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Abstract

We propose a new model for exact learning of acyclic circuits using experiments in which
chosen values may be assigned to an arbitrary subset of wires internal to the circuit, but only the
value of the circuit’s single output wire may be observed. We give polynomial time algorithms to
learn (1) arbitrary circuits with logarithmic depth and constant fan-in and (2) boolean circuits
of constant depth and unbounded fan-in over AND, OR, and NOT gates. Thus, both AC0 and
NC1 circuits are learnable in polynomial time in this model. Negative results show that some
restrictions on depth, fan-in and gate types are necessary: exponentially many experiments
are required to learn AND/OR circuits of unbounded depth and fan-in; it is NP-hard to learn
AND/OR circuits of unbounded depth and fan-in 2; and it is NP-hard to learn circuits of
bounded depth and unbounded fan-in over AND, OR, and threshold gates, even when the target
circuit is known to contain at most one threshold gate and that threshold gate has threshold 2.
We also consider the effect of adding an oracle for behavioral equivalence. In this case there are
polynomial-time algorithms to learn arbitrary circuits of constant fan-in and unbounded depth
and to learn boolean circuits with arbitrary fan-in and unbounded depth over AND, OR, and
NOT gates. A corollary is that these two classes are PAC-learnable if experiments are available.
Finally, we consider an extension of the model called the synchronous model. We show that
an even more general class of circuits are learnable in this model. In particular, we are able to
learn circuits with cycles.



1 Introduction

We introduce a new model of active learning for acyclic circuits in which we may inject chosen
values on an arbitrary subset of wires but can observe only the value of the circuit’s output wire.
Our results illuminate the relative importance of manipulation and observation in discovering the
structure of networks modeled as circuits.

Gene regulatory networks are an important area in which boolean network models have been
used. In one variant of the basic model, each node in a finite network represents a gene, which has a
current state of active or inactive. The states of all nodes in the network are updated synchronously;
for each node there is a boolean function giving its new state of in terms of the current states of some
subset of the other nodes. A key point is that the node states are fully observable: it is assumed
that gene expression data gives the state of every node in the network at every time step. The
discovery problem is to learn the updating functions of all the nodes. Of course this is difficult if
the updating function may be an arbitrary boolean function; further assumptions generally restrict
the fan-in or types of the possible updating functions.

Akutsu et al. [1] describe an approach to the discovery problem that models the experimental
capability of multiple gene disruption and overexpression. At each time step several selected genes
may be disrupted (put in the inactive state), several other selected genes may be overexpressed
(put in the active state), while unaffected genes are updated as usual. In this model the states
of the nodes are fully controllable as well as fully observable. For networks of N nodes and fan-in
bounded by k, Akutsu et al. give an O(N2k) algorithm for the discovery task. Ideker, Thorsson, and
Karp [7] also consider this model and give more practical discovery methods for acyclic networks,
using information theoretic criteria to select genes to disrupt or overexpress. These results show
that if the class of updating functions is sufficiently restricted, the problem of learning the structure
of a network in this model is tractable.

By contrast, there is ample evidence that learning boolean circuits or formulas from their
input-output behaviors may be computationally intractable. Positive learnability results include
those for fairly limited classes, including propositional Horn formulas [2] general read once boolean
formulas [3], and decision trees [5], and those for specific distributions, including AC0 circuits [12],
DNF formulas [8] and AC0 circuits with a limited number of majority gates [9].) Valiant gives
cryptographic evidence for the difficulty of PAC learning general boolean circuits [16]. Kearns
and Valiant [10] show that specific cryptographic assumptions imply that NC1 circuits and TC0
circuits are not PAC learnable in polynomial time. These negative results have been strengthened
to the setting of PAC learning with membership queries [4], even with respect to the uniform
distribution [11].

For these results on learning circuits and formulas, observation and control are both restricted:
values on internal wires cannot be observed or manipulated. A natural question is: What are
the relative contributions of full observation and full control to the tractability of learning boolean
networks?

Our new model addresses this question: we postulate full control and restricted observation.
Our results show that the ability to inject values into the circuit gives the learner considerable
power, but not as much as would be the case with full observation. In particular, with value
injection queries, NC1 circuits and AC0 circuits are exactly learnable in polynomial time, but our
negative results show that the depth limitations are necessary. However, if behavioral equivalence
queries are also available, the depth limitations can be removed, which also implies the polynomial
time PAC-learnability of these classes with value injection queries.

In the other direction, Rivest and Sloan [14] propose an interesting model of hierarchical learning
of boolean formulas and acyclic circuits, in which a teacher teaches the circuit one gate at a time to
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the learner in an order consistent with the graph of the circuit; examples at each stage are drawn
from a fixed initial distribution. This increases the observability of the values on internal wires,
but not does not provide for their control. Rivest and Sloan give a polynomial time algorithm that
successfully learns arbitrary acyclic boolean circuits in their model.

We also consider an extension of our model called the synchronous model, in which we assume
that the circuit runs in discrete time and gates are synchronized. The circuits are allowed to have
cycles in this extension. In this model, we show that an even larger class of circuits are learnable
with only experiments.

2 The Model

Circuits. We define a variant of the usual circuit model that has no distinguished inputs and
permits a finite set Σ of at least two different values on wires. A circuit C consists of N wires,
W = {w1, w2, . . . , wN}, and for each wire wi a gate gi that determines the value on this wire. The
size of the circuit is N . The wire wN is assumed to provide the output of the circuit as a whole.
A gate consists of a function mapping Σk to Σ, and a vector of k integers from [1, N ] specifying
the input wires of the gate. The value k is the fan-in of the gate. Gates of fan-in zero compute
constant functions. The maximum fan-in taken over all the gates in the circuit is the fan-in of the
circuit. We define the circuit graph to have a node for each wire/gate pair and a directed edge from
node i to node j if wi is one of the input wires to gate j. In this paper we assume that the graph
of the circuit is acyclic. We define the depth of the circuit to be the number of edges in the longest
path in the circuit graph.

Behavior. We focus on the behavior of a circuit in response to experiments in which we fix the
values of certain wires and observe the final output of the circuit. Define an experiment to be a
vector s in (Σ ∪ {∗})N , where si specifies the value of wi (if it is in Σ) or leaves the value of wi

unaltered (if it is ∗). If si ∈ Σ, we say wi is fixed in s; otherwise, it is free in s. The value of wi

given s, written wi(s), is defined as

wi(s) =

{
gi(wi1(s), wi2(s), . . . , wiki

(s)) if si = ∗,
si if si 6= ∗.

(1)

where gate i has function gi and inputs (i1, i2, . . . , iki
). The output of the circuit given an experiment

s is the output of wire wN , that is, wN (s); this is also denoted C(s).
The behavior of a circuit is the function mapping experiments s to C(s). Two circuits C and C ′

are behaviorally equivalent, if they have the same behavior, that is, if ∀s ∈ (Σ∪{∗})N , C(s) = C ′(s).
To compare our work with previous work on learning circuits, we treat the gates of fan-in zero as
the input gates and denote the number of input gates by n. An experiment is input-only if it fixes
every input gate and leaves every other gate free. The input-output behavior of a circuit C is is
the restriction of its behavior function to input-only experiments. Clearly behavioral equivalence
implies equality of input-output behaviors but not conversely.

An important special case is boolean circuits, for which Σ = {0, 1}. The input-output behavior
of a boolean circuit is just the usual concept of a circuit computing a boolean function of n inputs.
NC1 circuits are boolean circuits with constant fan-in and depth O(log n). AC0 circuits are
boolean circuits of constant depth and polynomial size whose gates are unbounded fan-in AND,
OR, and NOT. The threshold function Θt is the boolean function that is 1 if and only if at least t
of its inputs are 1. TC0 circuits are boolean circuits of constant depth and polynomial size whose
gates are unbounded fan-in threshold, AND, OR and NOT.
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Queries. We assume that the learner can get information about the circuit by specifying an
experiment s and observing C(s), the output of the circuit. Such an action is termed a value
injection query, abbreviated VIQ. We also define a behavioral equivalence query, abbreviated BEQ:
the learner proposes a circuit C ′, and, if it is not behaviorally equivalent to the target circuit
C, receives in response a counterexample, that is, an arbitrarily chosen experiment s such that
C ′(s) 6= C(s). To be consistent with previous usage, we use the term membership query, abbreviated
MQ, for a VIQ restricted to an input-only experiment s, and the term equivalence query, abbreviated
EQ, for a query that tests whether the proposed circuit C ′ has the same input/output behavior as
the target circuit C and returns an arbitrary input-only experiment s witnessing C ′(s) 6= C(s) if not.
Thus, MQ’s and EQ’s necessarily refer to the input/output behavior of the circuit. An algorithm
that learns the (full) behavior of any circuit from a given class using VIQ’s and BEQ’s also learns
the input/output behavior of any circuit from the class using VIQ’s and EQ’s. Then a standard
polynomial time transformation yields a PAC learning algorithm using VIQ’s for input/output
behavior of circuits in the class, which implies the following.

Proposition 1. If a class of circuits is learnable in polynomial time with VIQ’s and BEQ’s, then the
input/output behaviors of circuits in the class are PAC-learnable in polynomial time using VIQ’s.

3 Result summary

The learning problems we address are: by making VIQ’s (respectively, VIQ’s and BEQ’s) to a
target circuit C, find a behaviorally equivalent circuit C ′. Both C and C ′ use gates from a specified
class F . We investigate the computational tractability of these problems for classes of circuits
defined by restrictions on depth, fan-in, and F . Our results are summarized in Table 1.

Section 4 contains negative results for exact learning with VIQ’s and BEQ’s. In Section 5 we
give an algorithm, CircuitBuilder, that takes a class of gates F and a set U of experiments and
constructs a circuit C ′ by making VIQ’s on experiments in U and their one-symbol perturbations,
and then finding a gate for each wire consistent with the results. If U contains for every wire and
every gate that is wrong for that wire a witness experiment that excludes the incorrect gate, then
the resulting circuit is behaviorally equivalent to the target circuit. We then show how to construct
appropriate sets of experiments U for the class of log-depth constant fan-in circuits and for the
class of AC0 circuits. In Section 6, we extend these methods to use BEQ’s as well as VIQ’s, and
show that the limitations on circuit depth can be removed for both classes.

Table 1: Summary of our results for acyclic circuits
Depth Fan-in Gates Query types Learnability Reference
Unbounded Unbounded AND/OR VIQ 2Ω(N) queries Theorem 2
Unbounded 2 AND/OR VIQ NP-hard Theorem 3
Constant Unbounded AND/OR/Θ2 VIQ/BEQ NP-hard Theorem 6
Logarithmic Constant Arbitrary VIQ Poly-time Theorem 20
Constant Unbounded AND/OR/NOT VIQ Poly-time Theorem 22
Unbounded Constant Arbitrary VIQ/BEQ Poly-time Theorem 23
Unbounded Unbounded AND/OR/NOT VIQ/BEQ Poly-time Theorem 26

Finally, in Section 7, we study the synchronous model. We show that the class of circuits with
gates that are closed under two natural operations projection and blurring, which are defined in
Section 7, are learnable in this model. This includes any circuits with constant fan-in gates and
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AND/OR gates with unbounded fan-ins. There is no limitation on circuit depth and we do not
restrict circuits to be acyclic.

3.1 Learnability of the gates

What is the relationship between the learnability of circuits in our model and learnability of the
class F of permitted gates? A depth 1 circuit consists of n input gates and one gate g depending
on some subset of the inputs; if any nontrivial circuits are to be learnable, then depth 1 circuits
must be learnable in the same sense.

For depth 1 circuits, VIQ’s reduce to membership queries. Classes F of gates for which depth 1
circuits are learnable in polynomial with membership queries include (1) the class of gates with fan-
in at most some constant k over an arbitrary finite value set Σ and (2) the class of all symmetric
boolean gates (which includes unbounded fan-in AND, OR, NAND, NOR, threshold and parity
gates.)

Another aspect of the learnability of depth 1 circuits is the consistency problem, defined as
follows. The input is a set of prohibited pairs (s, v) where s is an input-only experiment, v ∈ Σ is
a value, and the desired output is a depth 1 circuit C ′ over F such that C ′(s) 6= v for every pair
(s, v) ∈ S. For the class of arbitrary gates with fan-in at most k, the consistency problem can be
solved in time O(nk). There is also a polynomial time algorithm to solve the consistency problem
over the class of unbounded fan-in AND, OR, NAND, NOR, NOT and parities. However, Lemma 5
shows that the consistency problem is NP-hard over the class of unbounded fan-in AND, OR, and
thresholds. CircuitBuilder makes use of algorithms for the consistency problem. Lemma 4 shows
that polynomial time learnability with VIQ’s and BEQ’s implies a polynomial time algorithm for
consistency in certain cases.

3.2 Relation to circuit testing

A central challenge for learning algorithms in our model is to propagate the effects of a changed
value on some internal wire of to the observable output of the circuit. Our methods are similar in
some respects to the idea of path sensitization in circuit testing, used to detect whether the output
of some gate is “stuck” at a constant value instead of computing the correct value of its inputs [6].
In path sensitization, a path in the correct circuit from a gate g to the output is constructed, and
an input x is sought such that the output of g would be the complement of the “stuck” value,
and the values of the other inputs to gates along the chosen path are set so as to propagate the
output of g (or its complement) to the output of the circuit. Path sensitization is not a complete
method: there are examples of single stuck-at faults in acyclic circuits that cannot be detected by
path sensitization, though they are detectable by other tests. In our model, the ability to inject
values on internal wires gives the approach greater power. However, this power does not trivialize
the problem; the negative results in Section 4 illustrate the subtle “shadowing” or “filtering” effects
that limit the power of VIQ’s.

Fujiwara [6] considers the computational problem of deciding, for a given circuit, gate, and
stuck-at value, whether there is any test to detect the fault. He shows that the problem is NP-
complete, even when restricted to AND/OR circuits of depth three. By contrast, since this class is
contained in AC0, we show that it is polynomial time learnable using VIQ’s.
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4 What Cannot Be Learned Efficiently?

We first discuss an example showing that the same behavior may be exhibited by structurally
distinct circuits. The three circuits C1, C2, and C3 shown in Figure 1 are behaviorally equivalent,
where G1 and G2 are arbitrary gate functions. Only when G2 and V both have value 1 (respectively,
0) can the value of G1 propagate through the depth 1 AND gate (respectively, OR gate). Therefore
we cannot decide which one of G2 and V is an input of G1, and similarly in the other case. This
fact rules out attempts to discover the exact structure of the target circuit, even when all wires are
relevant.

AND OR

AND

G1

I1

G2

I2V

AND OR

AND

G1

I1

G2

I2V

AND OR

AND

G1

I1

G2

I2V

Figure 1: Three equivalent circuits

AND
AND

AND

OR

OR

X Y

VW

V W

Figure 2: The gadget

Figure 2 presents a gadget, which is an AND/OR circuit of fan-in 2 that computes Y =
Θ2(X, V,W ). We can view V and W as controlling a switch: only when their values are dif-
ferent will the value of X be passed on to Y . Gadgets can be concatenated to get a gadget chain
(see Figure 3), in which the value of X is passed on to Y only when every pair Vi and Wi have
different values. The chain can be used to “hide” part of the circuit unless the values of Vi and Wi

are complements of each other. In Figure 3, exactly one of each pair Vi and Wi is an input to the
big AND gate. The learner has to guess which combination of them are the inputs to the AND
gate, which yields the following negative result.

AND Gadget

V1

W1

Gadget

V2

W2

… Gadget

Vn

Wn

Y

V1

W2

…


Vn

W3

Figure 3: Hidden AND gate and gadget chain

AND

AND

AND

OR
ORG

V1

W2

V3

Figure 4: G ∧ (x1 ∨ x2 ∨ x3)

Theorem 2. The class of acyclic boolean AND/OR circuits is not learnable with 2o(N) VIQ’s.

Proof. Suppose an adversary reveals the gadget chain and the fact that the last gate is an AND
gate with exactly one of each pair Vi and Wi as an input, but hides the exact combination. Only
when one of Vi and Wi is set to 1 and the other set to 0 will the value of the big AND gate affect
the output of the circuit. There are 2n such settings of V ’s and W ’s. The adversary answers 0
until only one setting remains. The theorem then follows because N = O(n).

The construction in Figure 3 gives an exponential information-theoretic lower bound, using a
deep circuit and a gate of large fan-in. The following construction uses the gadget chain to give a
computational hardness result for deep circuits with fan-in 2.

Theorem 3. Learning the class of fan-in 2 AND/OR circuits using VIQ’s is NP-hard.
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Proof. We use the implicit negation enforced by the gadget chain to construct a circuit representing
a CNF formula, for which a satisfying instance must be found in order to expose a hidden part of
the circuit. (Using a NOT gate would not achieve the same effect because we can override its output
in an experiment.) We associate a boolean variable xi with each pair Vi and Wi, and let xi = 1 if
Vi = 1,Wi = 0 and 0 if Vi = 0,Wi = 1. Then the circuit in Figure 4 computes G ∧ (x1 ∨ x2 ∨ x3).
We can chain such clauses by replacing G with the output of the previous clause and finally connect
it to the gadget chain. Let Ch be a constant size fan-in 2 AND/OR circuit we want to hide. We
connect the output of Ch to the last clause (by replacing G). To reveal Ch, we have to solve the
3-SAT problem. Because the gadget chain consists of AND/OR gates of fan-in 2, the theorem
follows.

The gadget chain is a deep circuit, but in the following construction we use AND and OR gates
to achieve a constant depth filter that forces a learning algorithm to solve the consistency problem
for F (defined in Section 3.1). Given (1) any depth 1 circuit C with input wires v1, . . . , vn and gate
g from a class F of boolean gates and (2) a set E of input-only experiments, we add the following
structure to C to construct another circuit C ′ as follows. For each s ∈ E, we add a distinct directed
path of length 3 consisting of g, a new AND gate, a new OR gate, and the output gate. Each wire
vj that is set to 0 (respectively, 1) in s is an input of the OR (respectively, AND) gate on the path
for s. We take the output gate of the whole circuit to be an AND gate. (Note that we cannot use
the same method to replace the gadget chain because it would require |E| to be exponential.)

Lemma 4. There is a polynomial time algorithm using VIQ’s and BEQ’s to learn circuits from
the above class if and only if there is a polynomial time algorithm for the consistency problem over
F .

Proof. Suppose the consistency problem is solvable in polynomial time. The structure of a target
circuit from the class, (except for the identity of gate g) can be learned using VIQ’s in a straight-
forward fashion, which determines the corresponding set E. For each s ∈ E (which corresponds to
a path), we construct an experiment s′ that agrees with s on v1, . . . , vn and sets to 1 the output of
each OR other than that in the path, which can be used to determine the corresponding value of
g(s). g can then be learned using the algorithm that solves the consistency problem.

Conversely, suppose that there is a polynomial time learning algorithm. We can construct a
circuit that corresponds to the consistency problem and simulate VIQ’s by evaluating the circuit.
We simulate BEQ’s only when the proposed gate for gate g does not solve the consistency problem.
Suppose so in the following. Denote the proposed gate by g′. Let C ′ be the proposed circuit.

When the inputs of g′ is contained in the set {v1, . . . , vn}, there exists a s ∈ E such that
g′(s) 6= g(s). Suppose w.l.o.g. that g(s) = 1 and g′(s) = 0. We construct s′ as before. We also
construct two experiments s′0 and s′1 that set the corresponding wire of g to 0 and 1 respectively. We
also have that C(s′) = C(s′1) (since g(s) = 1) and that C ′(s′) = C ′(s′0) (since g′(s) = 0). We claim
that one of the three experiments is a counterexample to C ′. Otherwise, all the three experiments
will have the same outputs in both C and C ′. So C(s′1) = C(s′0), which, by our construction, leads
to a contradiction.

If g′ depends on an AND/OR gate in one of the constructed paths, let s ∈ E be the corre-
sponding input-only experiment, construct s′, s′0 and s′1 as before. Let the corresponding wire of
the AND/OR gate be w. Suppose that C and C ′ agree on all three experiments. Compare s′0
and s′1. w takes the same value in C ′ on s′0 and s′1, because g′ depends on the AND/OR gate and
therefore changing the corresponding wire of g′ will not change the value w (see also Proposition
9). However, by construction, w takes different values in on s′0 and s′1 in C, which means that, on
either of s′0 and s′1, w takes different values in C and C ′. Suppose w.l.o.g. it is s′0. By construction,
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it is not hard to see that, on s′0 the gate w takes value 0 in C and value 1 in C ′. Set w to 1 in s′0 and
let the resulting experiment be s′2. We have that C ′(s′2) = C ′(s′0) but C(s′2) 6= C(s′0). Therefore,
s′2 is a counterexample to C ′.

Lemma 5. The consistency problem is NP-hard for the class of unbounded fan-in AND, OR, and
Θ2 gates.

Proof. We reduce a 3-SAT instance φ over the variables xi for i ∈ [1, n] to the consistency problem
for this class. The input wires are {I1, I2, I3, V1,W1, V2,W2, . . . , Vn,Wn}. Let G denote the output
wire of the unknown gate. We define a correspondence between literals of φ and wires: literal xi

corresponds to wire Vi literal xi corresponds to wire Wi. We design the set of experiments and
their outputs as follows.

• For each of the eight experiments of 0 and 1 to I1, I2, and I3, with all Vi = Wi = 0, the output
value is Θ2(I1, I2, I3). This guarantees that G cannot be AND or OR, and must therefore be
a Θ2 gate whose inputs include I1, I2, and I3.

• For each i, on the experiment with I1 = Vi = Wi = 1 and all other input wires assigned 0,
the output value is 1. This implies at least one of Vi and Wi is an input wire of G.

• For each i, on the experiment with Vi = Wi = 1 and all other input wires assigned 0, the
output value is 0. This implies not both Vi and Wi are inputs to G.

• For each clause of φ, on the experiment that sets I1 and the three wires corresponding to the
three literals in the clause to 1 and all other wires to 0, the output is 1. This ensures that at
least one wire corresponding to a literal in the clause is an input to G.

It is easily verified that φ is satisfiable if and only if there is a gate G from the specified class of
gate functions consistent with these experiment/value pairs.

Theorem 6. Learning constant depth AND/OR/Θ2 circuits with VIQ’s is NP-hard.

5 Learning with experiments

First we develop some tools. A partial experiment is a partial function from [1, N ] to Σ ∪ {∗},
where some wires are unspecified. Let s be an experiment and τ be a partial experiment. Define
s|τ to be the experiment obtained by setting all unspecified wires in τ as in s. Let s and t be two
experiments. We say that t � s if s and t agree on all s’s fixed wires, and t ≺ s if t � s and there
is at least one free wire in s that is fixed in t. Let s be an experiment with wire w set free. We call
s|w=σ, where σ ∈ Σ, the (w, σ)-perturbation of s. If C(s) 6= C(s|w=σ), we say s is (w, σ)-exposing.

Consider any gate g with inputs (i1, i2, . . . , il). We overload g to take an experiment s as an
argument. That is, let g(s) = g(wi1(s), wi2(s), . . . , wil(s)), where wi(s) is the value of wire wi on s
in the target circuit C. The following useful facts are easily verified.

Proposition 7. Let s and t be two experiments with the output wire set free. If s and t agree on
every wire that is either free in s or an input to a wire that is free in s then C(s) = C(t).

Proposition 8. C(s) = C(s|w=w(s)).

Proposition 9. Let w and u be two wires and suppose there is no path from w to u in the graph
of the circuit. Then u(s) = u(s|w=σ) for any experiment s and σ ∈ Σ.

7



One of the key ideas at the heart of our algorithms is to use test paths. A test path is an
experiment whose free wires are a directed path from some wire w to wN , through which w is
exposed. Let a side wire of a test path be a fixed wire that is an input to a gate whose corresponding
wire is set free. The meaning of test paths is made clear in the following lemma, which says that
using test paths is sufficient.

Lemma 10. Let s be a (w, σ)-exposing experiment, where σ ∈ Σ. Let s∗ � s be a minimal (w, σ)-
exposing experiment. Then the free wires in s∗ are a directed path in the graph of C, which starts
with w and ends with the output wire wN . (s∗ is a test path.)

Proof. When w = wN , the directed path is just wN itself. Suppose the claim is true for any free
wire whose corresponding gate has w as an input. First we claim that only those wires that w can
reach (in the underlying digraph) can be free in s∗. This is because these wires take the same values
in s∗ and the perturbations s∗|w=σ (see Proposition 9). Thus, we can set them to the corresponding
values and the resulting experiment is still (w, σ)-exposing, which contradicts the minimality of s∗.

Let u be a free wire in s∗ whose only free input wire is w. u must exist, because the underlying
digraph is acyclic. Let σ0 = w(s∗) and β0 = u(s∗) and β = u(s∗|w=σ). We claim that s∗|w=σ0 is
a minimal (u, β)-exposing experiment. Let us view the circuit as a function of values of w and u.
That is, let F (x, y) = C(s∗|w=x,u=y). By the assumption, we have F (σ0, β0) 6= F (σ, β). By the
minimality of s∗, we have F (σ0, β) = F (σ, β). Thus, we have

F (σ0, β) 6= F (σ0, β0)

which implies that s∗|w=σ0 is (u, β)-exposing. Suppose on the contrary that there exists s′ ≺ s∗

is (u, β)-exposing. We set both w and u free in s′ and let the resulting experiment be s′′. Let
F ′′(x, y) = C(s′′|w = x, u = y). Again, by the assumption and the minimality of s∗, we have

F ′′(σ0, β0) 6= F ′′(σ0, β) = F ′′(σ, β)

Therefore, we conclude s′′ is (w, σ)-exposing by observing that w(s′′) = σ0, u(s′′) = β0 and
u(s′′|w=σ) = β, which leads to a contradiction.

Therefore, we conclude that s∗|w=σ0 is a minimal (u, β)-exposing experiment. By induction, its
free wires consist of a directed path starting with u and ending with wN . We append w to this
path to obtain the directed path in s∗.

The main task of our learning algorithms is to find a “correct” gate function for each wire.
Formally speaking, a gate g is wrong for a wire w, if there exists an experiment s that fixes all of g’s
inputs and is (w, g(s))-exposing. We call such an s a witness experiment for g and w. Otherwise,
we say that g is correct for w.

Lemma 11. Let C ′ be a circuit with the same set of wires as C. If C ′ is acyclic and every gate of
C ′ is correct for the corresponding wire, C ′ is behaviorally equivalent to C.

Proof. Suppose to the contrary that C ′ is not behaviorally equivalent to C. Let s be a minimal
experiment such that C ′(s) 6= C(s). Let w be a free wire in experiment s and g be its corresponding
gate in C ′, chosen so that all g’s inputs are fixed in s. (Such a wire exists because C ′ is acyclic.)
By Proposition 8, we have C ′(s) = C ′(s|w=g(s)). By the minimality of s, we have C ′(s|w=g(s)) =
C(s|w=g(s)), which then implies that C(s|w=g(s)) 6= C(s). This contradicts the fact that g is correct
for w.
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5.1 Constructing a circuit

Let F be a class of gates containing all the gates in the target circuit C. We describe an important
subroutine, CircuitBuilder (Algorithm 1), that takes a set of experiments U and constructs an
acyclic circuit C ′ using gates from F . CircuitBuilder builds C ′ from the bottom up, starting with
gates of fan-in zero. At each iteration, CircuitBuilder attempts to add another wire to C ′ by
choosing a gate in F among those that depend only on wires that are already in C ′. This method
has the advantage of building an acyclic circuit, which is crucial because the dependency of gates
is not always clear, as in Figure 1.

Define U to be a sufficient set of tests for C and F if for every wire wi in C and every gate
g ∈ F that is wrong for wi, U contains at least one witness for g and wi. In the remainder of this
section we prove the following.

Theorem 12. If U is a sufficient set of tests for C and F then C ′ is behaviorally equivalent to C,
where C ′ is the circuit constructed by CircuitBuilder.

In CircuitBuilder, the set V contains all possible perturbations of experiments in U . We note
that V is not necessary for the correctness of the algorithm, but helps keep the testing non-adaptive.
Let Uw (respectively, Vw) denote the set of experiments in U (respectively, V ) with w set free.

Algorithm 1 CircuitBuilder
INPUT: U and F .
OUTPUT: C ′.
1: ∀w, ∀s ∈ Uw, ∀σ ∈ Σ, let V contain the (w, σ)-perturbation of s.
2: Make a VIQ on every experiment s ∈ U ∪ V .
3: C ′ ← Φ. Z ←W .
4: while Z is not empty do
5: for w ∈ Z do
6: if there exists a function g ∈ F that depends only on wires in C ′, such that ∀s ∈ Uw, C(s) =

C(s|w=g(s)) then
7: Add w to C ′ and remove w from Z.
8: ∀s ∈ Uw ∪ Vw, replace s by s|w=g(s).
9: break

At each iteration of the algorithm, experiments in U∪V may be replaced. We make the following
claims about the replacements.

Lemma 13. At any iteration, for any s ∈ U ∪ V , no wire in C ′ is set free in s.

Proof. This is because we fix the wire to a value whenever we add it to C ′.

Lemma 14. Consider any iteration, any w ∈ Z and any s ∈ Uw, and let s0 be the version of s at
the start of the algorithm. For any σ ∈ Σ, let t0 be the (w, σ)-perturbation of s0 at the start of the
algorithm and t be the replacement of t0 at the iteration considered. Then t is a (w, σ)-perturbation
of s.

Proof. The statement is clearly true at the start of the algorithm. At each previous iteration, at
most one setting of s and t will be changed. We only need to show that each replacement will
replace the same value for s and t. The lemma then follows by observing that the replaced value is
an output of a function that depends on wires that does not include w (w has not been added to
C ′) and that s and t differs only at their settings of w.
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Lemma 15. Suppose U is a sufficient set of tests for C and F . At any iteration consider any
s ∈ U ∪ V and let s0 be the version of s at the start of the algorithm. Then we have C(s) = C(s0).

If s ∈ U , there is nothing to prove since the algorithm checks the equality before making the
replacement. The case that s ∈ V is a little bit trickier. We prove an even more general lemma,
from which the case s ∈ V follows.

Lemma 16. Suppose U is a sufficient set of tests for C and F . Let g be the function that the
algorithm chooses for gate w. Then g is correct for w. That is, ∀s with g’s input wires fixed,
C(s) = C(s|w=g(s)).

Proof. W.l.o.g., let w be the first wire added to C ′ for which the statement in the lemma does
not hold. Suppose g is wrong for w. By the assumption that U is sufficient for C and F , there
exists an experiment s0 ∈ U at the start of the algorithm such that s0 fixes all g’s inputs, and
C(s0) 6= C(s0|w=g(s0)). Let s ∈ U be the replacement of s0 at the iteration w is added to C ′. We
have that C(s) = C(s0) 6= C(s0|w=g(s0)) = C(s|w=g(s0)), by the assumption that w is the first wire
violating the condition. Moreover, g(s) = g(s0) because s0 and s both fixes all g’s input wires and
therefore should agree on them. Therefore, we have

C(s) 6= C(s|w=g(s))

which contradicts the choice of g.

Lemma 16 together with Lemma 11 establish Theorem 12. Lemma 13 validates the operation
of picking a function g, which amounts to solving the following consistency problem (Section 3.1).
Let E be the projection of Uw to C ′ and let the prohibited pairs (t, σ) be those t ∈ E and σ ∈ Σ
such that there is an experiment in Uw that agrees with t and is (w, σ)-exposing; Lemma 14 and
Lemma 15 show that although we need to compare the circuit outputs of replacement experiments
and their perturbations, we do not need to do any further VIQ’s. Thus we show the following.

Corollary 17. If U is a sufficient set of tests for C and F , all the VIQ’s of CircuitBuilder can be
performed in one round.

The next lemma shows that the algorithm terminates in N iterations.

Lemma 18. At each iteration, the algorithm adds one wire to C ′.

Proof. First we observe that there is at least one wire w in Z whose input wires are all contained
in C ′, because the circuit graph of C is acyclic. The true gate of w in C will survive every if-test
in the algorithm.

5.2 Learning log depth circuits with constant fan-in

We use CircuitBuilder to give an algorithm that learns an arbitrary log depth bounded fan-in
circuit. The algorithm does not perform any additional queries and hence is non-adaptive. The
main idea is based on the observation that in an acyclic circuit of depth d and fan-in k, there are
at most d free wires and at most kd side wires in a test path. There are at most |Σ|O(kd) settings
of these wires, which we can generate using a universal set construction. The following definition
of universal set is adapted from Seroussi and Bshouty [15]. An experiment set U is called (N, l)-
universal if for every set of indices R = {r1, r2, . . . , rl} ⊆ [N ], the projection of U to R contains
all (|Σ|+ 1)N l-tuples. It is known in [13] that a (N, l)-universal set of size 2O(l log |Σ|) log N can be
constructed in polynomial time. (The paper only deals with binary vectors. But it can be easily
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extended to the non-binary case by viewing each non-binary literal in Σ ∪ {∗} as a binary vector
of size log(|Σ|+ 1).) Let U be a (N, (d + 1)(k + 1))-universal set and let F be the class of all gates
of fan-in at most k. We show that U is sufficient for C and F .

Lemma 19. U is a sufficient set for C and F .

Proof. Let s be a witness experiment that g is wrong for w; all g’s inputs are fixed in s. Let s∗ � s
be a minimal (w, g(s))-exposing experiment. According to Lemma 10, there are at most d free
wires and dk side wires in s. Since U is a universal set, there exists an experiment s0 ∈ U at the
beginning of the algorithm, such that s0 agrees with s∗ in all s∗’s free wires and side wires and also
all g’s inputs (there are at most (d + 1)(k + 1) wires). Proposition 7 shows that s0 is a witness
experiment that g is wrong for w.

Whenever kd = O(log N), the size of U is polynomial in N and so is that of V . It takes time
NO(k) to solve the consistency problem for a function of k variables, by checking every possible
combination of k inputs. When k is a constant, this is polynomial.

Theorem 20. Log depth bounded fan-in circuits are learnable in polynomial time using VIQ’s.

5.3 Learning AC0 circuits

Theorem 6 precludes polynomial time algorithms for learning constant depth unbounded fan-in
circuits with fairly simple gates. In this section, we show that if we allow only AND and OR
gates (it is easy to extend it to NAND, NOR and NOT), constant depth unbounded fan-in boolean
circuits are learnable. Thus we show that AC0 circuits are learnable with VIQ’s.

We are not able to use a universal set, since k can be as large as Ω(N). Instead, we use
Algorithm 2 to gather the necessary test paths adaptively. Algorithm 2 begins with learning the
output gate, which can be easily done for AND and OR gates. It then sets one of its input wires
free and fixes the other input wires so that the free input wire is still relevant. In particular, it set
the other input wires to 1 if the output gate is an AND gate, or 0 if the output gate is an OR gate.
This partial experiment is then used to find (some of) the inputs of the corresponding gate. The
algorithm goes on exploring the whole circuit. We remark that Algorithm 2 alone is not sufficient,
because some input wires may be fixed as side wires and therefore hidden to the learner.

Algorithm 2 Learning a constant depth AND/OR circuit
1: Let Γ contain the partial experiment that sets the output wire free, {wN = ∗}.
2: Let 1 (0) be an experiment that sets all wires to 1 (0),
3: while Γ is not empty do
4: Pick τ ∈ Γ and remove it from Γ.
5: if C(1|τ ) 6= C(0|τ ) then
6: Let Z = {w| w unspecified in τ , and C(1|τ,w=0) 6= C(1|τ ) or C(0|τ,w=1) 6= C(0|τ )}.
7: for w ∈ Z do
8: if C(1|τ,w=0) 6= C(1|τ ) then
9: Add τ |w=∗,∀w′∈Z\{w},w′=1 to Γ. {AND gate}

10: else if C(0|τ,w=1) 6= C(0|τ ) then
11: Add τ |w=∗,∀w′∈Z\{w},w′=0 to Γ. {OR gate}

Let U contain all tests that are made in Algorithm 2 and F be all AND and OR gates. The
following lemma shows the correctness of the learning algorithm.
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Lemma 21. U is sufficient for C and F .

Proof. Suppose s is a witness experiment that g is wrong for w and s∗ � s is a minimal (w, g(s))-
exposing experiment. Let u be the neighboring wire of w in the directed path from w to wN

(Lemma 10). We define two partial experiments τu and τw. τu sets all free wires in the directed
path before u and their side wires as in s∗ and sets u free. τw is similarly defined. We claim that
τw is added to Γ in Algorithm 2. We assume inductively τu has been added to Γ.

Compare τu and τw. Those wires unspecified by τu but specified by τw are side wires that are
inputs only to u. They are set to 1 if u is an AND gate and 0 if u is an OR gate so as to keep w
relevant. Furthermore, we observe that

1. If u is an AND gate, C(1|τu) 6= C(0|τu) and C(1|τu,w=0) 6= C(1|τu);

2. If u is an OR gate, C(1|τu) 6= C(0|τu) and C(0|τu,w=1) 6= C(0|τu).

Therefore, τw must be added. Thus U must contain the following sets of experiments {0|τw ,1|τw},
{1|τw,w′=0| w′ unspecified in τw}, and {0|τw,w′=1| w′ unspecified in τw}. Let g∗ be the gate w in the
target circuit C. The two projected functions g|τw and g∗|τw (fixing some inputs of the functions)
must be different, because otherwise it contradicts the fact that s∗ is a witness experiment. By
case analysis, we can show that there exists at least one of the above-mentioned experiments s0,
such that g(s0) 6= g∗(s0). s0 serves our purpose.

It is clear that each partial experiment collected by Algorithm 2 corresponds to a directed path
in the circuit C. Thus the number of partial experiments is bounded by O(Nd) = poly(N) when
the depth d is a constant. The size of U and the number of tests are hence polynomially bounded.
The theorem then follows from the fact that consistency problems for AND/OR gates can be solved
in polynomial time.

Theorem 22. AC0 circuits are learnable in polynomial time using VIQ’s.

6 Learning with experiments and counterexamples

BEQ’s overcome the obstacles of Theorem 2 and Theorem 3, because the counterexample has to
give away the combination when an appropriate hypothesis circuit is presented. However, the result
in Theorem 6 still applies. Assuming both VIQ’sand BEQ’s are available, we give polynomial time
algorithms to learn both arbitrary constant fan-in circuits and AND/OR circuits with unbounded
depth.

Both algorithms repeatedly make a BEQ on a candidate circuit C ′ until C ′ is behaviorally equiv-
alent to the target circuit. Each counterexample s is processed to give a minimal counterexample
s∗ � s such that C ′(s∗) 6= C(s∗). This process, Minimize, can easily be done with O(N) VIQ’s.
The minimal counterexample is then used in rebuilding the candidate circuit C ′. As in the proof of
Lemma 11, a minimal counterexample is a witness experiment that a candidate gate g is wrong for
a wire w. Therefore, each counterexample eliminates at least one candidate gate for at least one
wire. For constant fan-in circuits, this immediately leads to a polynomial time learning algorithm,
since there are at most |F| = NO(k) gates to eliminate. We use a refinement of CircuitBuilder
(shown in Figure 3) to build C ′, which instead of checking each gate with respect to U , just picks
a gate that is not eliminated for the corresponding wire.

Theorem 23. Bounded fan-in circuits are learnable in polynomial time using VIQ’s and BEQ’s.
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Algorithm 3 Learning with counter examples
INPUT: A class of functions F .
OUTPUT: A circuit C ′

∀w,Fw ← F .
Let C ′ be a circuit that consists of all constant functions.
while not EQ(C ′) do

Let s∗ = Minimize(EQ(C ′)).
for w do

Let g be the corresponding function.
if all g’s inputs are fixed in s∗ then
Fw ← Fw\{g}.

C ′ ← CircuitBuilder′({∀w,Fw}).

However, the same method does not work for AND/OR circuits, as |F| is exponential. But each
minimal counterexample still proves a gate wrong for a wire w. Let us denote each counterexample
by a pair indicating the outputs of the true gate and the proposed gate. A (1, 0) counterexample
eliminates the constant 0 gate and similarly a (0, 1) counterexample eliminates the constant 1 gate.
Counterexamples for AND/OR gates can be divided into two types, namely, input removing and
input demanding counterexamples. For instance, if the proposed gate and the true gate are both
AND gates, a (1, 0) counterexample says that the 0-inputs (inputs that are set 0) of the proposed
gate are not inputs of the true gate. Such a counterexample causes the removal of the 0-inputs from
the potential input set and is called input removing. Let R∧

w contain all inputs removed by input
removing counterexamples for wire w. A (0, 1) counterexample implies that inputs of the proposed
gate does not include all inputs of the true gate. Such a counterexample is called input demanding.
We add the set of inputs of the proposed gate to T∧

w when an input demanding counterexample
is received. Any AND gate whose inputs are completely contained in any set of T∧

w can not be
the true gate and is therefore eliminated. An analogous argument applies when both gates are OR
gates. Let R∨

w be the analogy of R∧
w and T∨

w be the analogy of T∧
w . When the true gate and the

proposed gate are of different types, we will process each counterexample as if the true gate were
of the same type as the proposed gate. It is not hard to verify that even when the two gates are
of different types, each counterexample will either add some wires to R∧

w or R∨
w or add a set to T∧

w

or T∨
w and therefore makes some progress. An important fact is that the true gate will never be

eliminated. This is because only when the proposed gate is of the same type as the true gate will
there be any restriction on the true gate, and the true gate will not be eliminated in these cases as
we have already discussed.

We use another refinement of CircuitBuilder. At each iteration, we try to add a wire in Z to
C ′. We put Z in a queue and let the initial order be w1, w2, . . . , wN . At each iteration, the first
wire in the queue will be considered. If it is not be added to C ′, it will be put at the end of the
queue. We add the wire to C ′ only if one of the following is true. One of the two constant functions
is not eliminated; C ′\R∧

w is not contained in any set of T∧
w ; C ′\R∨

w is not contained in any set of
T∨

w . We add the wire with a constant function, AND of wires in C ′\R∧
w, or OR of wires in C ′\R∨

w,
respectively.

Now we bound the number of counterexamples each wire can receive. There are at most 2
counterexamples that eliminate constant functions. There are at most O(N) input wire removing
counterexamples. The most subtle case is input demanding counterexamples. We identify the
phase number of the algorithm with the number of counterexamples it has received (recall that the
algorithm rebuilds C ′ each time a counterexample is received). In the circuit building algorithm, let
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the round number of an iteration be the number of times the wire being considered has been added
to the queue. At each phase t, let Iw(t) be the round number at which w is added to C ′. Intuitively,
Iw(t) will never decrease because we add more constraints as we receive more counterexamples.

Let C ′
(w,i)(t) be the set C ′ when w is considered at round i. We order pairs in W × [1, N ] first by

their round number and then by the order of wires in W . Thus C ′
(w,i)(t) = {w′|(w′, Iw′(t)) ≤ (w, i)}.

We claim that C ′
(w,i)(t) is non-increasing.

Lemma 24. For any wire w, if C ′
(w,i)(t) exists and the algorithm does not end at phase t, C ′

(w,i)(t+
1) exists and C ′

(w,i)(t + 1) ⊆ C ′
(w,i)(t).

Proof. We do induction on the pairs (w, i). The lemma clearly holds for (w1, 1) as C ′
(w1,1)(t) is

always empty. Suppose it holds for all pairs that precede (w, i). Suppose there exists a wire w′ in
C ′

(w,i)(t + 1)\C ′
(w,i)(t). We have that (w′, Iw′(t + 1)) ≤ (w, i). For convenience, let j = Iw′(t + 1).

Therefore, w′ is added at jth round at phase t + 1 but not added at jth round or before at phase
t. This implies that C ′

(w′,j)(t + 1) * C ′
(w′,j)(t), as the algorithm will only add more wires to R∧

w

and R∨
w and add more sets to T∧

w and T∨
w when more counterexamples are received. This leads to

a contradiction.

Thus we have the following fact.

Corollary 25. Iw(t) is non-decreasing.

Now let us bound Iw(t). Recall that the true gate will never be eliminated. Therefore, whenever
C ′ contains all inputs of the true gate, w will be added. Thus, if w is a constant gate, Iw(t) = 1.
If the true gate of w depends only on constant gates, Iw(t) ≤ 2. In general, we have that Iw(t) ≤
max(Iwi1(t), Iwi2(t), . . . , Iwik

(t))+1, where wij(j ∈ [1, k]) is an input of a true gate of w. Therefore,
Iw(t) ≤ d.

Each input demanding counterexample at phase t + 1 will eliminate the gate that the circuit
building algorithm picked for w at round Iw(t) of phase t, by Lemma 24, which means that at phase
t + 1, we can not pick the same type of gate for w at round Iw(t) again. Thus Iw(t) will increase
when w receives 2 input demanding counterexamples. Therefore, we can bound the number of
input demanding counterexamples by O(d) per wire.

Theorem 26. AND/OR/NOT circuits are learnable in polynomial time using VIQ’s and BEQ’s.

7 Learning synchronous circuits with cycles

In this section, we study a new learning model called the synchronous model, where time is quantized
and we can inject values as well as observe the output of the circuit at each time step. The value
of each wire at time t + 1 is determined either by the injected value at time t + 1 or by its inputs
at time t if it is set free. We require that each wire have a default value to begin with for the sake
of the completeness of definition. An experiment sequence is a continuous series of experiments.
Two circuits are equivalent in the synchronous model, if and only if they have the same set of
wires/gates, and produce the same output sequence given the same experiment sequence providing
that corresponding wires of the two circuits take the same value at the beginning. We allow circuits
to have cycles because the synchronous models provides more power to the learner by allowing to
inject values at each time step. Roughly speaking, it allows us to isolate and examine individual
gates to some extent. In this section, we will show that any circuits with a large class of gates,
including constant fan-in gates and AND/OR gates, are learnable in this new model.
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Let g(w1, w2, . . . , wk) be a function from Σk to Σ. We define two operations. ∀σ ∈ Σ, i ∈ [1, k],
let g|wi=σ = g(w1, . . . , wi = σ, . . . , wk) be a projection of g. Let p be a function from Σ to P . p
can also be viewed as a partition of Σ. Let p(g(w1, w2, . . . , wk)) be a blurring of g. The reason to
introduce blurring is that some values of a gate may be indistinguishable by gates in its way to the
output gate. Thus the learner is only able to see a “blurred” version.

The main theorem of this section is the following.

Theorem 27. Circuits with gates from a class that is closed under projection and blurring and
learnable with membership queries are learnable in the synchronous model.

The class of constant fan-in gates and AND/OR gates are certainly closed under projection and
blurring and learnable with membership queries. Therefore, the theorem applies to these gates. In
the following, we assume all gates are from a class described in Theorem 27.

The main idea is natural. First, a membership learning algorithm is used to learn the output
gate, which can be viewed as learning the output gate with length 1 experiment sequence. The
sequence is then extended to learn its input gates and so on. We say that an experiment sequence
ξ = (s1, s2, . . . , sm) is (w,α, β)-exposing, if the circuit outputs at the end of the sequence (at the step
after sm) are different given two experiment sequences (s1|w=α, s2, . . . , sm) and (s1|w=β, s2, . . . , sm).
For example, wN is exposed by any sequence of length 1 since we can directly observe its value.
Let g be the corresponding gate of w. With a (w,α, β)-exposing experiment sequences ξ, we can
insert an experiment s0 in the front of it to simulate a membership query on g, or more accurately,
on a blurring of g. We partition Σ in the following way. We put α and β in one partition if and
only if ξ is not (w,α, β)-exposing. Let gξ be the blurring of g under this partition. After learning
gξ, ξ is then extended to input wires of gξ.

Algorithm 4 Learning a synchronous circuit
1: U ← {(wN , ξ0)}, where ξ0 is an arbitrary test sequence of length 1.
2: Let V be a database of test sequences, with the keys being tuples in W × Σ× Σ.
3: while U is not empty do
4: Pick a tuple (w, ξ) in U and remove it from U . Let g be the true function of wire w.
5: Learn gξ with membership queries.
6: for w′ that is an input of gξ, α′, β′ ∈ Σ do
7: if the key (w′, α′, β′) is not in V then
8: Compute a s0 such that gξ(s−1|w′=α′) 6= gξ(s−1|w′=β′).
9: if s0 exists then

10: Let ξ′ = (s0, ξ). Add (w′, ξ′) to U . Add ξ′ to V with a key (w′, α′, β′).

We claim that Algorithm 4 collects all exposing experiment sequences.

Lemma 28. For any wire w, and α, β ∈ Σ, if there exists a (w,α, β)-exposing experiment sequences,
there exists one in V .

Proof. Suppose ξ = (s1, s2, . . . , sm) is a (w,α, β)-exposing experiment sequence and ξ /∈ V . W.l.o.g.
assume it is the minimum such experiment sequence. Consider the two experiment sequences
(s1|w=α, s2, . . . , sm) and (s1|w=β, s2, . . . , sm). Denote them as α-sequence and β-sequence respec-
tively. Suppose that wires take the same default values before we test (we can always add an
experiment to ensure that). At the first step (after we apply s1), only wire w takes different values
in the two sequences. Consider the second step (after we apply s2). Suppose wire wi takes value αi

in α-sequence and βi in β-sequence. There should not be any (wi, αi, βi)-exposing sequence in V ,
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since otherwise w must be an input of the corresponding gate of wi and Algorithm 4 must have ex-
tended it to a (w,α, β)-exposing sequence. Therefore, by the minimality assumption, there does not
exist (wi, αi, βi)-exposing sequence of length m−1. This also means that at this step the circuit out-
puts are the same for the two sequences. Let sj

α (respectively sj
β) be an experiment that fixes wires

to their values after sj is applied to the circuit in α-sequence (respectively β-sequence). Since there
does not exists any (wi, αi, βi)-exposing sequence of length m, we conclude that (s2

α, s3, . . . , sm)
has the same circuit outputs as (s2

α|w1=β1 , s3, . . . , sm), as well as (s2
α|w1=β1,w2=β2 , s3, . . . , sm), . . . ,

(s2
β, s3, . . . , sm), which leads to a contradiction.

Now we justify the process of computing s0 in Algorithm 4. Consider the projections gξ|w′=α′

and gξ|w′=β′ . s0 does not exist if the two projections are equivalent. Otherwise, if we simulate the
membership query algorithm to learn gξ|w′=α′ . One query must be made to distinguish gξ|w′=α′

and gξ|w′=β′ since they both belong to the class of gates by assumption. It is clear that the query
can be used to construct s0.

After collecting all exposing sequences, the proposed function is given as follows.

g′(s) = σ,where σ ∈
∧
ξ∈U

gξ(s)

where s is an experiment that fixes all wires, and the outputs of each gξ is viewed as a subset of Σ.
Since the number of keys in V is bounded by Σ2N , the running time Algorithm 27 is polynomial.
We now show that the constructed circuit C ′ is equivalent to C in the synchronous model.

Proof. (of Theorem 27) First, we remark that g′ computes a wrong value α only if the α is in-
distinguishable from the correct one β. In other words, if w is the corresponding wire, there is
no (w,α, β)-exposing sequence. Suppose on the contrary that ξ is a sequence that witnesses the
difference of C and C ′. That is C and C ′ differs at their final outputs after applying ξ. Suppose
ξ is such a sequence with minimum length. Suppose further ξ is minimal in the sense that no free
wires in any experiment of ξ can be fixed so that the resulting sequence is still a witness sequence.
Suppose |ξ| = m. Now we view C and C ′ as circuits with m layers. Each layer corresponds to each
time step and contains a copy of every wire. The inputs of a wire in layer i are the corresponding
copies of its inputs in C or C ′ in layer i− 1. Clearly, the layered circuits are acyclic and ξ can be
viewed as a VIQ on the circuits. The values of the corresponding copies are equal to the values
of the wires at given time step. By the argument of Lemma 11, this implies that ξ is a witness
experiment for a copy of some wire w. This says that ξ is an exposing sequence for w and this will
lead to a contradiction as we argue at the beginning of this proof.

References

[1] Tatsuya Akutsu, Satoru Kuhara, Osamu Maruyama, and Satoru Miyano. Identification of
gene regulatory networks by strategic gene disruptions and gene overexpressions. In SODA
’98: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
695–702, Philadelphia, PA, USA, 1998. Society for Industrial and Applied Mathematics.

[2] D. Angluin, M. Frazier, and L. Pitt. Learning conjunctions of Horn clauses. Machine Learning,
9:147–164, 1992.

[3] D. Angluin, L. Hellerstein, and M. Karpinski. Learning read-once formulas with queries. J.
ACM, 40:185–210, 1993.

16



[4] Dana Angluin and Michael Kharitonov. When won’t membership queries help? J. Comput.
Syst. Sci., 50(2):336–355, 1995.

[5] Nader H. Bshouty. Exact learning boolean functions via the monotone theory. Inf. Comput.,
123(1):146–153, 1995.

[6] Hideo Fujiwara. Logic Testing and Design for Testability. MIT Press, 1986.

[7] T. Ideker, V. Thorsson, and R Karp. Discovery of regulatory interactions through perturbation:
Inference and experimental design. In Pacific Symposium on Biocomputing 5, pages 302–313,
2000.

[8] Jeffrey C. Jackson. An efficient membership-query algorithm for learning DNF with respect
to the uniform distribution. J. Comput. Syst. Sci., 55(3):414–440, 1997.

[9] Jeffrey C. Jackson, Adam R. Klivans, and Rocco A. Servedio. Learnability beyond AC0. In
STOC ’02: Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,
pages 776–784, New York, NY, USA, 2002. ACM Press.

[10] Michael Kearns and Leslie Valiant. Cryptographic limitations on learning boolean formulae
and finite automata. J. ACM, 41(1):67–95, 1994.

[11] Michael Kharitonov. Cryptographic hardness of distribution-specific learning. In STOC ’93:
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 372–
381, New York, NY, USA, 1993. ACM Press.

[12] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier transform,
and learnability. Journal of the ACM (JACM), 40(3):607–620, 1993.

[13] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and appli-
cations. In ACM Symposium on Theory of Computing, pages 213–223, 1990.

[14] Ronald L. Rivest and Robert Sloan. A formal model of hierarchical concept learning. Inf.
Comput., 114(1):88–114, 1994.

[15] Gadiel Seroussi and Nader H. Bshouty. Vector sets for exhaustive testings of logic circuits. In
IEEE Transaction on Information Theory, volume 34, pages 513–522, May 1988.

[16] L. G. Valiant. A theory of the learnable. Commun. ACM, 27:1134–1142, 1984.

17


