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I. Introduction 

The theoretical analysis of systems for protecting the security 

of information should be of interest to the practitioner as well as the 

theoretician. The practitioner must convince users that the integ~ity of 

their programs and files·are maintained, i.e. he must convince them that the 

operating system and its mechanisms will correctly protect these programs 

and files. Vague or informal arguments are unacceptable since they are 

often wrong. Indeed the folklore is replete with stories of "secure" 

systems being compromised in a matter of hours. 

A primary reason for the abundance of these incidents is that even 

a small set of apparently simple protection primitives can often lead to 

complex systems that can be exploited, and therefore compromised, by some 

adversary. But it is precisely this fact, simple primitives with complex 

behavior, that lures the theoretician. Our purpose here is to present a 

concrete example of a protection system and then to completely analyze its 

behavior. 

Our motivation for doing this analysis is twofold. The protection 

system that we will study is not one we invented, rather it is one that has 

been defined, discussed, and studied by those in operating systems (Denning 

and Graham [2], Cohen [l], Jones [4]). This point is most important, for 

the space of possible protection systems is exceedingly rich and it is 

trivial to think up arbitrary systems to study. We are not interested in 

arbitrary systems, but in systems that have practical application. 

The above motivation is necessary but not sufficient for us to 
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establish that these questions should interest the theoretician. Our 

second reason for studying these problems is that in a natural way they can 

be viewed as "generalizations of transitive closure." Roughly these 

protection questio~s can be modeled as: 

Given: A directed labeled graph G and a set of rewriting rules R. 

Determine: Whether or not there is a sequence of graphs G1 , G2, ... , 
G such that G = Gl' G has property X, and Gi+l follows n n 

from G. by some rule in R. 
1 

Here property X encodes that there is a protection violation in G . Our 
n 

goal then is to show that it is impossible to reach such a G , i.e. that 
n 

a protection violation is impossible. 

Property X is frequently stated as 

X: there is ari edge from vertex p to q with label a. 

For these properties our protection questions do indeed look very much 

like transitive closure questions. Indeed if the rules R only allowed the 

addition of edges, then these problems would be easily solved by known 

methods. They are not so simple. The rules of interest to those in 

protection, and the particular rules we will study, allow new vertices to 

be added. This simple change of allowing graphs to "grow new vertices" 

make these problems challenging. Indeed the particular one we will study 

is no longer even obviously decidable. 

Let us now make the above concrete by introducing the particular 

protection system we will study. We consider directed graphs whose arcs 
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are labeled with an r or a w or a c. While we will manipulate these graphs 

as formal objects it is helpful to keep in mind the following informal 

semantics: A vertex corresponds to a "user", r = "read", w • "write", 

c = "call". If there is a directed arc from x toy with label r (respectively 

w,c), then x can ready (respectively write, call). For example, in the 

graph 

x w y 

rj 
z 

x can writey, x can read z, but y cannot write z since this edge is missing, 

More formally, a protection graph is a finite, directed graph with each 

arc labeled by a nonempty subset of {r,w,c}. We interpret the case where 

an edge is labeled with other than a single element to mean that multiple 

."rights" are allowed. 

This protection model, called the take and grant system, is now 

completed by presenting five rewriting rules. 

1. Take: Let x, y, and z be three distinct vertices in a protection 

graph and let there be an arc from x to y with label y such that 

r E y and an arc from y to z with some label a ~ {r,w,c}. Then 

the take rule allows one to add the arc from x to z with label a 

yielding a new graph G'. Intuitively x takes the ability to do 

a to z from y. We will represent* this rule by 

*Here and in later diagrams we abuse notation by writing an explicit right as 
as arc label (x o--E.+o y) to mean the arc label contains that right (i.e., 
x o--:1.-+o .y such that r E y). 



2. Grant: 

a 

r a 
0 >O >O => 
x y z x y z 

Let x, y and z be distinct vertices in a protection graph G and 

let there be an arc from x to y with label y such that w E y 

and an arq from x to z with label y ~ {r,w,c~. Then ·thd grant 

rule allows one to add an arc from y to z with label a yielding 

a new graph G'. Intuitively x grants y the ability to do a to 

z. In our representation grant is given by: 

x y z 

~ => 

a a 

3. Create: Let x be aryy vertex in a protect.ion graph, th~n c:reate a;tlows 

4. Call: 

one to add a new vertex N and an arc from x to N with label 

{r,w,c} yielding a new graph G'. Intuitively x creates a new 

user that it can read, write and call. In our representation 

.~ 

0 => 
x N 
0,__r~·-w~'~c-~) 0 

Let x, y and z be distinct vertices in a protection graph G and 

let a ~ {r,w,c} be an arc from z to y and y an arc from x to z 

such that c E y. Then the call rule allows one to add a new 
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vertex N., an arc from N to y with label a, and an arc from N 

to z with label r yielding a new graph G'. Intuitively xis 

calling a program z and passing parameters y. The N "process" 

is created to effect the call: N can read the program z and can 

a the parameters. In our representation 
x 

yOAz => y 

x 

z 

N 

5. Remove: Let x and y be distinct vertices in a protection graph G with 

an arc from x to y with label a. Then the remove rule allows 

one to remove the arc from x toy yielding a new graph G'. 

Intuitively x removes its rights toy. In our representation, 

x Cl y 
o----+<lO => 

x 
0 

y 
0 
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The remove rul~ is defined mainly for completeness, since protecti~~ 

systems tend to have such a rule. Moreover, we expect to study properties; 

of protection systems other then protection violations which will use remc:>°""~ 

in a crucial way. But, for the present, 'remove.may be ignored. 

The operation of applying one of the rules to a protection graph G 

yielding a new protection graph G' is writen G I- G'. 

denotes the reflexive, transitive closure. 

* As usual G ~ G' 

An important technical point is this system is monotone in the sen.:=::;.~ 
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that if a rule can be applied, then adding arcs cannot change this. This 

property is crucial later. 

Now that we have seen the rules, let us look at their behavior. We 

will start with a simple question: in. the graph 

x z 

r 
y 

is it possible for y to r z? The answer is obviously no since there is no 

r arc from y to z. But we are really asking: is there a sequence of rule 

applications that leads to a graph with an r arc from y to z? More generally, 

say p can a q if there is a series of rules that leads to a graph with an 

arc from p to q. Then to state our question more precisely, we ask: is it 

true that y can r z? Clearly, without create, the answer is no since none 

of the operations take, grant or call can apply. The following sequence of 

applicatons of the rules* shows that by using create the answer is yes: 

ly creates 

r 

y 

* In the diagrams, dashed lines are used only as a visual aid to set off 
the added arcs of the current operation. 




































