) = R(a) = {1}
D(b) = R(b) = {2}

Figure 3: Structure of S(XY)

Note that S(XY), like S(X), haé exactly one computation for each
interpretation (this préperty is called one-valued) so obviously it is
serial. Also, it is a finite state schema. The computation is finite
if and only if state qe* is reached and this happens if and only if
there is a solution to the Post correspondence problem .P(XY). Thus we
have encoded the P(XY) ‘into the schema S(XY). We are now ready to
use this construction to prove a number of undecidability properties of

schemata.

Theorem 4: It is undecidable whether two serial finite-state determinéte

schemata are equivalent.

Proof: Construct S(XY) and S'(XY) where S'(XY) is identical S(XY)
except it has a loop structure like Figure 2 at q, - Now S(X,Y) is

, | . .
- not equivalent to S'(X,Y) if and only if q, is entered for some

interpretation. That is, if and only if there is a solution to P(X,Y).

6
Thus, if we had an algorithm to decide equivalence we would have an

algorithm to decide P(X,Y). Thus equivalence is undecidable.

In [72] two undecidability theorems for equivalence are given.
using a somewhat differént approach. These theorems show undecidability
of equivalence for (1) persistent finite-state schemata, and (2) serial
finite-state schemata, but in both cases the schemata are nondeterminate.

The most basic result obtained from the S(XY) construction is the

following.

Theorem 5: It is undecidable for one-valued finite-state schemata whether

a state is reachable.

A state q 1s called reachable if there exists an instantaneous

description a in some JI-computation where Hq(a) = q.

*
Proof: d, of S5(XY) 4is reached if and only if there is a solution

to P(XY).

We now use S(XY) and other variants of S(XY) which attach
*
additional control structure leaving 9 to prove a series of other

schema properties to be undecidable.

Theorem 6: It is undecidable whether a given finite state schema is

computationally commutative, one-valued, or serial.

A schema S5 1is called computationally commutative if whenever, for

some interpretation I, xmo and xom are prefixes of I-computations,
then T(qo,xnc) = T(qo,XOﬂ). This is a slight wéakening of the commutative

property which can replace the commutative property in any hypothesis of

7

schema theorems we have mentioned so far.

Proof: Construct Sii(X,Y) which is identical to S(XY) except that

« *
it has the structure of Figure 4 leaving qg -

Figure 4: A noncomputationally-commutative schema structure.

Now, this added structure to Sii(XY) is finite-state so Sii(XY)
is finite state. If x 1s a prefix of an I-computation that reaches
qe* then y = xab is a prefix of this I-computation and yalb1 and
ybla1 are both I-computations. But, T(qo,yblal) ® T(qo,yalbl) S0
Sii(XY) is not computationally commutative if and only if qe* is
reachabie by an I-computation. Thus computational commutativity is
undecidable. Similarly, sinc; by this construction Sii(XY) is also
not one-valued or serial if and only if qe* is reached, the theorem
follows. |

We should remark that by construction of Sii(XY) it is determinate,
permutable, persistent, lossless, and sinée it is finite state, it is
also a counter schema, and’thus this undecidability theorem holds for

schemata so restricted. Similar restrictions should be evident for the

following theorems.

Theorem 7: It ié undecidable whether a given finite-sfate schemavis

bounded.

8
S JAdl) * ‘
Proof: Construct S (XY) from S(XY) by adding to q, an unbounded

behavior. Such a construction is shown in Figure 5. The proof is then

g :

R

immediate.

Figure 5: A simple unbounded behavior consﬁruction;

Theorem 8: It is undecidable for a finite-state schema whether a given

operétion aecA 1s terminating.

Proof: Modify S(XY) to form Siv(XY) as follows. Replace the sink
construction of Figure 2 with the construction shown in Figure 6, and then

v ‘ *
let the sink construction of Figure 2 be attached to q,

Figure 6: Terminating sink construction

_ ' * v
Clearly, operations a and b terminate if and only if 9, is not

reached.

From Theorems 5 and 8 we see that both the questions of the existence
of finite and infinite computations are undecidable for these typés of

schemata.

9

Theorem 9: It is undecidable whether a finite-state schema is determinate.

Proof: Construct SU(XY) from S(XY) by adding the nondeterminate part

* .
shown in Figure 7 to q, - Then clearly undecidability results.

D(m) = D(n) = {0}
R(m) = R(n) = {1;2}

Figure 7: A nondeterminate construction.
It is now worth repeating Theorem 2.

Theorem 2: It is decidable whether a repétition-free, lossless, persistent,

commutative, counter schema is determinate.
This can be contrasted with an immediate corollary of Theorem 9.

‘Cdrollary 9.1: It is undecidable whether a lossless, persistent; commutative,

counter schema is determinate.

Here we see the crucial nature of the repetition-free property; it
being a boundary between decidability and undecidability for this as well
as other properties. In fact, in the S(XY) and related constructions
the only repetition possible is that of operation r and this can be
repeated at most once, when following the transitions from S(X) to S(Y).
So, in a sense, these constructions are "minimally" repétitiﬁe but never-
theléss lead to undecidabilities.

By using the Siii(XY) construction or by having a construction for

10
*
which from 9, we allow c¢ to be performed exactly once, the following

- theorem is also immediate.

Theorem 10: It is undecidable for a given finite-stdte schema and operation

¢, whether any computation exists containing c.

CS314a Lecture #19 November 16, 1976

Today: Parallel Flowcharts and Flow Graph Schemata

Up to this point we have discussed the basic decidable and undecidable
results of various types of parallel program schemata. The schemata have
been precisely, but abstractly, defined, and it may be somewhat difficult
to see how to use schemata to represent any more-or-less practical parallel
Processing problems. To clarify this we introducevseveral variants of
schemata, and give some examples of their use on particular parallelism

and synchronization problems.

Parallel Flowcharts

Flowcharts have traditionally been a convenient graphical tool in
depicting the flow of control for Sequential programs. We define a
-restricted class of counter schemata that can readily be graphically

represented in a "parallel" flowchart form.

Definition 1: A parallel flowchart is a counter schema in which:

(1) s ={sp}; N
(2) e(so,o) is defined for all oel;
(3) If o 1is a termination symbol, then each component of v(o) is

.

eiiher 0 or 1. B

(4) If o is an initiation symbol, then gach component of v(o) is
either 0 or -1.

(5) For initiation symbols ¢ and ¢', oxg', if (v(o))i = =1 then

@), = 0.

This restriction of counter schemata first, by reducing S to a
single state, says that all the control is via the counters. Second, that

terminations only increment counters (by 1) and that initiations only

2
decrement counters (by 1). And finally, that if a counter is decremented
by the initiation of some operation a, then it is not decremented by any
other opération. With these'comments the following theorem should be

clear.

Theorem 1: Every parallel flowchart is persistent, commutative and

permutable.

We have previously omitted providing a formal definition for permutable.

We give it now.

Definition 2: A schema is permutable if, whenever ¢ and = are ini-

tiation symbols and 1t(q,om) is defined, then 1(q,m) is also defined.

Proof of Theorem 1: Commutativity of parallel flowcharts follows directly
from the commutativity of vector addition, since in parallel flowcharts
states are counter value vectors and transitions under events amount to
adding a '"change'" vector to the state vector. Persistence and permutability
follow directly from the fact that initiations of different operations do

not decrement the same counter.

From this theorem we see that the restiictions on the control §tructures
of schemata that are required for the various decidability theorems, are
automatically satisfied for all parallel flowcharts.

For any parallel flowchart S we represent S by a graph G(S) as
follows:

" (1) Each operation in A = {a,b,c,...} 1is represented byva node labelled
Oa, Ob’

(2) Each counter is represented by a node, and these are labelled

oc,'

d d2, "'dk‘ Where di represents counter 1.

1’

3

(3) The initial value =, 1is added as a label of di’ i=1,2,...,k.

i
(4) For each aeA, if (v(E))i = -1 then an edge is directed from di

to 0.
a
(5) For each ajezt if (v(aj))i = 1 then an edge is directed from
. 0a to di’ and the edge is labelled aj.

Using circles to represent operation nodes and squares to represent

counter nodes we obtain the following graphical form for (4) and (5)

respectively.
w@), = -1 m ><:::>

di oa

‘(v'(aj))i‘ =1 O Lo

oa aj di

As an example of a parallel flowchart so depicted we can represent
a schema control (similar to that shown in Figure 1 of Lecture 14) with

three operations a, b, and c¢ as shown here in Figure 1.

1
dy a,
0
‘ a 8 a
1 1
o 0la
d, | 3
0%, o,
0 0
4 dg

Figure 1: A graph for a simple parallel flowchart.

4
In this flowchart operation a is the only one that can initially
initiate. Performances of a repeat with outcome. a, until an outcome
3y is obtained. The a; outcome increments counters lvand 2, and this
represents a FORK upon the ay termination for operations b and ¢
to initiate.

A somewhat more concrete example, with an interpretation given to

each operation, is shown in Figure 2.

1 1

ob
d

el el

0
e e .
2
d 0

Figure 2: Five-point relaxation parallel flowchart.

Here we are nmodelling the standard five point relaxation P < P+ (N+S+E+W) .

2

¢ performs T3 « T1+T2, operation e performs P « P+%T3. Also, e has

two outcomes. Outcome e indicates repeating (until convergence) and

Operation a performs Tl « N+$, operation b performs T, <« E+W, operation

5
outcome e, indicates stopping when a convergence criterion is satisfied.

The domain and range locations could be assigned as:

D(a) = {1,2} - R(a) = {3}

D(b) = {4,5} R(b) = {6}

D(e) = {3,6} : R(c) = {7}

D(e) = {7,8} R(e) = {8}.)
In this example we :: > a FORK construction for outcome e to allow

1
the starting of bot: a and b. Operation c¢ initiation is the

implementation of & !IN, where both counters d3 and d4 must become
1 before c¢ initia.:. Outcome e, and counter d6 represent a QUIT

operation since d ~eeds no other operation.

6
In [72] a more complicated parallel flowchart example is given.
Some of the sequenci: ; problems which have been discussed via semaphore
implementations can »iso be represented by parallel flowcharts simply by
letting a semaphore o represented by a counter, and the semaphore value
be the counter valus. The constraint that a counter is not decremented

by more than one op¢iation initiation, however, means that P operations

for‘any semaphore c: - only be associated with the starting of a single

operation (or proc: ., in semaphore terms).
For "mutual e '::¢ion" of operations a and b, for example, one
would like a structu:: of the form:

I

7

R Bét fhis sharing of a counter for initiation of more than one operation
ﬁas specifically disallowed in parallel flowcharts so that persistence |
would hold.

Another type of difficulty is depicted by the example in Figure 3;

(Note we have simplified the labels here in an obvious fashion.)

1l
a8 2
 a
a a a2 .a7
2l o 310 4ol 3o
6
b 0 c
b
10 1 R d

Figure 3: Another parallel flowchart.

The idea here is that operations a and b are to be pexformed iﬁ parallel
and repeatedly. The (al,bl) outcome pair is to select operation ¢ to be
perfofmed, the (al,bz) outcome is to gelect the operation d, etc. Here,
1’ bl and second outcomes
a,, bz, then in addition‘to ¢ and f being selected d and e may also

however, if a and b have first outcomes a

initiate due to the "spurious" ones in counters 3, 4, 7 and 8. The sharing

of counters by initiations again would lead to a possible solution as shown

in Figure 4,

Figure 4: Counter "sharing" solution.

Rather than modifying parallel flowcharts in :his form we discuss the
flow graph schemata model of D. R. Slutz [135, 136] which handles this

problem in a somewhat different fashion.

Flow Graph Schemata [135, 136]

Definition 3: A flow graph schema S is a schema S = (M,A,T), where:

»(1) M 4is a finite set;

(2) A 1is a finite set of operations, wiw:e for each acA, D(a) and
R(a) are the domain and range locations for a, and K(a) 1is the
number of outcomes for a;

3) = (Q,qo,z,r), the control, is specified over vectors of p
coordinates by a function V: I~ ({-1}uN)P as follows:

(1) Q= N’ 1is the set of control states.
(11) qer is the initial contrcl state..
For each acA there is z coordinate ja spch that
(qo)jél = 0.
(111) © dis the set of initiatic: und termination symbols.

8

(iv) The transition function 1 1is a partial function

T: QxZ + Q. 1(q,0) is defined if q+V(c)20 and
in this case 1(q,0) = q+V(o). The function V 1is
constrained as follows for all acA:
(a) (V(ai))k = =1 implies th§t (V(aj))k = -1
for 1,3j=1,2,...,K(a).
(b) for all beI where bza,al,...aK(a)

(V(E))j =1, <V(al))ja = -1 and (V(b))J - 0.

a a

Flow graph schemata are a generalization of parallel flowcharts. The
control is represented via p counters. Part (3)(11) and (3) (iv) (b) set
up a separate counter for each operation acA thét keeps a record of the
number of performances of a currently in progress. Counters can only be
decremented by 1 through the function V but can be incremented by more
than one. Another generalization over parallel flowcharts is that the
same counter can be decremented by severél initiations. This type of
counter sharing was prohibited in parallel flowcharts and was one of the
main features of parallel flowchafts that limited the type of permissable
parallel control. ' . }
| A graphical represenfation for flow graph schemata, somewhat different
than the parallel flowchart representation, will now be given. Given a
flow graph schema F we define its graph G(F) as follows: G(F) has
two parts, a data flow graph and a control graph. In the data flow graph
each meM is represented by a shaded rectangular node and each operation
is represented by a circular node. For acA and meM an edge is directed
from the a node tq the m' node iff meR(a). Similarly an edge is directed _

from an m node to an 'a node iff meD(a). This completes the construction

9
of the data flow graph. It shows what data locations are affected by the
various operation performances. Although not done previously, a data
flow graph could be constructed for any parallel program schema. The
control graph also contains two types of nodes: a rectangular node for
each counter, labelled with the initial value of the counter; and for each
operation aeA two circular nodes, an initiation node labelled a and a
termination node labelled a,. Let oeZ and n(o) be the node for o;

if o =a then n(c) is the node labelled a, if ¢ = a,, j=1,2,...,K(a),

k|

then n(o) is the node labelled a, . Edges in the control graph are
constructed by inspecting V(o) for each oe€Il. For all o€, and
i=1,2,...,p, if (V(o))1 = -1 then an edge is directed from counter 1

to n(o). Counter 1 1s then called an input counter to n(o). If

(V((J)):l = k> then an edge is directed from n(o) to counter i and
label k is attached to the edge. If in addition o 1is a termination
symbol then ¢ is also attached to the edge as a label. Counter 1 1is

. *
called an output counter of n(o) if there is an edge from n(g) to i.

We now present a flow graph schema example for a producer-consumer
problem in which the producer (calied operation p) produces items placing
them in a buffer (called operation b) and a consumer (cailed operation «c¢)
that takes items from the buffer. The graph for this schema is shown in

Figure 5.

*
* Slutz constructs a slightly different control graph in which input
counters are connected in a chain to the event node. We omit this

simplification here.

10

(a) Data Flow Graph ' (b) Control Graph
1 P
1 13
1 0
Py ‘
2 P,
1 1]?
Pl |
4
3 0 b
e
1\°1 0
4 bt .
1
5 7
o't
1
: 1
c
N,
9
1 0
e

Figure 5: A Flow Graph Schema

In this example it is clear that the only event that can occur
initially is p since this is the only event for which all it's inéut
counters are positive. After p occurs counter 3 becomes 1 so that p
can then terminate. When P, occurs both p and b can occur. Note
that here the second p can occur before the first b (b corresponds to
the buffer reading the output of the producer) but since counter 2 is zero

event P, cannot occur a second time until b occurs. Thus the second

11

value of the producer cannot be written into location 2 until the buffer
has read the first value. As the computation proceeds the value of
counter 6 represents the number of items in the buffer. Also, since
counter 6 is an input counter to ¢ the consumer cannot initiate unless
an item is in the buffer.

Figure 6 shows a modification of the control graph, by adding counters
10 and 11. Counter 10 limits thé size of the buffer to n or less items,
and counter 11 provides for mutually exclusive manipulation of the buffer |
by the producer or consumer. (We omit labels on edges since we are incre-

menting only by 1 and each operation has only a single outcome in this example.)

.

1 2
e |
n 10
0 6 .
11
7
9

Figgre 6: Modified example.

12
These two schemata are determinate and equivalent.
Using instantaneous description and <+ operation definitions as
in parallel program‘schemata, a sequence of events is defined to’be a

computation as follows.

Definition 4: For a flow graph schema and an interpretation, a finite

or infinite string over I 1s called a computation if:
(1) for all y such that x=yz, @y is defined.

(2) if x is finite a.°x0 is undefined for all oeI.

0

(3) 1if X=YZ1Zge e there does not exist an infinite set of instantaneous

descriptions Hg{ailai = a0°yzlzz...zi} such that for all aieH

either of the fdllowing holds:

(a) there exists a o€l such that a0 is defined, unless

for some j, zj=o, (finite delay property).
(b) there exists a qeQ and clevsuch that a, = (ci,q,ui)

and a,°0c 1s defined, unless for some j, z,=0 (finite

i
response property).

]

Condition (a) is similar to the finite delay property for parallel
program schemata, but here is required‘only for an infinite sequence of

a, following a -y not for all instantaneous descriptions following

i

ay°Y- Condition (b) says that if an event can occur for some state, and
this state recurs infinitely often then the event must occur after some
finite number of occurrences. For example, consider the control graph

_shown in Figure 7.

13

Figure 7: Example to demonstrate finite-response property.

Here x = E(Ealicl ® satisfies the control constraints for a sequence
of events but is not a computation since operation b violates the finite
response property. Event b 1is allowed to occur in the initial state, but
because of the particular sequencing is never allowed to occur thereafter.
Finite response disallows such anamolies in séquencing.

Although we will not go into theoretical results here, flow graph

schemata have been shown to have many decidable properties.

CS314a Lecture #20 November 18, 1976
Today: Schema Composition and Renaming

In this lecture we briefly describe the work of references (19, 89,
90, -97]. The idea of schema composition goes back to the original notion
that a parallel program schema is a model for a parallel program. If one
wishes to develop a large program, then it is often convenient to first
develop identifiable subtasks as subprograms and then later put these sub-
programs together in a suitable fashion to make the complete program.
Similarly, to model the program it might be desirable to first model
certain subprograms by schemata then later 'compose" these schemata
together suitably to represent the complete program. This could be viewed
as a simple structured approach to modelling the progrém. The work on
schema composition is aimed at defining some basic types of interconnections
for schemata and then proving theorems that say, essentially, that the
proper behévior of the subparts is carried over to the complete schema when
composition is done in the prescribed way.

In [19, 97] special types of schemata, called finishing schemata and
exit schemata, are defined which are suitable for defining composition. We
omit the details of these schema definitions here, but just point out.some‘
of their essential features. In both cases these schemata are assumed to
have a finite subset of "begin'' states and a finite subset of "end" states.
The begin and end states are useful in composition, as we shall see. For
end states, one assumes that no transitions are defined out of end states,
and that whenever an end state is reached a finite computation for the
schema has been completed. Additional constraints upon finishing sﬁhemata

result in the fact that no more than one performance of any operation can

2

be going on simultaneously. This restricts u 1lists to be either of
length zero or one and simplifies the analysis. From this point on, for
composition, when we say schemata we mean finishing schemata. |

We will now define four types of composition and state some results
about the composed forms. We use terminology that subscripts symbols with
the schéma symbol to avoid confusion. Thus, for example, if we have two
schemata 4 and B we let 4 = (MA’AA’Ih) and B = (MB,AB,TB), etc.

The serial composition of two schemata A and B 1is designated by

0(A,B). For this composition we require QAnQB = ¢ and that the number
of end states of A4 equal the number of begin states of B. Essentially
0(4,B) 1is a serial linking from end states of A to destinations of

begin states of B. Let 4 = (Mﬁ’AA’Zh) and B = (MB?AB’Ib) with the end

states of A being E,6 = {el,ez,...,en} and the begin states of B being

A

BB = {bl,bz;...,bn}. Then we define 0(4,B) = (M,A,T) where:
M= MAUMB
A= AAUAB’
L = ZAUZB
Q = QuQg
E = EB
B = BA.

The transition function <t 1is defined by:
TA(q,o) if IA(q,o) is defined.
1(q,0) = TB(q,o) if tB(q,o) is defined,
TB(bi,o) if TB(bi,o) is defined and q = e .

Pictorially the serial composition can be shown as follows:

3

Intuitively this composition makes end state e, of A act like begin

i
state bi of B for a computation of 4 ending in e and then a
computation of B, starting in bi could follow.

The concurrent composition of 4 and B, denoted by X(4,B) is

defined when QAnQB = ¢ and AAnAB = ¢, as X(4,B) = (M,A,T) where:

M= MﬁUMB

A= AAUAB

L= ZAUEB

states are pairs, Q= QAXQB

B

B,*Bp
E = EAXEB
The transition function is defined only in the following cases (let
435 = (a9), x (a4)p)
If erA then T(qij,o) = (TA(qi,o),qj)
If oelg then r(qij,o) = (qi,TB(qj,o))
The concurrent composition of two schemata allows parallel operation-

of the two schemata in a simple FORK-JOIN manner. Pictorially it can be

viewed as:

The first type of result needed, is that under these compositions the

type of object we get is still within the class of objects we wish to study.

This is so.

Theorem: If A and B are schemata, then 0(4,B) and X(4,B) are

schemata.

This is a basic closure result. The next types ofhresults deal with
the form of I-computations for the composed schemata. Without going into
details, interpretations for the composed form are formed from "compatible"
interpretations from the constituent schemata. Compatible here means that
if the two interpretations are defining something for the same element, then

the definitioné are the same.

Theorem: Let A and B be schemata with 0(4,B) defined. Any computation
z of 0(4,B) is of one of the following two forms:

(1) z = x, where x 1is a nonterminating computation of 4.

(2) z = xy, where x 1is a terminating computation of 4 and y is

a computation of B.

To state a similar result for concurrent composition we first need to
define a "memory conflict" relation between A4 and B. Let D, = g?{ D (a)

A
and R = U R(a), and let D_ and R, be similarly defined. Then we
A aeAA B B
say

> [D nR ulDAMR JuIlROMI]=z o
4pB <> [D nR_] B A iy e

Theorem: If 4 and B are schemata such that X(4,B) is defined and
A ¢ B, then any computation of X(4,B) is a shuffle of a computation of

A and a computation of B,

The '"shuffle" is essentially combining two strings into a single string,
with the order of each original string maintained in the combined string, but
having no other restrictions on the number of contiguous symbols (other thanv
it being finite) taken from one string, before one or more syﬁbols are taken

from the other string.

5
Another form of composition consists of connecting an end state e
of a schema to a begin state b to form a loop. We define such a com-

position, which we call an iterate,and designate this for a schema

A M, ,A ZA) as +(4,e,b) = (M,A,T) where M=M,, A= AA’ L= ZA’

A’TA°
Q=0Q, and B=B,. E-= E, - {e} and 1t for +(4,e,b) 1is defined as
follows:

TA(b,O) if q=e and TA(b,O) is defined

T(Q,O’)
TA(q,o) whenever TA(q,U) is defined.

Clearly +(4,e,b) is a schema, so we also get the desired closure
result for this type of composition. The computations of +(4,e,b) are

characterized by the next theorem.

Theorem: Let A be a schema. If =z is a computatiom for +(A,e,b) then
1) z = xlxz..., where xi are computations for 4 ending in state

" e, or

(2) z = xlxz...xky where k=0 and for all i = 1,2,...k x= are

computations for A ending in e and y is a computation for

A not ending in e.

The final type of composition we consider is more complex. We give
only an intuitive idea of the form of this composition ([97] contains
details). The idea here is that we would like to replace an operation as
defined in one schema by a more detailed description (i.e., é schema) of
the operation. This type of composiﬁion we call insertion. It allows one
toAhierarchically define a program. Naturally, a number of consistency
requirements must be satisfied, such as the number of outcomes of the
operation matching, in some sense, the number of end states of the schema

replacing the operation. In [97] closure and computation characterization

theorems are given for insertion.

Another class of theorems is given in [19, 97] for composition.
These theorems show under what conditions determinacy carries over from the
constituent schemata to the composed schemata. Briefly, this usually
involves some constraints upon the opefations and their effect on memory
locations.

We now discuss 'renaming' in schemata. For our schemata which we have
defined and studied so far we have always specified the memory locations
D(a) and R(a) that an operation a effects when it is performed. However,
‘it may be advantageous to respecify the D(a) or R(a) locations of some
operations. For example, some operation might bg storing a '"temporary result'
in some location which is later used as an operand for, another operation.
Bzcause this location is used during this period, however, it may restrict
the use of this location by other operations, and only due to this memory
conflict it may mean that these other operations must wait until the first
pair of operations have finished using the location in questioh. This sit-

' we could

uation illustrates that by a relocation of memory, or a 'renaming,'
attain more parallelism. Secondly, a renaming might decrease the number of
memory locations needed to‘perform a computation, thus providing an economy
of memory usage. This then is the subject of '"renaming'" in schemata. How
can the assignment of memory locations be changed in a consistent and
advantageous way?‘ We will illustrate this notion of renaming (as done in
[89, 90]) only by two simple examples. The first example conéiders only a
simple sequence of function evaluations -- or a computation. The sequence

is:

(£(2,3) » 0), (g(3) »~ 1), (h(0,1) » 0,3), (m(3) = 3)

That is, we start by performing a function evaluation f which uses
locations 2 and 3 for ope;ands and places a result in location 0, then
follow this by a g wusing 3 and putting its result in location 1, etc.

Here we note that the result of the f calculation (in location 0)
is used by h. That is, location O is busy for this usage over the
segment indicated below:

(£(2,3) +0), ((3) » 1), (h(0,1) +,0,3), (m(3) » 3)

0-busy 3-busy

‘Similarly 3 is in use for a certain purpose where shown.
Now this use of location O could be moved to a different location. For
example, no change in the final results in locations_ 0, 1, 2 or 3 would
result if we changed this use to location 4 rather than 0, i.e. giving

(£(2,3) » 4), (g(3) = 1), (h(4,1) » 0,3), (m(3) + 3).
This renaming works but seems to be of no great use. However, if location
2 were of no interest beyond the use in the first f calculation we could
rename the use of O to a use of 2 gibing:

(£2,3) > 2), (2(3) > 1), (1(2,1) > 0,3), (m(3) + 3)
énd this would "free'" location 0 for a longer period of time. The reader
may see that the use of location 3 indicated above could also be changed
by a renaming. Thus, for computation sequences, we are interested in
contiguous segments of location usage starting with the point a value is
stored in the location, and ending with the last usage of that value. This
is one of the ideas developed by Logrippo in [89, 90]. This idea of
renamings can now be extended to schemata. We use here a different repre-
sentation of schemata which looks more like a flowchart. This form of

schema is like Keller's schema [75].

Start

A

£(2,3) 0 | a

g(3) -~ 1 |b

g(3) ~1 |b £(2,3) >0 |a

%)

h(0,1) » 0,3 |c

[e]
o

[g]
=

m(3) ~ 3 |d ¢ End

In this case each box of the flowchart specifies function operations

on memory. Symbol a refers to operation a which is £(2,3) - 0, b refers to
g(3)’+ l, ¢ to h(0,1) - 0,3, and d to m(3) - 3. More than one opera-
tion in a box indicates concurrent performancevis possible. Arrows are
labelled with operation outcomes controlling the flow through the schema
flowchart. Note here, that the computation that we looked at earlier is
the start of one possible computation in this schema. |
Now, we are again interested in renamings which do not change the
overall behavior. Rather than simple segments, we now get ''regions' of
usage for each location. The regions for 1§cation 3 are shown in the next

figure.

o e emm e e e . =

’ i
] N % ~\\
| £(2,3) -0 a \\
\
g(3) > 1 |b \
\
aOMZ \\bo \
\
g(3) »1 |b £(2,3) >0 [a |!

,hg\“ Jéo
rd

g h(0,1) ~ 0,3}c

P
’ - - - -
_-=="C .-" Cl
.

m(3)~¥kﬂ d o
"'

- e e e e e e e e em e .

-
-

-
ld
’
'
!
)
]
)

Clearly, for consistent renamings the renaming must be done consis-
tently through a complete region so outlined.

The properties of such regions for renaming, and how they can be used
advantageously for maximizing parallelism or for conserving memofy are

studied in [89, 901].

CS314a Lecture #21 , November 23, 1976

Today: Start "System of Processes' model, slices, etc.
~oday

References:

(1) R.J. Lipton, "On Synchronization Primitive Systems," Yale Computer
Science Research Report #22, October 1973.

(2) R.J. Lipton, "Limitations of Synchronization Primitives with
Conditional Branching and Global Variables," Proceedings of the
6th Annual Symposium on Theory of Computing, April 1974, pp. 230-241.
(3) R.J. Lipton, L. Snyder, and Y. Zalcstein, "A Comparative Study of
Models of Parallel Computation," Conference Record Fifteenth Annual
IEEE Symposium on Switching and Aytomata Theory, October 1974,
pp. 145-155. -
(4) D. Dolev, "Abstract Characterization of Slices of Various Synchroni-

zation Primitives," Report, Dept. of Applied Mathematics, Weizmann
Institute of Science, September 1976.

What we hope to do in the next several lectures is introduce yet
aﬁothér model of synchronization and parallelism called a "system of
processes.'" Using this model we will investigate how to represent some
of the models of parallelism and problems of synchronization that we
have discussed previously and then study how these models can be compared
within the system of processes model. Initiélly our discussion follows
refefence (3) rather closely, but there are some differences in our approach.

Informally a system of processes consists of a set of sequential
processes that can execute in parallel but are controlled, or synchronized,
in some way. Each processvconsists of a sequential set of actions. An
action could be viewed as an instruction, a block of instructions, a sub-

routine, etc. Branching or multiple exits could be modelled as well.

2
The control of the model is accomplished by 'specifying 'states" of the
system, where the system is started in some initial state. We define

this as follows:

Definition 1: A system of processes P = (A,D,w) consists of :

(1) A finite set A of actions, where each feA 1is a function from

D to D, and where A is partitioned into disjoint sets

1772

to be actions of procéss i;

Al’AZ""’An such that A_uA u...UAn = A. Actions in Ai are said

(2) A state set D = DlxDZX...an+

state; for i=l,...,n D

1 where weD 1is called the initial
1 corresponds to the domain of instruction
addresses for process i, and Dn+l corresponds to global program

and synchronization variables.

(3) Two functions called address and program-counter

address: A -+ DlxDZX"'an

program-counter: A -+ {1,2,...,n}

such that:
(a) Using V = (Ll’LZ"°°’Ln’G) as variables over DlxDZX"'XDn+1’
feA is a‘function from D to D of the form
when Lk = address(f) A p(G)
do Lk < s(Lk,G); G « t(G),
where k= program-counter(f). Here p is a predicate and s
and t are functions.

(b) For feA and geA, if address(f) = address(g) and program-

counter(f) = program-counter(g), then f=g.

3
Informélly P = (A,D,w) 1is a system of n processes where A is

the collective set of actions of all the processes. The function
"program-counter' partitions the set of actions into the actions for each
process, and the function "address(f)," feA, gives a program counter
value. Thus if program-counter(f) = k, then f is an action of process
k, and action f will be enabled if the current value of Lk is equal to
address(f) and predicate p(G) 1is true. The predicate p(G) is usually
thought of as a predicate requiring certain synchronization variaﬁles to
have certain values (e.g.,'like a semaphore being positivé). Assuming ;
action f oécurs,functions s and t are performed concurrently. Function |
s computes a new value of Lk’ specifying the address of the next action
of process k; and function t computes new values for the program and
synchronization variablés (for example, updating seﬁaphores and performing
the desired computation). The functions address and program-counter are
the only two functions used to distinguish actions. Thus condition (3) (b)
of the definition insures that when f and g are the same action of the

same process then f must equal g.

Example: We show how this definition can be used to model a PV system
of processes; i.e., a system using semaphores. For P = (A,D,w) let

D = Dlxsz...anmexE and let V= (Lp,L,,.e-,L ,51,8,,..4,5 ,6) be a
variables over D. Here we are representing a system of n. processes
with m semaphores. The Dn+1 component of D has been further decom-
posed into Z®xE to represent the m semaphore and the data domains.
Since semaphores values are integral " is suitable for representing the

m semaphore values. Finally, G represents the Program variables

which range over some set E. Each action a€cA has one of the following

forms:

(1) when L = address(a) A 8, > 0O

i h|
' N -]
do L, « address(a'); Sy ¢ S 1;
(2) when Li = address(a)
do L, < address(a'); Sj <+ Sj+1;
(3) when Li = address(a)
do L, « s(L;,6); G« t(G)

where for all values of Li,G: s(Li,G) 2 Li'
Note here that the actions of form (1) are commonly written P(Sj),
those of form (2) as V(Sj), and those of form (3) are the computing or

nonsynchronizing actions. In both forms (2) and (3) the p(G) predicate

is left out since it is identically true and not needed as a constraint.
Definition 1 gives the static structure of this model for process

interaction, but, of course, we are interested in discussing the dynamics

of such systems, This is done by describing allowed sequences of actions.

To do this we introduce further terminology and definitions.

CS314a Lecture #22 ' November 30, 1976

Today and Next Time: Continue System of Processes model.

Dec., 7: Cbee Yap - Term project report:
- A model for parallelism and synchronization
Dec. 9: Sharon Laskowski - Term project report:

- Vector Addition Systems; their results and applications

Last time we defined the system of processes model P = (A,D,w), and
. showed how PV systems could be represented in this model. Today we will

discuss the notions of computations in this model.

Definition 2: A timing for a system of processes P = (A,D,w) is any

*
finite sequence of actions acA .

Definition 3: The gglggp of a system of processes P is defined induc-
tively as
(1) valuep(A) =W

*
(2) valuep(uf) = f(valuep(a)) for aeA and feA.

Thus valuep is a function that maps a timing into the state reached
by applying the timing to the system started in the initial state.
We say that f and g of A are members of the same process, and

denote this by process(f,p) 1f and only if program-counter(f) = program-

counter(g). Clearly, the relation "process'" is an equivalence relation
A, and Ai designates that sct of actions that are in process 1. For

*
feA and acA we say fcpointer-set p(a) if and only if address(f) =

m (value(a)),+ where k = program-counter(f). That is, f belongs to
k

ot Here HI (x) denotes the projection operation on the state x to obtain
“k

the value in Lk’ i.c., the current address value in process k.

2
the pointer-set of a for P if, in the state reached after applying
as the address part of the state for the process that {f is in, is equal
to address(f). ~Alsc, we say that f ready-set(a), where k=program-
counter(f), if and only if fepointer-set(a) and p(HG(value(a))) is
true. Thus, the ready set designates those actions that could actﬁally
occur at the next step.

The following properties follow easily:

Lemma 1: For a system of processes P = (A,D,w) and timings o and B:
Property I: ready-set(a) c pointer-set(u).

Property II:]pointer—set(a) n Ail < 1.

Property IIT: Ai n pointer-set(a) = Ai n pointer-set(aB) for

timings o and B if no element in B is a member of Ai'

*
It is clear that not all timings acA correspond to allowed sequences

of actions for a system of processes P. Indeed, if they were, the system

of proceéses would be quite uninteresting. The restrictions imposed by P
*

on an aeA , for it to be allowed, come from both the address function and

the p(G) predicate. We designate such timings as "active' as follows:

]

a0y ... of P = (A,D,w) is called active,

1,2,...,1length(a), o€ ready—set(al...ai_l).

Definition 3: A timing o

if and only if, for all i

Thus active timings is the term used for "computations' within this
model. We will also assume within this model that f(value(a)) = value(a)
whenevér ‘af is a timing. That is to say, that within the model there is
a way of distinguishing between whether an action has already occurred or
not. In [3] ready-set is defined in this way as f(value(a)) = value(a),

but the definition scems more direct on the structure of P the way we

did it.

Definition 4: A system of processes P 1is called commutative if

whenever f, geA and ofg and oagf are active, then value(afg) =

value(ogf).

This definition is much like the computationally commutative
definition for program schemata, i.e., a requirement on states of the
system when transitions can occur in either order. We will see that
commutativity enters as a hypothesis in some of the results.

In the system of processcs model we wish to study how to represent
various synchronization problems within the model and how to compare
different problems. Earlier we showed how PV systems could be represented
within the model, references (1, 2, 3] give numerous other examples.
Before giving further examples here we wish to make precise the notions of
 "realization'" and "simulate" in the model. Thus, if two synchronization
s&stems are realized within the model and one system can simulate the

other, then this provides a way of comparing the two systems.

Definition 5: Let P = (A,D,w) and P' = (A',D',w') be two systems of

processes. A realization from P' to P is a function r: A' + Au{A},
where A 1is the null scquence. We extend r from actions to timings

= v - . - '
as r(alaz...an) r(al)r(az)...r(an) ~where the ay are elements of A'.

We call an action o observable if r(a) # A, and o is called a
bookkeeping action if r(a)'= A.
| Note here that we have two systems defined in terms of this formal
model. Precise comparison éan only be made within the model, not between

two word statements of synchronization problems. The function r thus

4
maps timings of P' to timings of P. Certain actions of D' may be
necessary as extra, or bookkeeping steps in the realization so in r
these are deleted via the mapping to A. Naturally, for the realization
of P by P' to make any scnse thére must be some correspondence
between the active timings of the two systems. This is formalized in
the next definition of "simulate," by putting conditions on the reali-

zation function r. .

Definition 6: Let P and P' be systems of processes. P' simulates

P provided there is a realization r from P' to P such that:
(1) {r(a)|o active in P'} = {B|g active in P},
(2) if ready—setP.(OL)ﬂA'i = ¢ then ready—setP(r(a))nr(A'i) = ¢,
(3) There is a constant ¢>0 such that‘for each active timing o of
P' I+length(r(a)) 2 celength (a),
(4) for any observable actions f, geA'
(a) 1if processP,(f,g) then processp(r(f),r(g)),

(b) 4if 1r(f) = r(g) then processP.(f,g).

The restrictions (1)-(4) on r in the simulate definition are all
quite natural but do warrant some discussion. Condition (1) says that
the two systems (under the r-mapping) should have the same set of active
timings. That is, if P' can make a change then P can make a corres-
ponding change. This condition is called onto safe since it is close to

the notion of "

safeness' given by Dijkstra. Condition (2) says that if
tt .

after ¢ P' causes the 1 " process to halt, then this must also be

a characteristic of P. That is, P' should not cause a process to dead-

lock if P does not have an analogous deadlock. This condition is called

deadlock-free on processes.

5
Condition (3) limits the length of an activé timing of P' with
réspcct to the corresponding active timing in P. That is, the per-
centage of bookkeeping steps that P' can use in an active timing is

bounded. This condition is called busy-wait free since any waiting due

to synchronization constraints must be bounded, which is not normally
the case in busy-waits. Condition (4) restricts r in such a way that
in a sense maintains the process structure between P and P'. Condition
(4) (a) restricts a single process in P' to be within a single procesé
in P. That is ‘the P' process structure is a refinement of the P
process structure. Condition (4)(b) restricts the identification of any
two actions in P' to be within a process of P'. This condition of
maintaining the process structure between models is called faithful.

We now aim at showing that when P' simulates P this simulation
is, in some sense, an efficient simulation. Condition (3) of the
simulate definition is an essential feature, as one can imagine since
otherwise P' could become hopeleésly embroiled in bookkeeping opefations.
However, we want to claim somewhat more than what condition (3) directly
implies, and this is based on the notion that tihis model allows parallel
operation of the various processes within the model. Our formulation of
active timings, however, obscures the notion of concurrency since a timing
is a simple sequence of actions. Thus, for our efficiency ' result we need

definitions of concurrent and of cost.

Definition 7: Let P be a system of proceéses and let o and B be

timings for P. Then B dis concurrent after o if and only if for

any permutation B' of B:

(1) aB' ds an active timing,

(2) wvalue(ap) = value(af').

Thus, we model concurrency or perallelism by allowing within ihe
set of active timings all possible permutations of B following a.
Also, the state reached is tQ be idependent of what order the actions
take place. Thus, as far as P 1is concerned, there is no difference
within the system in the order in which the actions of B are performed
onée the state value(a) is reached. Thus should imply that each of these
actions could be performed concurrently on separate processors, and if
each action took onc unit step and we had sufficient processors then all
of g could be performed in a single unit step. This notion of "number

of steps" is amplified in the next definition.

Definition 8: The cost Tk(a) of executing o on k processors is

1

' n i
the least n such that o =a ...a where o is concurrent after

ol...oll and length(al) < k, 1 = 1,2,...,n.

The cost Tk(a) is thus the minimum number of steps required to
execute o on k processors, assuming that each action can be pérformed
in a unit step.

We now state the efficiency theorem.

Theorem 1 (Efficiency Theorem): Let P and P' be systems of processes

such that P' simulates P and P' is commutative. Then there is a
positive constant C such that for every positive integer k and every
active timing o of P' Tk(a) < C'Tk(r(a)). Moreover, C is the maximum
number of bookkeeping steps which may occur consecutively in an active

timing.

See [3] for a proof of this theorem.

CS3l4a Lecture #23 December 2, 1976

The simulaée definition and the efficiency theorem for systems
of processes that we discussed last time provide a way of comparing
synchronizétion problems. What we introduce today is the notion of
"slices" which provides a more local means of comparing the behavior

- of synchronization problems.

Definition 9: Let I be a finite set. The set NI 1is a I-slice

if and only if:
(1) Each element of II is a finite sequence of distinct
-~ elements of I. |
(2) If oel then ogell.

(3) 1If o8 is in N, them a 1is is 1.

Property (3) of slices is the prefix inclusive property.

Definition 10: The system of processes P = (A,D,w) defines the

I-slice N if and only if there is a one-one correspondence d: A + I

: * *
such that d, extended to A =+ I is {d(a)|a active in P} = I.

Definition 11: The system of processes P = (A,D,w) dimplicitly defines
the I-slice NI if and only 1f there is a subset A' of A and an

active timing a in P such that (A',D, value(a)) defines 1.
Thus allows us to state how slices connect with the simulate property.

Theorem 2: (Invariance Theorem) 1f P' simulates P and P 1mplicitly

defines a Y-slice I, then P' dimplicitly defines 1.

4

2

Some properties of I-slices are of interest.

Property 1: Every I-slice is finite.
This is immediate from the definition. I is finite and each

element of I is made up of distinct elements of I.

Property 2: Let P define slice I, then no two actions of P belong
to the same process.
If £ and g are any two actions of P then d(F) and d(G)
are elements in NI. Thus £ and g are both active timings of
P (from definition 10), and since each process is sequential

property 2. must be true.

Property 3: Let P define N and f,geA.
Then fepointer-set(g) and gepointer-set(f). This follows from

property 2 and the earlier stated property III.

These properties clarify some of the intuitive notions of slices and
their relation to system of processes. In some sense a slice corresponds
to the set of active timings (see definition 10). Yetvany action that
can occur must be possible (i.e., in ready-set(A)) at the beginning. That
is, the slice gives a cut (or slice) across thé processes at the initial
time, providing a view of the next actions that can occur in each of tﬁe
processes. The implicitly defines definition (definition 11) provides a
similar view across the processes at an arbitrary point in time; that ié,
at the state value(a) for any active timing o. Thus, the set of slices
implicitly defined by a system of processes captures, in a local way, the

particular synchronization of the system at that point.

3

In the references [1-4] quite a few different classes of slices
are defined and given names such as exclusion, commutative, symmetric,
permutable, Abeiian, etc. Then particular classes of slices are
éhown to characterize the various types of synchrénization and parallel
models.

Before we discuss a sampling of these characterizations we note a
difference in the definition of slices between references [3] and [4].
We have given the definition used in [3]. The three conditions on a
I-slice 1 are: (1) elements of 1N use distinct elements of I; and
this means I 1s a finite set,

(2) oeX ==> gell, and

(3) slices are prefix inclusive.
In [4] condition (1) is not stated, so conceiveably slices could be
infinite sets, and indeed that seems to be what is used since his rela-
tionships between slices and vector addition systems and vector replace-
ment systems‘define a slice as a set of sequences in which each sequence
can be viewed as a reachable path in the VAS or VRS. Of course, the set
of reachable paths can be infinite, and in most interesting cases is
infinite. Although I don't currently understand this essential difference
between these two references, it may be that [4]'int:oduces the notion of
a slice being partitioned up into a sequence of subslices, and the sub-
slices may give appropriate 'local behavior" notions. Because of this
difference, we continue our discussion following mainly reference [3].

If we are to compare various parallel models and synchronization
systems we would like to compare over classes of instances of such systems

rather than just between particular instances. Thus we broaden our notion

4

from a given P defining a slice NI to a class of P defihing a slice.

Definition 12: .The class C of systems of processes defines the I-slice

I if and only if there exists a PeC such that P defines II. We also

say that in this case II' is C-definable.

Definition 13: A class C of systems of processes is called closed if

and only if whenever P = (A,D,w)eC, A' ¢ A, and a 1is an active timing,

then (A',D, value(a)) is in C.
We now see how classes‘of systems are compared.

Definition 14: Let C and C' be two classes of systems of processes.

Then C + C' i1if there is a P in C such that for no P' in C' does

P' simulate P.

Intuitively C -+ C' means that from a synchronization point of
view C is more powerful than C'. If C and C' are classes such
that both C # C' and C' # C then neither is more powerful than the
other and we denote this by C = C'.

A corollary of these definitions and the invariance theorem is:

Corollary: Let C and C' be classes of systems of processes, and let
C' be closed. Then if C defines N and C' does not define N then

c-+2cC'.

This corollary provides the central comparative technique in this
theory.
In contrast to the concepts of concurrent actions that are discussed

to define the cost Tk(a) of an active timing a, much of the interest in

5
the various synchron%zation techniques is the facility of the tech-
nique (here to be encoded as a class C of system of processes) to
"{nhibit" or "séop" actions. That is, when does one action have the
ability to stop another action from occurring. Of course, this sort of
behavior is the essence of the semaphore solution to the mutual exclu-
sion problem as well as many of the other toy synchronization problems.
To help capture this notion we introduce the concept of stopping via

"exclusion slices."

Definition 15: Let R be a reflexive relation over the finite set I.

. . . *
Exclusion(R) is the set of all finite sequences f1’£2""’fn in
such that for 1<i<j<n, not finj' Then a I-slice 1 1s called an '

exclusion slice if and only if I = exclusion(R) for some reflexive

relation R on I.

Thus, an exclusion slice defines constraints of the type f stops

Another restriction on slices is:

| Definition 16: A I-slice 0 1is szmgétric if and only if abell implies

baell for all a,bel.

We wish to show, as our sample of results in this area, two results

~ for VAS systems. They are:
Lemma 2: Let I be a I-slice which is VAS-definable, then 1 is symmetric.

Lemma 3: Let NI be a symmetric exclusion slice, then II is VAS-definablé.

6
We first must define the class of VAS systems of processes. Here
again we view the general form of a state of such a system of processes

to be of the‘form:

(Ll’LZ""’Ln’sl"‘°’sm’E)‘
Here, howe&er, we afe only interested in the .part S = (Sl,...,Sm) of
the state. Our alphabet of actions will consist of one‘element, say
wi, for each element wiew, where wi is an m—dimensional vector from

z®. The initial state is just the vector d and the action wy takes

thé form:
when S + wi 20
do S+«S+uw,.

i
Now Lemma 2 follows from the simple fact that if
(s+w1)+wjzo
then (S + wj) + W, cannot be less than zero.

i
Lemma 3 is somewhat more complex and we do not prove it here (see [3]).
It is ;lso interesting to note that through this apﬁroach it has

been shown that irreflexive Petri nets and vector addition systems are
both ch#racterized by the sam; kind of slices, and Qre,lin that sense,
equivalent; This ties into our earlier isomorphism comparison in which
such Petri nets without equivalent transitions were shown to be isomor-
phic to vector addition systems (see Theorem 1 of Lecture #7). A complete

comparison between the isomorphic approach and the slice approach has not

yet been investigated.

	tr89.pdf
	tr89.pdf
	89b.pdf

	89c.pdf
	89d.pdf

