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Abstract
Traditional relational database design specifies that
transactions be executed immediately. This adheres to
our intuition for how transactions should work—in order
to issue a commit/abort decision, we must run the trans-
action logic to completion. However, there are certain
classes of transactions that might benefit from deferred
execution in which the commit/abort logic is executed
immediately, but the non-contentious logic is executed
later. We call a system adopting this approach to be a
lazy database system.

Although there are a number of benefits to lazy
database systems, including decreased contention
through critical sections, purely demand-based lazy
execution (i.e. not materializing a chain of transactions
until there is an external read) suffers from very high
latencies. However, if we selectively (and eagerly)
materialize some transactions, we might be able to curb
latency while still maintaining the contention benefits of
lazy execution. This work focuses on developing such
heuristics. We compare three different approaches, each
of which places limits on the shape of the transaction
dependency graph—in particular, depth, transitive
closure, and number of parents. We show that some of
these heuristics (with the correct parameter values) can
outperform a purely lazy system implementation and
others can offer a more tunable, incremental tradeoff
between latency and throughput.

1 Introduction

A typical database workload comprises a series of reads
and writes on often overlapping but possibly disjoint por-
tions of data. In order to allow developers to make certain
assumptions about their data, notably the ACID guaran-
tees (atomicity, consistency, isolation, durability), most
modern RDBMSs utilize techniques such as locking,
two-phase commit protocols, and multiversion concur-

rency control. Together, these techniques ensure that, de-
spite concurrent access to the data, one will never reach
or remain in an intermediate state that can be considered
somehow ‘invalid.’

Regardless of the specific implementation, all
RDBMSs rely on a transaction manager in order to
effect the mechanisms necessary to ensure that trans-
actions are executed and decide whether each given
transaction has committed or needs to be aborted and
rolled back. In particular, through locking and the other
techniques described above, the transaction manager
creates and then executes a determines a possibly
interleaved execution plan that reflects some serial order
of those transactions. It then, by immediately attempting
to make the changes to the underlying physical store,
can determine if the transactions violate any integrity or
other constraints and abort the transaction if necessary.
If not, the transaction succeeds and is ‘committed’.

Until recently, the status quo has been that the transac-
tion managers should execute transactions immediately.
Such a perspective adheres to our intuition; in order to
provide the correct commit/abort decision, the transac-
tion must actually be executed to completion and the end
state of the RDBMS verified. In typical, nondeterminis-
tic database system, this is the only method of execution
because many situations such as deadlock or database
crashes may cause a transaction to abort independently of
the transaction logic. However, when we switch our at-
tention to deterministic DBMSs such as [1] and [3], these
nondetermistic failures are disallowed, so every transac-
tion will be committed as long as it does not violate any
integrity constraints.

Consider then, the following: rather than immediately
executing transactions as they arrive in the database,
what if the database delayed the execution to some later
point in time as determined by some scheduling algo-
rithm? Minus some formalisms, we have the beginnings
of what we might call a lazy transaction manager, an idea
which we explore in more detail below.

1



Define an eager transaction manager as one that, upon
receiving a transaction (or set of potentially competing
transactions), immediately creates an execution plan and
applies the operations to the database. The issuers of
the query are notified immediately of the result of their
transactions, and the database state changes immediately.

In contrast, define a lazy transaction manager as one
that only executes transactions when the specific data to
which they refer are referenced by some other transac-
tion; that is, when a read or write request is issued for that
data. The transaction manager still provides an immedi-
ate commit/abort decision, but the guarantees associated
with the decision may not be reflected in the physical
state of the database state until some time in the future.

A lazy transaction system has a number of major ben-
efits. Since transactions are executed only when one or
more of the data that they modify are actually requested
by another operation, we can reap tremendous gains from
cache locality. To understand why, consider a chain of
ten successive writes on record r. The system receives
a read request for r, and then brings the appropriate
database page into memory. The writes are then imme-
diately applied to the in memory object, with no further
calls to disk. The cost of a single disk read is amortized
over eleven operations. This amortization occurs in con-
trast to the situation in a traditional, eager system, where
the writes might be interleaved among other operations
that cause the relevant page to be evicted from the page
cache. In that case, each write must first fetch the page
from disk before executing.

This is just one of the benefits of a lazy transaction sys-
tem, others of which include decreased communication
costs among elements of the RDBMS, and the ability
to do temporal load balancing—i.e., even out bursts of
requests to the database by deferring the execution of
non-read transaction logic until a later point when the
database has spare resources.

On the other hand, there are a number of disadvantages
lazy transaction execution versus eager execution. In par-
ticular, as the system builds up a set of transactions not
yet executed, an external read on a record affected by
those transactions will suffer from a high latency while
the database executes the set of transactions on which the
read depends. This suggests that lazy databases might be
more useful in contexts where external reads are infre-
quent and/or high latency reads are tolerable.

We can, however, attempt to mitigate the latency prob-
lem using scheduling heuristics that decide when to exe-
cute (a subset of) the unexecuted transactions. This paper
focuses on the design of such heuristics and the perfor-
mance tradeoffs involved. In Section 2, we overview the
design of a lazy transaction manager, and in Section 3 we
propose a few heuristics for scheduling transaction exe-
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Figure 1: Example dependency graph. Transactions
are numbered in log order.

cution. We present experimental results in Section 4, and
conclude in Section 5.

2 System Design

Implementing a lazy transaction manager is incredibly
non-trivial, since a lot of our intuitive reasoning about
serializability and consistency breaks down when we re-
move the immediate temporal relations among a set of
transactions. This is done in two phases, stickification
and substantiation. Stickification is the part of transac-
tion execution that occurs immediately, and in particu-
lar, evaluates the transaction to determine its record de-
pendencies. It then generates system records to indicate
which other transactions it depends on (i.e. when it ac-
cesses a value requested by a previous, potentially unex-
ecuted transaction). In addition, the stickification phase
executes any parts of the transaction that might cause the
transaction to fail—specifically, integrity and other user-
defined constraints or conditions—in order to immedi-
ately return a commit/abort decision.

Stickified transactions are stored for deferred execution
by the substantiation phase. The transaction records im-
plicitly create a partial ordering based on the dependen-
cies among the stickified transactions. Using this partial
ordering, we can create a directed acyclic graph (DAG)
with edges representing dependencies. When the DBMS
receives a read request for record r, then, it examines
these records for all transactions that modify r, and then
it executes those transactions to generate the present state
of the tuple.
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3 Scheduling Heuristics

In more detail, the stickification layer, upon receiving a
new transaction, adds the transaction to a dependency
graph (DAG) like the one shown in Figure 1. Under
a purely lazy evaluation, this dependency graph would
keep growing until the database receives a request for
an external read, at which point the transaction manager
would find the most recent transaction T1 in the DAG
that modifies the given record, and then execute the en-
tire chain of transactions on which it depends. After sub-
stantiating the relevant set of transactions, the transaction
manager would remove them from the DAG and return
the updated value of the requested record.

Although this is a perfectly reasonable system design
when the frequency of external reads is relatively high,
it suffers from high latencies when the frequency of ex-
ternal reads is low because the size (and therefore the
number of transactions that have to be substantiated) of
the DAG is unbounded. If, however, we place limits on
the size or shape of the DAG, we might be able to im-
prove read latencies with some minimal cost to through-
put (or even improve both). To this end, we present three
potential heuristics for scheduling the substantiation of
stickified transactions, chain length1, size of transitive
closure, and number of incoming dependencies. We de-
scribe each heuristic below, along with an intuition for
how they might affect performance. We test our intuition
with a microbenchmark in Section 4.

3.1 Chain Length
In order to read a record, the number of transactions that
the database must substantiate is at least the depth of the
subtree of the DAG containing references to the record
in question. More precisely, the chain length is equal
to the number of unsubstantiated transactions that have
the given record in its read or write sets2. If we bound
the chain length, therefore, we equivalently place an up-
per limit on the minimal cost of an external read. As
an example, consider record r2 in our sample Figure 1.
Here, the chain corresponds to the red arrows, so the
chain length of r2 is equal to 4.

In our system, the chain length heuristic is implemented
as follows. For each record in the system, the transaction
manager maintains a counter (initially zero) that is up-
dated every time a transaction depending on that record
is added to the DAG. If, upon adding a new transaction,
this counter exceeds the specified maximum for any of

1Note this heuristic was initially proposed in [2]
2The read set is relevant because the transaction manager must re-

spect the serial ordering of the transactions determined during stickifi-
cation, so any internal reads (reads involved in transaction logic but not
returned to the user) must be performed on the value of the record at
the correct point in the overall serial set of transactions.

the dependent records, the transaction manager imme-
diately schedules the transaction for substantiation and
resets the relevant counters.

3.2 Size of Transitive Closure
Although chain length is a reasonable lower bound on
the number of transactions that must be substantiated on
an external read, the actual value is equal to the size of
the transitive closure of the most recent transaction ref-
erencing the given record r (call this transaction T (r)).
Specifically, the transitive closure is the number of nodes
in the subtree with T (r) at the root and including all de-
scendents of T (r). For r2, the transitive closure is the set
of transactions within the yellow area, giving a cardinal-
ity of 6.

For particularly linear, deep trees, bounding the size
of the transitive closure has approximately the same ef-
fect as bounding chain length, i.e. bounding the worst,
best-case cost of an external read. However, for wider,
branching trees, this can also improve the cache local-
ity of transaction execution by setting the maximum to
a value that ensures all referenced records can fit into
memory buffers.

We target the second of the two goals in our system.
When a new transaction is added to the DAG, we sum
the chain lengths of all dependent records (giving us an
upper bound on the size of the transitive closure). If this
value exceeds our maximum, we randomly substantiate
one of the immediate subtrees of the new transaction. We
do this, rather than substantiating the newly added trans-
action (and in turn, all of the immediate subtrees) be-
cause, for some appropriate maximum, the chain length
heuristic could achieve a similar effect. On the other
hand, this approach seeks not to limit the external read
latency, but to increase the speed at which a record can
be substantiated by automatically pruning the DAG and
thus improving the cache locality of the substantiation
phase.

3.3 Number of Incoming Dependencies
Another potential bottleneck on read latencies is the si-
multaneous dependency of multiple stickified transac-
tions on some other transaction. If the system simulta-
neously attempts to substantiate those transactions, there
may come a point where they all have to wait for the
dependency (and its entire transitive closure) to execute.
The system therefore pays the cost of substantiating that
dependency multiple times. On the other hand, if the
transaction manager can somehow anticipate that situa-
tion and substantiate the dependency before it is needed,
then it might be able to significantly decrease the latency
of external reads.
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For each transaction in the DAG, the transaction man-
ager maintains a counter that is incremented every time
some new transaction is added and creates an edge with
that transaction (i.e. the counter keeps track of the in-
degree/number of parents of the transaction in the DAG).
If the counter exceeds the specified maximum, then the
dependency (not the new transaction) is queued for sub-
stantiation. Referring back to Figure 1, we see that T4 has
3 incoming dependencies. If the limit had been set to 2,
then upon adding T8 to the DAG, the transaction manager
would have enqueued T4 for substantiation.

As mentioned, this heuristic has the benefit of decreas-
ing the amount of ‘repeated’ work performed during sub-
stantiation (we count waiting for the duration of the sub-
stantiation of the dependency as ‘repeated’ work, since
it will affect the latency of all the dependent transac-
tions). We therefore would expect the heuristic to sig-
nificantly decrease read latencies (more so than the other
two heuristics). On the other hand, since this heuris-
tic can lead to multiple transactions being enqueued for
substantiation (each to different threads), it will decrease
cache locality over executing the new transaction and all
of its dependencies in the same thread. Thus, in ex-
change for the decreased latency, we would expect a drop
in throughput for more aggressive (i.e. lower) limits on
the the number of incoming dependencies.

4 Experiments

In order to evaluate the performance of the various sub-
stantiation heuristics, we ran the microbenchmark de-
veloped in [2] for different system configurations and
thresholds. Specifically, the benchmark comprises trans-
actions over a 1 million record (1024 bytes each) dataset,
where each transaction’s read and write sets include 10
total records. The read and write sets are determined by
first selecting one of the 10 records uniformly at random,
and then selecting the remaining 9 from a normal distri-
bution with the first record as the mean and a standard
deviation of 30. This sampling strategy is designed to
mimic circumstances in which data accesses are corre-
lated, since transactions overlapping on one record will
likely overlap on others. Lastly, the transactions include
external reads at the rate of 1 in 1000, which is reason-
able in the write-intensive environments targeted by lazy
database systems3.

The underlying physical system has 64 GB of main
memory and 10 physical cores. For these experiments,
we allocated 8 cores to the database. In the case of lazy
evaluation, 1 of these cores was allocated to stickifica-
tion and the other 7 to substantiation, whereas for the

3For comparison, the TPCC benchmark has an external read fre-
quency of about 1 in 20

standard, ‘eager’ system, the 8 cores were uniform in
purpose.

We implemented the heuristics as part of the stickifica-
tion portion of the transaction manager. In the purely
lazy implementation, the stickification layer first exe-
cutes a portion of each transaction so it can determine
whether or not the transaction commits or aborts. Then,
assuming the transaction ‘committed’, the stickification
layer adds the transaction (along with its remaining, un-
executed logic) to the dependency graph. Additionally, it
maintains a set of tables for each relation in the database
indicating for each record what transaction last modified
that record. This auxiliary data structure is necessary
because on a read request, the system needs the ability
to check whether or not the record’s value actually re-
flects the current state of the database system, or in other
words, whether or not there are transactions affecting the
record that have not yet been substantiated.

As outlined in Section 3, our heuristics require a few
additional fields stored as part of the nodes of the de-
pendency graph and the auxiliary tables. For the case of
chain length, we added a counter to the elements of the
auxiliary tables that indicate how many unsubstantiated
transactions read from or write to the given record. When
a new transaction is added to the dependency graph, this
counter value is incremented if the transaction affects the
record, and any time a transaction (and its transitive clo-
sure) are substantiated (from an external read or because
a record’s chain length exceeds the specified maximum),
the value of the counter is reset to its correct value (usu-
ally zero) for all affected records.

For the limit on the size of the transitive closure, we
estimate the quantity when a new transaction is added to
the dependency graph. Specifically, we sum the chain
lengths of each of the dependencies to get an upper
bound on the size of the transitive closure for the new
transaction (it is an upper bound because some of the de-
pendencies could be modified by the same transaction).
If the value exceeds the specified maximum, one of the
dependencies is selected at random, and it (rather than
the parent) is scheduled for execution.

Lastly, the number of incoming dependencies for a
transaction (i.e. the number of parents) is maintained
with an attribute of the nodes of the dependency graph.
Each time a new edge is added to the graph, the terminal
node has its counter incremented. If this value exceeds
the limit, then the transaction represented by the terminal
node is substantiated.

Although these heuristics can be applied in combina-
tion, our experiments evaluate them independently in or-
der to better demonstrate the dynamics of a lazy system
as well as the tradeoffs involved with any pre-emptive
(i.e. non demand-based) substantiation. Our results are
detailed below.
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Figure 2: External read latencies for microbenchmark. X-axes are in microseconds

4.1 Latency
The first set of benchmarks, shown in Figure 2a, eval-
uated the relative performance characteristics of eager
and lazy database systems, with the latter being split
into the cases of pure laziness (substantiating only on ex-
ternal read) and immediate substantiation (which retains
the benefits of shortening a transaction’s critical path (by
splitting execution into a ‘Now Phase’ and ‘Later Phase’;
see [2]) but is otherwise similar to an eager system in that
the stickified transactions are substantiated right away.

The results, as we see in the figure, fall directly in line
with the system designs. The pure lazy system has the
highest read latencies because, in absence of external
reads, the number of unsubstantiated transactions is un-
bounded (as we will see, however, this system has the
best throughput of the 3). On the other hand, the lazy
system with immediate substantiation outperforms the
eager system due to the characteristic described above—

contention in a lazy system is significantly lower than an
eager system, so the system is better able to utilize idle
resources.

The second set of benchmarks uses the purely lazy sys-
tem as a reference point in order to evaluate the impact of
the scheduling heuristics introduced in Section 3. Exam-
ining each in turn, we see that all three of chain length
(Figure 2b), transitive closure size (Figure 2c), and in-
coming dependencies (parents) (Figure 2d) improve read
latencies by 2–3 orders of magnitude when compared
to a purely lazy system with no heuristics. The perfor-
mance of each heuristic does vary based on the value of
the parameter because they are closely tied to the proper-
ties of the workload. For example, when external reads
are frequent and each transaction affects a large number
of records, a high maximum chain length would induce
very few substantiations, whereas an equivalent maxi-
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mum transitive closure size would induce more (because
the DAG would tend to be wider than it is deep).

An interesting extension of the system would be to in-
clude an online learning algorithm for these heuristics
subject to some objective function controlled by the user
(how aggressively to minimize latency versus through-
put; we explore this next). Furthermore, the heuristics
can easily be utilized in tandem, because each affect a
different property of the DAG.

4.2 Performance Tradeoffs
Despite the promising decrease in external read latency
as a result of implementing the substantiation strate-
gies listed above, the strategies do come with potential
throughput tradeoffs depending on how aggressive the
transaction manager decides to be in automatically sub-
stantiating transactions. The extent of these tradeoffs
are shown in Figure 3, which compares the transaction
throughput with the 90th-percentile read latency under
the various system configurations.

We first note that, as expected given our discussion
above, the eager and immediate substantiation systems
have two of the lowest read latencies but also two of the
lowest throughputs. Furthermore, the pure lazy system
has a significantly higher latency (refer to Figure 2a),
but this comes in exchange for about a 200% increase
in throughput.

Those three reference points in mind, and the fact that
any point A below and to the right of another point B is
strictly better, we discuss the tradeoffs introduced by the
substantiation strategies. For aggressive (i.e. low) max-
ima for chain length and transitive closure size, we see
about a 1–2 order of magnitude improvement in read la-
tencies in exchange for a decrease in throughput of about

50%. On the other hand, there do exist values for chain
length and closure size (e.g. 40 and 200, respectively)
that strictly improve the performance of the lazy sys-
tem. In general, however, there is an inverse relationship
between throughput and latency. An eager system gen-
erally achieves lower latencies but also lower through-
puts, whereas the lazy systems generally achieve higher
throughputs at the cost of read latency. Thus, depending
on the context and use case, both types of systems have
their benefits.

5 Conclusion

In this paper, we have overviewed the concept of a lazy
database system and its benefits over a standard, eager
database system. We have observed that the stickifica-
tion of records for later substantiation opens the possibil-
ity for introducing a number of strategies for scheduling
those substantiations, whether they are demand-driven
(external reads) or based on some internal set of statis-
tics. We then introduced three such heuristics, chain
length, size of the transitive closure, and number of in-
coming dependencies, and showed that with the right pa-
rameters, each heuristic can improve read latencies by an
order of magnitude over a pure lazy system. We further
explored the tradeoff between latency and throughput in
a lazy database system, concluding that there are system
configurations that are strictly dominant to a pure lazy
system, but that in general, a lazy system achieves higher
throughput at some cost to latency. versus an eager sys-
tem.
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