
We discuss approximation properties of deep neural nets, in the case that the data concen-
trates near a d-dimensional manifold Γ ∈ Rm. Our network essentially computes wavelet
functions, which are computed from Rectified Linear Units (ReLU). Given a squared inte-
grable function f and a manifold Γ, we specify the size of a depth 4 network that approxi-
mates f on Γ. We take advantage of the possibility that d� m to construct a network in
which the number of hidden units depends mostly on d, rather than on m. In addition, the
network’s size depends also the complexity of f , and the curvature of Γ. For two specific
function classes, functions with sparse wavelet coefficients and C2 functions we also obtain
error bounds.
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1 Introduction

Since 2006, deep learning algorithms achieved unprecedented success and state-of-the-art results
in various machine learning and artificial intelligence tasks, most notably image recognition (for
example, [1], [2], [3], [4]), Optical Character Recognition (OCR, for example, [5], [6]), speech
recognition (for example, [7], [8] [9]), text analysis and Natural Language Processing (NLP,
for example [10]). Deep Neural Networks (DNNs) are general in the sense of their mechanism
for learning features of the data. Nevertheless, in numerous cases, results obtained with DNNs
outperformed previous state of the art methods, often requiring significant domain knowledge,
manifested in hand-crafted features.

Despite the great success of DNNs in many practical applications, the theoretical framework
of DNNs is still lacking; along with some decades-old well-known results, developing aspects
of such theoretical framework are the focus of much recent academic attention. In particular,
some interesting topics are (1) specification of the network topology (i.e., depth, layer sizes),
given a target function, in order to obtain certain approximation properties, (2) estimating the
size of training data needed in order to generalize to test data with high accuracy, and also (3)
development of training algorithms with performance guarantees.

1.1 The contribution of this Work

In this manuscript we discuss the first topic, i.e., given a target function f : Rm → R, we
aim to specify a Multi Level Perceptron (MLP) network topology that, given optimal weights,
achieves desired approximation level. We essentially construct a wavelet network, which is based
on modern deep learning practice, i.e., the network has depth 4, and the wavelet functions are
computed using Rectified Linear functions. In addition, We assume that the training data
concentrates near a d-dimensional manifold in Rm, which seems to be a reasonable assumption
in many practical applications. We specify the network topology in terms of the manifold
dimension d, the ambient dimension m, and the complexity of the function, which is manifested
through the number of dictionary elements that are needed to approximate it. In particular,
the specified number of units depends only weakly on the dimension m of the ambient space
and more strongly on the dimension d of the manifold. Lastly, for two classes of functions
we also provide approximation error rates: L2 error rate for functions with sparse wavelet
expansion and point-wise error rate for functions in C2. In particular, we will prove a more
detailed version of the following theorem

Theorem 1.1. Let Γ ⊂ Rm be a smooth d-dimensional manifold, and let f ∈ L2(Γ). Let CΓ be
the size of a sufficiently small atlas for Γ so that Γ can be approximated using CΓ d-dimensional
hyperplanes. Then

• if f can be represented as a sum of CΓ functions with wavelet coefficients in l1 then there
exists a depth 4 network with c1 + c2N Rectifier and linear units which approximate f by
fN so that

‖f − fN‖2 ≤
c√
N

(1)
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• if f can be represented as a sum of CΓ C2 functions with bounded second derivative then
there exists a depth 4 network with c1 + c2N Rectifier and linear units which approximate
f by fN so that for every x ∈ Γ

‖f(x)− fN (x)‖ = O
(
N−

2
d

)
(2)

where c1 = mCΓ + 4(m−d) + 1, c2 = (8d+ 2)CΓ and c is some constant. For general functions
f ∈ L2(Γ) we get that if f can be approximated using a depth 4 network of rectifier and linear
units with total of c1 + c2

∑CΓ
i=1 ki units, where ki is the number of wavelet terms taken to

approximate f on the i’th chart.

1.2 The structure of this manuscript

The structure of this manuscript is as follows: in Section 2 we review some of the fundamental
results in neural network analysis, as well as some of the recent theoretical developments. In
Section 3 we give quick technical review of the mathematical methods and results that are used
in our construction. In Section 4 we describe our main result, namely construction of deep
neural nets for approximating functions on smooth manifolds. In Section 5 we specify the size
of the network needed to learn a function f , in view of the construction of the previous section.
Section 6 briefly concludes this manuscript.

1.3 Notation

Γ denotes a d-dimensional manifold in Rm. {(Ui, φi)} denotes an atlas for Γ. Tangent hyper-
planes to Γ are denoted by Hi. f and variants of it stand for the function to be approximated.
ϕ,ψ are scaling and wavelet functions, respectively. The wavelet terms are indexed by scale k
and offset b. The support of a function f is denoted by supp(f).
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2 Related work

A well known result by Hornik, Stinchcombe and White [11] states that an ANN with a single,
possibly huge, hidden layer can approximate any Borel measurable function to an arbitrary
degree of precision. A similar result was proved independently by Cybenko [12] for continuous
compactly supported functions, using a single layer network of sigmoidal units. Barron [13]
showed that given a function f : Rm → R with bounded first moment of the magnitude of the
Fourier transform

Cf =

∫
Rm
|w||f̃(w)| <∞ (3)

there exists a neural net with a single hidden layer of N sigmoid units, so that the output fN
of the network satisfies

‖f − fN‖22 ≤
cf
N
, (4)

where cf is proportional to Cf . Approximation of continuous and L2 functions through two and
three layer networks containing McCulloch-Pitts (Heaviside) units (hence computing piecewise
linear functions) is discussed in In [14]. Approximation results using networks containing
Heaviside units are obtained also in [15].

The question of determining the appropriate number of training examples required to train a
network of a given architecture can be approached via learning theory, where the expressiveness
of a class of functions that can be represented using the given network architecture is measured
in terms of the Vapnik-Chervonenkis (VC) dimension, in case of classification, and its extension
for regression, the fat shattering dimension (see, for example, [16] and [17]).

During the decade of 1990s, a popular direction in neural network research was to construct
neural networks in which the hidden units compute wavelets functions (see, for example [18],
[19] and [20]).

Among a few recent theoretical results, in [21], Montufar et al. show that DNNs can learn
more complex functions than can learn a shallow network with same number of units, where
complexity is defined as the number of linear regions of the function. Arora et al. [22], pro-
vide algorithms with provable guarantees for learning in networks with sparse connectivity
and random weights in [−1, 1]. In another interesting recent paper, Livni et al. [23] analyze
of expressiveness of neural nets in terms of Turing machines and provide a provably correct
algorithm for training polynomial nets of depth 2 and 3. Sedghi et.al show how the first layer
weight matrix can be recovered in networks that have sparse connectivity. Patel et. al [24]
give a probabilistic framework of deep learning. In particular, they describe convolutional
nets in terms of message passing algorithms. Complex valued convolutional nets are proposed
in [25]. Analysis of unsupervised pre-training from group-theoretic perspective is proposed
in [26]; their theory also explains why higher layers tend to learn more abstract features, a
well-observed phenomenon in deep learning practice. [27] provides analysis of representations
which are obtained in a supervised training process, via the information bottleneck princi-
pal. An interesting connection between deep networks and theoretical physics is given in [28],
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where RBM-based networks are shown to correspond to block-spin re-normalization, a physical
technique for compression of spin configurations.
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3 Preliminaries

3.1 Harmonic analysis on spaces of homogeneous type

3.1.1 Construction of wavelet frames

In this section we cite several standard results, mostly from [29], showing how to construct a
wavelet frame of L2(Rd), and discuss some of its properties.

Definition 3.1. (Definition 1.1 in [29])
A space of homogeneous type (X , µ, δ) is a set X together with a measure µ and a quasi-
metric δ (satisfies triangle inequality up to a constant A) such that for every x ∈ X , r > 0

• , 0 < µ(B(x, r)) <∞

• There exists a constant A′ such that µ(B(x, 2r)) ≤ A′µ(B(x, r))

In this manuscript, we are interested in constructing a wavelet frame on Rd, which, equipped
with Lebesgue measure and the Euclidean metric, is a space of homogeneous type.

Definition 3.2. (Definition 3.14 in [29])
Let (X , µ, δ) be a space of homogeneous type. A family of functions {Sk}k∈Z, Sk : X × X → C
is said to be a family of averaging kernels (“father functions”) if conditions 3.14− 3.18 and
3.19 with σ = ε in [29] are satisfied. A family {Dk}k∈Z, Dk : X ×X → C is said to be a family
of (“mother”) wavelets if for all x, y ∈ X ,

Dk(x, y) = Sk(x, y)− Sk−1(x, y), (5)

and Sk, Sk−1 are averaging kernels.

By standard wavelet terminology, we denote

ψk,b(x) ≡ 2−
k
2Dk(x, b). (6)

Theorem 3.3. (A simplified version of Theorem 3.25 in [29])
Let {Sk} be a family of averaging kernels. Then there exist families {ψk,b}, {ψ̃k,b} such that for
all f ∈ L2(Rd)

f(x) =
∑

(k,b)∈Λ

〈f, ψ̃k,b〉ψk,b(x) (7)

Where the functions ψk,b are given by Equations (5) and (6) and Λ = {(k, b) ∈ Z × Rd:
b ∈ 2−

k
dZd}.

Remark 3.4. The functions ψ̃k,b are called dual elements, and are also a wavelet frame of
L2(Rd).
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3.2 Approximation of functions with sparse wavelet coefficients

In this section we cite a result from [15] regarding approximating functions which have sparse
representation with respect to a dictionary D using finite linear combinations of dictionary
elements.

Let f a function in some Hilbert space H with inner product 〈·, ·〉 and norm ‖ · ‖, and let
D ⊂ H be a dictionary, i.e., any family of functions (g)g∈D with unit norm. Assume that f can
be represented as a linear combination of elements in D with absolutely summable coefficients,
and denote the sum of absolute values of the coefficients in the expansion of f by ‖f‖L1 .

In [15], it is shown that L1 functions can be approximated using N dictionary terms with
squared error proportional to 1√

N
. As a bonus, we also get a greedy algorithm (though not

always practical) for selecting the corresponding dictionary terms. OGA is a greedy algorithm
that at the k’th iteration computes the residual

rk−1 := f − fk−1, (8)

finds the dictionary element that is most correlated with it

gk := arg max
g∈D
|〈rk−1, g〉| (9)

and defines a new approximation

fk := Pkf, (10)

where Pk is the orthogonal projection operator onto span{g1, ..., gk}.

Theorem 3.5. (Theorem 2.1 from [15]) The error rN of the OGA satisfies

‖f − fN‖ ≤ ‖f‖L1(N + 1)−1/2. (11)

Clearly, for H = L2(Rd) we can choose the dictionary to be the wavelet frame given by

D = {ψk,b : (k, b) ∈ Z × Rd, b ∈ 2−kZ}. (12)

Remark 3.6. Let D = {ψk,b} be a wavelet frame that satisfies the regularities in conditions
3.14−3.19 in [29]. Then if a function f is in L1 with respect to D, it is also in L1 with respect to
any other wavelet frame that satisfies the same regularities. In other words, having expansion
coefficients in l1 does not depend on the specific choice of wavelets (as long as the regularities
are satisfied). To see the main idea behind the proof of this claim, consider to frames {ψk,b}
and {ψ′k,b}. Any element ψ′k′,b′ can be represented as

ψ′k′,b′ =
∑
k,b

〈ψ′k′,b′ , ψ̃k,b〉ψk,b. (13)

Observe that in case k ≈ k′, the inner product is of large magnitude only for a small number of
b′s. In case k � k′ or k � k′, the inner product is between peaked function which integrates to
zero and a flat function, hence has small magnitude. This idea is formalized in a more general
form in Section 4.7 in [29].
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Remark 3.7. Section 4.5 in [29] gives a way to check whether a function f has sparse coeffi-
cients without actually calculating the coefficients:

f ∈ L1 iff
∑
k∈Z

2k/2‖f ∗ ψk,0‖1 <∞, (14)

i.e., one can determine if f ∈ L1 without explicitly computing its wavelet coefficients; rather,
by convolving f with non-shifted wavelet terms in all scales.

3.3 Compact manifolds in Rm

In this section we review the concepts of smooth manifolds, atlases and partition of unity, which
will all play important roles in our construction.

Let Γ ⊆ Rm be a compact d-dimensional manifold. We further assume that Γ is smooth,
so that for every 0 < ε < 1 there exist δ > 0 such that for every x, y ∈ Γ with ρ(x, y) < δ

1

1 + ε
ρ(x, y) < ‖x− y‖2 <

1

1− ε
ρ(x, y), (15)

where ρ is the geodesic distance on Γ.

Definition 3.8. A chart for Γ is a pair (U, φ) such that U ⊆ Γ is open and

φ : U →M, (16)

where φ is a homeomorphism and M is an open subset of a Euclidean space.

One way to think of a chart is as a tangent plane at some point x ∈ U ⊆ Γ, such that the
plane defines a Euclidean coordinate system on U via the map φ.

Definition 3.9. An atlas for Γ is a collection {(Ui, φi)}i∈I of charts such that ∪iUi = Γ.

Definition 3.10. Let Γ be a smooth manifold. A partition of unity of Γ w.r.t an open
cover {Ui}i∈I is a family of nonnegative smooth functions {ηi}i∈I such that for every x ∈ X,∑

i ηi(x) = 1 and for every i, supp(ηi) ⊆ (Ui).

Theorem 3.11. (Proposition 13.9 in [30]) Let Γ be a compact manifold and {Ui}i∈I be an
open cover of Γ. Then there exists a partition of unity {ηi}i∈I such that for each i, ηi is in
C∞, has compact support and supp(ηi) ⊆ Ui.
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4 Approximating functions on manifolds using deep neural nets

In this section we describe in detail the steps in our construction of deep networks, which are
designed to approximate functions on smooth manifolds. The main steps in our construction
are the following:

1. We construct a frame of L2(Rd) in which the frame elements can be constructed from
rectified linear units (see Section 4.1).

2. Given a d-dimensional manifold Γ ⊂ Rm, we construct an atlas for Γ by covering it with
open balls (see Section 4.2).

3. We use the open cover to obtain a partition of unity of Γ and consequently represent any
function on Γ as a sum of functions on Rd (see section 4.3).

4. We show how to extend the wavelet terms in the wavelet expansion, which are defined on
Rd, to Rm in a way that depends on the curvature of the manifold Γ (see Section 4.4).

4.1 Constructing a wavelet frame from rectifier units

In this section we show how Rectified Linear Units (ReLU) can be used to obtain a wavelet
frame of L2(Rd).

The rectifier activation function is defined on R as

rect(x) = max{0, x}. (17)

we define a trapezoid-shaped function t : R→ R by

t(x) = rect(x+ 3)− rect(x+ 1)− rect(x− 1) + rect(x− 3). (18)

We then define the scaling function ϕ : Rd → R by

ϕ(x) = Cd rect

 d∑
j=1

t(xj)− 2(d− 1)

 , (19)

where the constant Cd is such that∫
Rd
ϕ(x)dx = 1; (20)

for example, C1 = 1
8 . Following the construction in Section 3.1, we define

Sk(x, b) = 2kϕ(2
k
d (x− b)) (21)

Lemma 4.1. The family {Sk} is a family of averaging kernels.
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The proof is given in Appendix A. Next we define the (“mother”) wavelet as

Dk(x, y) = Sk(x, y)− Sk−1(x, y), (22)

And denote

ψk,b(x) ≡ 2−
k
2Dk(x, b), (23)

and

ψ(x) ≡ ψ0,0(x) (24)

= D0(x, 0) (25)

= S0(x, 0)− S−1(x, 0) (26)

= ϕ(x)− 2−1ϕ(2−
1
dx)). (27)

Figure 1 shows the construction of ϕ and ψ in for d = 1, 2.

Remark 4.2. We can see that

ψk,b(x) = 2−
k
2Dk(x, b) (28)

= 2−
k
2 (Sk(x, b)− Sk−1(x, b)) (29)

= 2−
k
2 (2kϕ(2

k
d (x− b))− 2k−1ϕ(2

k−1
d (x− b))) (30)

= 2
k
2

(
ϕ(2

k
d (x− b))− 2−1ϕ(2

k−1
d (x− b))

)
(31)

= 2
k
2ψ
(

2
k
d (x− b)

)
. (32)

From Theorem 3.3 and the above construction we then get the following lemma

Lemma 4.3. {ψk,b : k ∈ Z, b ∈ 2−kZ} is a frame of L2(Rd).

Next, the following lemma uses properties of the above frame to obtain point-wise error
bounds in approximation of compactly supported functions f ∈ C2.

Lemma 4.4. Let f ∈  L2(Rd) be compactly supported, twice differentiable and let ‖∇2
f‖op be

bounded. Then for every k ∈ N ∪ {0} there exists a combination fK of terms up to scale K so
that for every x ∈ Rd

|f(x)− fK(x)| = O
(

2−
2K
d

)
. (33)

The proof is given in Appendix B.

Remark 4.5. With the above construction, ϕ can be computed using a network with 4d
rectifier units in the first layer and a single unit in the second layer. Hence every wavelet term
ψk,b can be computed using 8d rectifier units in the first layer, 2 rectifier units in the second
layer and a single linear unit in the third layer. From this, the sum of k wavelet terms can be
computed using a network with 8dk rectifiers in the first layer, 2k rectifiers in the second layer
and a single linear unit in the third layer.
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Figure 1: Top row, from left: the trapezoid function t, and the functions ϕ,ψ on R. Bottom
rows: the functions ϕ,ψ on R2 from several points of view.

4.2 Creating an atlas

In this section we specify the number of charts that we would like to have to obtain an atlas
for a compact d -dimensional manifold Γ ∈ Rm.

For our purpose here we are interested in a small atlas. We would like the size CΓ of such
atlas to depend on the curvature of Γ: the smoother Γ is, the smaller is the number of charts
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we will need for Γ.
Following the notation of Section 3.3, let ε be sufficiently small so that the corresponding δ

has the property that for every m-dimensional Euclidean ball B(xi, (1−ε)δ) centered in xi ∈ Γ,

B(xi, (1 − ε)δ) ∩ Γ is a local neighborhood of xi. We then cover Γ with balls of radius (1−ε)δ
2 .

The number of such balls that are required to cover Γ is

CΓ ≤
⌈

2SA(Γ)

((1− ε)δ)d
Td

⌉
, (34)

where SA(Γ) is the surface area of Γ, and Td is the thickness of the covering (which corresponds
to by how much the balls need to overlap).

Remark 4.6. The thickness Td scales with d however rather slowly: by [31], there exist covering
with Td ≤ d log d+ 5d. For example, in d = 24 there exist covering with thickness of 7.9.

A covering of Γ by such a collection of balls defines an open cover of Γ by

Ui ≡ B
(
xi,

(1− ε)δ
2

)
∩ Γ. (35)

This construction is sketched in Figure 2, where Hi is the tangent plane to Γ at xi and φi is
the orthogonal mapping from Ui to Hi. The above construction has two important properties,

Figure 2: Construction of atlas.

summarized in Lemma 4.7

Lemma 4.7. For every x ∈ Ui,

‖x− φi(x)‖2 ≤ r1 ≈
δ
√

2ε− ε2
2

(36)

and for every x ∈ Γ \ Ui such that φi(x) ∈ φi(Ui)

‖x− φi(x)‖2 ≥ r2 ≈ δ
√

2ε− ε2. (37)
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4.3 Representing a function on manifold as a sum of functions in Rd

Let Γ be a compact d-dimensional manifold in Rm, let f : Γ→ R and let A = {(Ui, φi)}CΓ
i=1 be

an atlas obtained by the covering in Section 4.2.
{Ui} is an open cover of Γ, hence by Theorem 3.11 there exists a corresponding partition

of unity, i.e., a family of compactly supported C∞ functions {ηi}CΓ
i=1 such that

• ηi : Γ→ [0, 1]

• supp(ηi) ⊆ (Ui)

•
∑

i ηi = 1

Let

fi ≡ fηi, (38)

and observe that
∑

i fi = f . We denote the image φi(Ui) by Ii. Then Ii ⊂ Hi, i.e., Ii lies in a

d-dimensional hyperplane Hi which is isomorphic to Rd. We define f̂i on Rd as

f̂i(x) =

{
fi(φ

−1(x)) x ∈ Ii
0 otherwise

(39)

and observe that f̂i is compactly supported. This construction gives the following Lemma

Lemma 4.8. For all x ∈ Γ,∑
i

f̂i(φi(x)) = f(x). (40)

Assuming f̂i ∈ L2(Rd), by Lemma 4.3 it has a wavelet expansion using the frame that was
constructed in Section 4.1.

4.4 Extending the wavelet terms in the approximation of f̂i to Rm

Assume that f̂i ∈ L2(Rd) and let

f̂i =
∑
(k,b)

αk,bψk,b, (41)

be its wavelet expansion, where αk,b ∈ R and ψk,b is defined on Rd.
We now show how to extend each ψk,b to Rm. Let’s assume (for now) that the coordinate

system is such that the first d coordinates are the local coordinates (i.e., the coordinates on
Hi) and the remaining m− d coordinates are of the directions which are orthogonal to Hi.

By Lemma 4.7 it suffices to extend each ψk,b to Rm so that in each of the m− d orthogonal
directions, ψk,b will be constant in [−r1, r1] and will have a support which is contained in
[−r2, r2].
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Recall from Remark 4.2 that each of the wavelet terms ψk,b in Equation (41) is defined on
Rd by

ψk,b(x) = 2
k
2

(
ϕ(2

k
d (x− b))− 2−1ϕ(2

k−1
d (x− b))

)
(42)

(43)

and recall that as in Equation (19), the scaling function ϕ was defined on on Rd by

ϕ(x) = Cd rect

 d∑
j=1

t(xj)− 2(d− 1)

 . (44)

We extend ψk,b to Rm by

ψk,b(x) ≡ 2
k
2

(
ϕr(2

k
d (x− b))− 2−1ϕr(2

k−1
d (x− b))

)
, (45)

where

ϕr(2
k
d (x− b)) ≡ Cd rect

 d∑
j=1

t(2
k
d (xj − bj)) +

m∑
j=d+1

tr(xj)− 2(m− 1)

 , (46)

and tr is a trapezoid function which is supported on [−r2, r2] and its top (small) base is between
[−r1, r1] and has height 2. Observe that if φ(x) > 0 then all the summands in Equation (46)
are positive as well. This definition of ψk,b gives it a constant height for distance r1 in each
orthogonal coordinate, and then a linear decay, until it vanishes at distance r2 from the manifold
in this coordinate. This construction gives the following lemma

Lemma 4.9. For every chart (Ui, φi) and every x ∈ Γ \ Ui, x is outside the support of every
wavelet term corresponding to chart j 6= i.

Remark 4.10. Since the m−d additional trapezoids in Equation (46) do not scale with k and
shift with b, they can be shared across all wavelet terms in Equation (41), so that the extension
of the wavelet terms from Rd to Rm can be computed with 4(m− d) rectifiers.

Finally, in order for this construction to work for all i = 1, ..., CΓ the input x ∈ Rm of the
network can be first mapped to RmCΓ by a linear transformation so that the each of the CΓ

blocks of m coordinates gives the local coordinates on Γ in the first d coordinates and on the
orthogonal subspace in the remaining m− d coordinates.
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5 Specifying the required size of the network

In the construction of Section 4, we approximate a function f ∈ L2(Γ) using a depth 4 network,
where the first layer computes the local coordinates in every chart in the atlas, the second layer
computes rect functions that are to form trapezoids, the third layer computes scaling functions

of the form ϕ(2
k
d (x − b)) for various k, b and the fourth layer consists of a single node which

computes the

f̂ =

CΓ∑
i=1

∑
(k,b)

ψ
(i)
k,b, (47)

where ψ
(i)
k,b is a wavelet term on the i’th chart. This network is sketched in Figure 3.

Figure 3: A sketch of the network.

From this construction, we obtain the following theorem, which is the main result of this
work:

Theorem 5.1. Let Γ be a d-dimensional manifold in Rm, and let f ∈ L2(Γ). Let {(Ui, φi)} be
an atlas of size CΓ for Γ, as in Section 4.2. Then f can be approximated using a 4-layer network
with mCΓ linear units in the first hidden layer 8d

∑CΓ
i=1 ki + 4CΓ(m − d) rectifier units in the

second hidden layer, 2
∑CΓ

i=1 ki rectifier units in the third layer and a single linear unit in the
fourth (output) layer, where ki is the number of wavelet terms that are used for approximating
f on the i’th chart.

Proof. As in Section 4.3, we construct functions f̂i on Rd as in Equation (39), which, by Lemma
4.8, have the property that for every x ∈ Γ,

∑
i f̂i(φi(x)) = f(x). By Lemma 4.9 every wavelet

term in the extension of the expansion of f̂i is not supported on Γ \Ui, so an approximation of
f is obtained by adding the approximations of all the f̂i’s.

A first layer of the network will consist mCΓ linear units and will compute the map as in the
last paragraph of Section 4.4, i.e., linearly transform the input to CΓ blocks, each of dimension
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m, so that in each block i the first d coordinates are with respect to the tangent hyperplane Hi

(i.e., will give the representation φi(x)) and the remaining m− d coordinates are with respect
to directions orthogonal to Hi.

For each i = 1, .., CΓ, we approximate each f̂i using ki <∞ wavelet terms. By Remark 4.5,
f̂i can be approximated using 8dki rectifiers in the second layer, 2ki rectifiers in the third layer
and a single unit in the fourth layer. By Remark 4.10, on every chart the wavelet terms in
all scales and shifts can be extended to Rm using (the same) 4(m− d) rectifiers in the second
layer.

Putting this together we get that to approximate f one needs a 4-layer network with mCΓ

linear units in the first hidden layer 8d
∑CΓ

i=1 ki+4CΓ(m−d) rectifier units in the second hidden

layer, 2
∑CΓ

i=1 ki rectifier units in the third layer and a single linear unit in the fourth (output)
layer.

Remark 5.2. For sufficiently small δ in Equation (15), the desired properties of f̂i (i.e., being
in L2 and possibly being twice differentiable) imply similar properties of f .

Remark 5.3. We observe that the dependence on the dimension m of the ambient space in
the first and second layers is through CΓ, which depends on the curvature of the manifold. The
number ki of wavelet terms in the i’th chart affects the number of units in the second layer only
through the dimension d of the manifold, not through m. The sizes of the third and fourth
layers do not depend on m at all.

Finally, assuming regularity conditions on the f̂i, allows us to bound the number ki of
wavelet terms needed for the approximation of f̂i. In particular, we consider to specific cases:
f̂i ∈ L1 and f̂i ∈ C2, with bounded second derivative.

Corollary 5.4. If f̂i ∈ L1 (i.e., have expansion coefficients in l1), then by Theorem 3.5, f̂i can
be approximated by a combination f̂i,ki of ki wavelet terms so that

‖f̂i − f̂i,ki‖2 ≤
‖f̂i‖L1√
N + 1

. (48)

Consequently, denoting N ≡ maxi{ki} and M ≡ maxi ‖f̂i‖2, we obtain an L2 error rate of
M√
N

using c1 + c2N units, where c1 = mCΓ + 4(m− d) + 1 and c2 = (8d+ 2)CΓ.

Corollary 5.5. If for each i f̂i’s is twice differentiable and ‖∇2
fi
‖op is bounded, then by Lemma

4.4 f̂i can be approximated by f̂K,i using terms up to scale K so that for every x ∈ Rd

|f̂i(x)− f̂i,K(x)| = O
(

2−
2K
d

)
. (49)

Observe that the grid in the k’th level is 2−
k
d , hence when f is compactly supported, it is

approximated using
(

2
k
d

)d
= 2k terms in the k’th level, and 2K+1 terms in levels k = 0, ..,K.

Writing N ≡ 2K+1, we get a point-wise error rate of N−
2
d using c1 + c2N units, where c1 =

mCΓ + 4(m− d) + 1 and c2 = (8d+ 2)CΓ.
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Remark 5.6. The unit count in Theorem 5.1 and Corollaries 5.4 and 5.5 is overly pessimistic,
in the sense that we assume that the sets of wavelet terms in the expansion of f̂i, f̂j do not
intersect, where i, j are chart indices. A tighter bound can be obtained if we allow wavelet
functions be shared across different charts, in which case the term CΓ

∑
ki in Theorem 5.1 can

be replaced by the total number of distinct wavelet terms that are used on all charts, hence
decreasing the constant c2. In particular, in Corollary 5.5 we are using all terms up to the K’th
scale on each chart. In this case the constant c2 = 8d+ 2.

Remark 5.7. The linear units in the first layer can be simulated using ReLU units with large
positive biases, and adjusting the biases of the units in the second layer. Hence the first layer
can contain ReLU units instead of linear units.
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6 Conclusions

The construction presented in this manuscript can be divided to two main parts: in the ana-
lytical part, we constructed a wavelet frame if L2(Rd), where the wavelets are computed from
Rectified Linear units. In the topological part, given training data on a d-dimensional manifold
Γ we constructed an atlas and represented any function on Γ as sum of functions that are
defined on the charts. We then used Rectifier units to extend the wavelet approximation of
the functions from Rd to the ambient space Rm. This construction allows us to state the size
of a depth 4 neural net given a function f to be approximated and a manifold Γ. We show
how the specified size depends on the complexity of the function (manifested in the number of
wavelet terms in its approximation) and the curvature of the manifold (manifested in the size
of the atlas). In particular, we take advantage of the fact that d can possibly be much smaller
than m to construct a network with size that depends more strongly on d. In addition, we also
obtained squared error rate in approximation of functions with sparse wavelet expansion and
point-wise error rate for twice differentiable functions.

In the future, we plan to obtain the partition of unity not only based on the manifold
Γ but also based on the level sets of the functions f̂i. This might allow us to approximate
the functions f̂i to a better precision using less wavelet terms. We hypothesize that a similar
process, i.e., adjusting the hidden units to the level sets of the function, also occurs during
standard training of neural nets. In particular, when keeping the weights of the network tied in
a way that verifies that the net computes our wavelet functions, training the net will correspond
to find the appropriate scales k and shifts b to obtain efficient representation of the functions
f̂i’s.

Finally, observe the choice of using rectifier units to construct our wavelet frame is conve-
nient, however somewhat arbitrary. Similar wavelet frames can be constructed by any function
(or combination of functions) that can be used to construct “bump” functions i.e., functions
which are localized and have fast decay. For example, general sigmoid functions σ : R → R,
which are monotonic and have the properties

lim
x→−∞

σ(x) = 0 and lim
x→∞

σ(x) = 1 (50)

can used to construct a frame in a similar way, by computing “smooth” trapezoids. Recall also
that by Remark 3.6, any two such frames are equivalent.
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A Proof of Lemma 4.1

.

Proof. In order to show that the family {Sk} in Equation (21) is a valid family of averaging
kernel functions, we need to verify that conditions 3.14− 3.19 in [29] are satisfied. Here ρ(x, b)
is the volume of the smallest Euclidean ball which contains x and b, namely ρ(x, b) = c‖x−b‖d,
for some constant c. Our goal is to show that there exist constants C ≤ ∞, σ > 0 and ε > 0
such that for every k ∈ Z, and x, x′, b, b′ ∈ Rd

• 3.14:

Sk(x, b) ≤ C
2−kε

(2−k + ρ(x, b))1+ε
, (51)

Proof. WLOG we can assume b = 0, and let ε be arbitrary positive number. It can be
easily verified that there exists a constant C ′ such that

ϕ(x) ≤ C ′

(c−1 + ‖x‖d)1+ε . (52)

Then

Sk(x, 0) = 2kϕ
(

2
k
dx
)

(53)

≤ C ′ 2k

(c−1 + 2k‖x‖d)1+ε (54)

= C ′
2k(1+ε)2−kε

(c−1 + 2k‖x‖d)1+ε (55)

= C ′
2−kε

(c−12−k + ‖x‖d)1+ε (56)

= C1
2−kε

(2−k + ρ(x, 0))
1+ε , (57)

where C1 = c1+εC ′.

• 3.15, 3.16: Since Sk(x, b) depends only on x − b and is symmetric about the origin, it
suffices to prove only 3.15. We want to show that if ρ(x, x′) ≤ 1

2A(2−k + ρ(x, b)) then

|Sk(x, b)− Sk(x′, b)| ≤ C
(

ρ(x, x′)

2−k + ρ(x, b)

)σ 2−kε

(2−k + ρ(x, b))1+ε
. (58)
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Proof. WLOG b = 0; we will prove for every x, x′. Let ε be arbitrary positive number,
and let σ = 1

d . By the mean value theorem we get

|Sk(x, 0)− Sk(x′, 0)|
ρ(x, x′)σ

≤ max
zk between x,x′

1

c
‖∇x(Sk(zk, 0))‖. (59)

Denote

F (x) ≡ ‖∇x(S0(x, 0))‖. (60)

Then

‖∇x(Sk(x, 0))‖ = 2k2
k
dF
(

2
k
dx
)
. (61)

As in the proof of condition 3.14, it can be easily verified that there exists a constant C ′

such that

F (x) ≤ C ′ 1

(c−1 + ‖x‖d)σ
1

(c−1 + ‖x‖d)1+ε
. (62)

We then get

|Sk(x, b)− S0(x′, b)|
ρ(x, x′)σ

=
1

c
‖∇x(Sk(zk, 0))‖ (63)

= 2k2
k
dF
(

2
k
d

)
(64)

≤ C ′ 2
k
d

(c−1 + 2k‖x‖d)σ
2k

(c−1 + 2k‖x‖d)1+ε
(65)

= C ′
2
k
d

(c−1 + 2k‖x‖d)σ
2k(1+ε)2−kε

(c−1 + 2k‖x‖d)1+ε
(66)

= C ′
1

(c−12−k + ‖x‖d)σ
2−kε

(c−12−k + ‖x‖d)1+ε
(67)

= C2
1

(2−k + ρ(x, 0))
σ

2−kε

(2−k + ρ(x, 0))1+ε
, (68)

where C2 = cσ+1+εC ′.

• 3.17, 3.18: Since Sk(x, b) depends only on x − b and is symmetric about the origin, it
suffices to prove only 3.17∫

Rd
Sk(x, b)dx =

∫
Rd
Sk(x, b)db = 1. (69)
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Proof. By Equation (19)∫
Rd
ϕ(x)dx = 1 (70)

and consequently for every k ∈ Z and b ∈ Rd∫
Rd
Sk(x, b)dx = 1. (71)

• 3.19: we want to show if ρ(x, x′) ≤ 1
2A(2−k + ρ(x, b)) and ρ(b, b′) ≤ c(2−k + ρ(x, b)) then

|Sk(x, b)− Sk(x′, b)− Sk(x, b′) + Sk(x
′, b′)| (72)

≤ C
(

ρ(x, x′)

2−k + ρ(x, b)

)σ ( ρ(b, b′)

2−k + ρ(x, b)

)σ 2−kε

(2−k + ρ(x, b))1+ε
. (73)

Proof. We will prove for all x, x′, b, b′. Let σ = 1
d . Observe that

|Sk(x, b)− Sk(x′, b)− Sk(x, b′) + Sk(x
′, b′)|

ρ(x, x′)σρ(b, b′)σ
(74)

≤
| |Sk(x,b)−Sk(x′,b)|

ρ(x,x′)σ + |Sk(x,b′)+Sk(x′,b′)|
ρ(x,x′)σ |

ρ(b, b′)σ
(75)

(76)

Denote

F (b) ≡ |Sk(x, b)− Sk(x
′, b)|

ρ(x, x′)σ
. (77)

Then by applying the mean value theorem twice we get

| |Sk(x,b)−Sk(x′,b)|
ρ(x,x′)σ + |Sk(x,b′)+Sk(x′,b′)|

ρ(x,x′)σ |
ρ(b, b′)σ

(78)

=
|F (b)− F (b′)|

ρ(b, b′)σ
(79)

1

c
≤ max

z between b,b′
∇b(F (z)) (80)

=
1

c
max

z between b,b′
∇b
(
|Sk(x, z)− Sk(x′, z)|

ρ(x, x′)σ

)
(81)

1

c2
≤ max

z between b,b′
max

z′ between x,x′
‖∇2

x,b(Sk(z
′, z))‖ (82)
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From this, we can see that Since Sk is compactly supported and bounded, there exist
compactly supported function ξ(x) such that

|S0(x, b)− S0(x′, b)− S0(x, b′) + S0(x′, b′)|
ρ(x, x′)σρ(b, b′)σ

(83)

≤ ξ(x− b) + ξ(x− b′), (84)

and consequently

|Sk(x, b)− Sk(x′, b)− Sk(x, b′) + Sk(x
′, b′)|

ρ(x, x′)σρ(b, b′)σ
| (85)

≤ 2k2
2k
d

(
ξ
(

2
k
d (x− b)

)
+ ξ

(
2
k
d (x− b′)

))
. (86)

As in the proof of conditions 3.14, 3.15, there exists a constant C ′ such that

ξ(x− b) + ξ(x− b′) ≤ C ′ 1

(c−2 + ‖x− b‖d)2σ

1

(c−1 + ‖x− b‖d)1+ε
. (87)

We then get

|Sk(x, b)− Sk(x′, b)− Sk(x, b′) + Sk(x
′, b′)|

ρ(x, x′)σρ(b, b′)σ
(88)

≤ 2k2
2k
d

(
ξ
(

2
k
d (x− b)

)
+ ξ

(
2
k
d (x− b′)

))
(89)

≤ C ′ 2
2k
d

(c−2 + 2k‖x− b‖d)2σ

2k

(c−1 + 2k‖x− b‖d)1+ε
(90)

= C ′
1

(c−22−k + ‖x− b‖d)2σ

2−kε

(c−12−k + ‖x− b‖d)1+ε
(91)

= C3
1

(2−k + ρ(x, b))2σ

2−kε

(2−k + ρ(x, b))1+ε
, (92)

where C3 = c2σ+1+ε.

Finally, we set C = max{C1, C2, C3}.

B Proof of Lemma 4.4

We first prove the following propositions.

Proposition B.1. For each k, b, ψk,b, ψ̃k,b have two vanishing moments.
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Proof. Note that a function f on Rd which is symmetric about the origin satisfies∫
Rd
xf(x)dx = 0. (93)

We first show that for every (k, b) ∈ Λ, ψk,b has two vanishing moments. For each (k, b) ∈ Z×Rd

2−k
∫
Rd
ϕ(2

k
d (x− b))dx =

∫
Rd
ϕ(x)dx (94)

= 1, (95)

by change of variables. This gives that for every (k, b) ∈ Z× Rd∫
Rd
ψk,b(x)dx = 2

k
2

∫
Rd
ϕ(2

k
d (x− b)− ϕ

(
2
k−1
d (x− b)

)
dx (96)

= 0, (97)

Hence the first moment of ψk,b vanishes. Further, since ϕ is symmetric about the origin we
have ∫

Rd
xϕ
(

2
k
d (x− b)

)
dx =

∫
Rd

(2−
k
d y + b)ϕ(y)dy (98)

= 2−kb

∫
Rd
ϕ(y)dy (99)

= 2−kb, (100)

which gives ∫
Rd
xψk,b(x)dx = 2−

k
2

∫
Rd
ϕ
(

2
k
d (x− b)

)
− 2−1ϕ

(
2
k−1
d (x− b)

)
dx (101)

= 2−
k
2

(
2−kb− 2−12−(k−1)b

)
(102)

= 2−
k
2

(
2−kb− 2−kb

)
(103)

= 0, (104)

hence the second moment of ψk,b also vanishes.

Finally show that the functions ψ̃k,b have two vanishing moments as well, we note that the
dual functions are obtained using convolution with operators Dk ([29], p. 82), which, by the
above arguments, have two vanishing moments; hence they inherit this property.

Proposition B.2. For every (k, b), ψ̂k,b decays faster than any polynomial.

Proof. By ([29], p. 82), the dual functions are also wavelets, hence they satisfy condition 3.14
in [29] with ε′ < ε. Since in the proof of Lemma 4.1, ε can be arbitrarily large, it implies that
the duals satisfy condition 3.14 with any ε, which proves the proposition.
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Proposition B.3. |ψk,b| ≤ 2
k
2
−2.

Proof. We note that for all d ≥ 2, Cd ≤ 1
2·2d ≤

1
8 . Hence ϕ(x) ≤ 1

4 , and consequently |ψ(x)| ≤ 1
4 .

Since

ψk,b(x) = 2
k
2ψ
(

2
k
dx− b)

)
(105)

we get that |ψk,b| ≤ 2
k
2
−2.

Proposition B.4. if f ∈ C2 and ‖∇2
f‖op is bounded, then The coefficients 〈ψ̃k,b, f〉 satisfy

|〈ψ̃k,b, f〉| = O(2−(2 k
d

+ k
2

)) (106)

Proof.

〈ψ̃k,b, f〉 = 2
k
2

∫
Rd
ψ̃
(

2
k
d (x− b)

)
f(x)dx (107)

= 2−
k
2

∫
supp(ψ̃)

ψ̃(y)f(2−
k
d y + b)dy. (108)

where we have used change of variables. Since that f is twice differentiable, we can replace f
by its Taylor expansion near b∫

supp(ψ̃)
ψ̃(y)f(2−

k
d y + b)dy (109)

=

∫
supp(ψ̃)

ψ̃(y)
(
f(b)2−

k
d 〈y,∇f (b)〉+O(‖∇2

f (b)‖op(2−
k
d ‖y‖2)2)

)
dy. (110)

By Proposition B.1 ψ̃ has two vanishing moments; this gives

|〈ψ̃k,b, f〉| = O

(
2−(2 k

d
+ k

2
)‖∇2

f (b)‖op
∫

supp(ψ̃)
ψ̃(y)‖y‖22dy

)
(111)

Since by Proposition B.2 ψ̃(y) decays exponentially fast, the integral
∫

supp(ψ̃)
ψ̃(y)‖y‖22dy is

some finite number. As a result,

|〈ψ̃k,b, f〉| = O(2−(2 k
d

+ k
2

)) (112)

We will also use the following property

Remark B.5. Every x is in the support of at most 12d wavelet terms at every scale.

We are now ready to prove Lemma 4.4
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Proof. Let f ∈ L2(Rd), d ≤ 3 be compactly supported, twice differentiable and with ‖∇2
f‖op

bounded. f can be expressed as

f =
∑

(k,b)∈Λ

〈ψ̃k,b, f〉ψk,b. (113)

approximating f by fK , which only consists of the wavelet terms of scales k ≤ K, we obtain
that for every x ∈ Rd

|f(x)− fK(x)| ≤
∞∑

k=K+1

∑
b∈2−kZ

|ψk,b|〈ψ̃k,b, f〉. (114)

By Remark B.5, at most 12d wavelet terms are supported on x at every scale; by Proposition

B.3 |ψk,b| ≤ 2
k
2
−2; by Proposition B.4 |〈ψ̃k,b, f〉| = O(2−( 2k

d
+ k

2
)). Plugging these into Equation

(114) gives

|f(x)− fK(x)| = O

( ∞∑
k=K+1

12d2
k
2
−22−( 2k

d
+ k

2
)

)
(115)

= O

( ∞∑
k=K+1

2−
2k
d

)
(116)

= O
(

2−
2K
d

)
. (117)
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