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Abstract. The problem of computing the variance of a sample of N data points {z;} may be
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dangers of some algorithms. Specific reccommendations are made as to which algorithm should be
used in various contexts.
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1. Introduction.

The problem of computing the variance of a sample of N data points {z,} is one which scems,
at first glance, to be almost trivial but can in fact be quite difficult, particularly when N is large
and the variance is small. The fundamental calculation consists of computing the sum of squares
of the deviations from the mean,

N
§S=) (z:-7)% (1.1a)
=1
where
1 &L
T=% >z (1.1b)

=1

The sample variance is then S/N or S/(N — 1) depending on the application. The formulas (1.1)
define a straightforward algorithm for computing S. This will be called the standard two-pass
algorithm, since it requires passing through the data twice: once to compute Z and then again to
compute S. This may be undesirable in many applications, for example when the data sample is
too large to be stored in main memory or when the variance is to be calculated dynamically as the
data is collected.

In order to avoid the two-pass nature of (1.1), it is standard practice to manipulate the

definition of S into the form
N 1 N 2
— 2 _ - .
S = E z{ — N( E z.) . (1.2)

=1 1=1

This form is frequently suggested in statistical textbooks and will be called the textbook one-pass
algorithm. Unfortunately, although (1.2) is mathematically equivalent to (1.1), numerically it can
be disastrous. The quantities Y z? and (3 z:)? may be very large in practice, and will generally
be computed with some rounding error. Il the variance is small, these numbers should cancel out
almost completely in the subtraction of (1.2). Many (or all) of the correctly compute digits will
cancel, leaving a computed S with a possibly unacceptable relative error. The computed S can
even be negative, a blessing in disguisc since this at least alerts the programmer that disastrous
canccllation has occured.

To avoid these diflicullies, several allernative one-pass algorithms have been introduced. These
include the updating algorithms of Youngs and Cramer[11], Welford[10], West[9], 1lanson|[6], and
Cotton[5], and the pairwise algorithm of the present authors[2]. In describing these algorithms we
will use the notation T;; and M;; to denote the sum and the mean of the data points z; through
z; respectively,

J
: 1
Ty = E Tk, M;j = ——=T;
= (j—1+1)

and S;; to denote the sum of squares
3
Sij = ) (xx — Myj)*.
k=1t
For computing an unweighted sum of squares, as we consider here, the algorithms of Welford, West
and Hanson are virtually identical and are based on the updating formulas

1

My = M, -1+ ;(%’ - My, ;1) (1.3a)
) T;— My . .

81,5 = S1,5-1+ (5 —1)(z; - Mx,j-l)(-i——?—l-"—l) (1.3b)
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with My; = z; and 81,3 = 0. The desired value of § is ultimately obtained as Si,n. The
updating formulas of Youngs and Cramer are similar:

Ty; =Tj-1+ z; (1.4a)
1 ; 2
815 = S1,5-1 + m(lza - T1,5) (1.4b)

with Ty ; = z{ and S;,;; = 0. These two algorithms have similar numerical behavior and are
more stable than the textbook algorithm. Note, in particular, that with both of these algorithms
S = 8;,~ is computed as the sum of nonncgative quantities. Cotton’s update is no more stable
than the textbook algorithm and should not be used (sce [8]).

The updating formulas (1.4) can be generalized to allow us to combine two samples of arbitrary
size. Suppose we have two samples {z;}72,, {z;}2% =, and we know

m m+n
Tl,m = Z zs, Tm+1,m+n = Z s,
i=1 t=m-+1
m 1 m<+n 1
2 2
Sl,m = Z(mi - _Tl,m) y Sm+l,m+n = E (xi - m+l,m+n) .
4 m . n
t==1 t=m-+1

Then, if we combine all of the data into a sample of sizc m + n, we have

T]ym+n - T],m + Tm+1,m+n (1050)
Sl,m-l—n = Sl,m + Sm+l,m+n
m n,, 2
+ m(;—n-Tl,m - Tm+1,m+n) . (1°5b)
When m = n this reduces to
1
Sl,2m = Sl,m + Sm+1,2_’m + -2—’-n-(T1’m — Tm+1,2m)2° (1.6)

This formula forms the basis of the pairwise algorithm. The pairwise summation algorithm for
computing the sum of N numbers is well known and can be described recursively by stating that
T1,2m shall be computed as

Tl,2m = Tl,m + Tm+1,2m

with each of the sums on the right hand side computed in a similar manner. Formula (1.6)
defines the analogous pairwise algorithm for computing the variance. This can be implemented
in a onc-pass manner using only O(log N) internal storage locations as discussed in [2] and also
by Nash[7]. All logarithms in this paper are base 2. 1t can casily be shown that the use of the
pairwise sumnmation algorithm reduces relative errors in 77 5 from O(N) to O(log N) as N — co.
The pairwise variance algorithm can be expected to have the same advantage, as is confirmed
numerically.

Incidentally, pairwise summation can be used in implementing (1.1) (both in computing Z and
in forming S) or (1.2) with similar benefits.

Other devices can also be used to increase the accuracy of the computed S. For data with a
large mean value Z, experience has shown that substantial gains in accuracy can be achicved by
shifting all of the data by some approximaticn to Z before attempting to compute S. Even a crude
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estimate of Z can yield dramatic improvements in accuracy, so we nced not resort to a two-pass
algorithm in order to first estimate Z. This is discussed in detail in section 3. However, when the
shift s the computed mean and the textbook algorithm (1.2) is then applied to the shifted data,
one obtains the corrected two-pass algorithm

N . 1 N ~ 2
S=> (z:—13) -~ Z(z;—z). (1.7)

=1 =1

Here the first term is simply the two-pass algorithm (1.1a). The second term would be zero in
exact computation, but in practice is a good approximation to the error in the first term. Note
that in this case use of the textbook algorithm does not lead to catastrophic cancellation, since
the correction is generally much smaller than the first term. This algorithm was first pointed out
to the authors by Professor A. Bjorck[1] who suggested this correction term based solely on the
error analysis of the two-pass algorithm[2]. An alternative (and improved) error analysis is given
in section 3.

Initially algorithms for computing the variance were judged solely on the basis of empirical
studics[6], [9], [11]. More recently rigorous error bounds have been obtained for many algorithms[2],
[3], [4]. Our aim here is to present a unified survey of error analyses for the above-mentioned al-
gorithms and techniques. Some of this material is believed to be new, particularly the investigation
into the effects of shifting the data. Based on this survey, specific reccommendations will be made
as Lo which algorithm should be used in various contexts.

2. Condition numbers and error analysis

Chan and Lewis[4] first derived the condition number, k, of a sample {z;} (with respect to
computing the variance). This condition number measures the sensitivity of S for the given data
set. If relative errors of size 4 are introduced into the z;, then the relative change in S is bounded
by k7. Chan and Lewis showed this to be true up to O(v2). In fact it is strictly true as noted by
van Nes[8]. Physical data almost always has some uncertainty in it, and this uncertainty will be
magnificd by the factor x in S. If nothing else, errors are introduced in representing the data on
the computer, and so a value of S computed on a computer with machine accuracy u may have
relative crrors as large as ku regardless of what algorithm is used. This value ku can be used as a
yardstick by which to judge the accuracy of the various algorithms, especially since error bounds
can often be derived which are functions solely of «, u, and N.

If we define the 2-norm of the data by

. N
llzlif = 3 =2,

=1

then the condition number for this problem is given by

k= ”;%2 =/1+22N/S. (2.1)

When S is small and Z is not close to zero we obtain the useful approximation

k=~ I\/N/S (for S small, Z nonzero) (2.2)

which is the mean divided by the standard deviation. We always have « > 1, and in many
situations « is very large.



Table 2.1 shows the asymptotic error bounds for the algorithms discussed. These are bounds
on the relative error |(S — S)/S| in the computed value S. Small constant multiplicrs have been
dropped, for clarity. Higher order terms have also been dropped, but the terms shown dominate
the error bounds whenever the relative error is less than 1. The bounds for the textbook algorithm
and West's updaling are derived by Chan and Lewis[4]. The two-pass error bound including the
NZ%k%u? term (which can dominate in practice) is derived in [2]. Bounds for these algorithms using
pairwise summation can be found similarly. The pairwise variance algorithm bound is a conjecture
based on the form of the error bound for Youngs and Cramer updating and experimental results.
The error analysis for the corrected two-pass algorithm is given in section 3.

Graphs of these bounds are shown in Figures 2.1 through 2.8 along with some experimental
results. Each plot has « on the abscissa and the relative error in § on the ordinate. The lower curve
in each figure shows the error bound for N = 64, the upper curve for N = 4096. The numerical
experiments were performed on an IBM 3081 computer at the Stanford Linear Accelerator Center.
The data used was provided by a normal random number generator with mean 1 and a variety of
different variances 1 > o2 > 107!3, For this choice of the mean, £ =~ 1/0 (see (2.2)). In each
case the results have been avcraged over 20 runs. Single precision was used in all of the tests,
with machine accuracy u = 5 X 10~7. The “correct” answer for use in computing the error was
calculated in double precision. The resulting errors are denoted in the figures by the symbols +
(for N = 64) and X (for N = 4096).

The experimental results confirm the general form of the error bounds given in Table 2.1.
In particular the graphs for the two-pass algorithms show how the higher order terms (such as
N 2lc2u2) begin to dominate the error at lairly modest values of «.

Table 2.1. Error bounds for the relative error l%’él in the computed value S. Only the dominant
terms are shown, and small constant factors have been suppressed for clarity.

1. textbook Nk?u
2. textbook with pairwise summation k2ulog N
3. two-pass Nu 4+ N2x?y?
4. two-pass with pairwise summation ulog N + (kulog N)?
5. corrected two-pass Nu + N3k2u®
6. corrected two-pass with
pairwisc summation ulog N + c2udlogd? N
7. updating Nxu
8. pairwise kulog N (conjectured)



Figure 2.1. Textbook algorithm
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Figure 2.2. Textbook algorithm with pairwise summation
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Figure 2.3. Two-pass algorithm
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Figure 2.4. Two-pass algorithm with pairwise summation
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Figure 2.5. Corrected two-pass algorithm
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Figure 2.6. Corrected two-pass algorithm with pairwise summation
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Figure 2.7. Youngs and Cramer updating
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Figure 2.8. Pairwise algorithm
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3. Computations with shifted data
If we replace the original data {z;} by shifted data {Z;} defined by

-~

T, = :l:,'-d (3.1)

for some fixed shift d, then the new data has mean Z — d and S remains unchanged (assuming
the Z; are computed exactly). In practice data with a nonzero mean is frequently shifted by some
a prior: estimate of the mean belore attempting to compute S. This will gencrally increase the
accuracy of the computed S. We will analyze this improvement by investigating the dependence
of the condition number on the shift. Bounds on &, the condilion number of the shifted data, are
derived for various choices of the shift d. Thesc can then be inserted in place of & in the bounds
of Table 2.1 to oblain error bounds for cach of the algorithms with shifted data.
From the definition of the condition number we have

#=1+%ﬁ—ﬂ% (3.2)

Comparing this with (2.1) we see that £ < & whenever |d — Z| < |Z], i.e., whenever d lies between
0 and 2z. Taking d = Z gives perfectly conditioned data, K = 1. In practice we cannot compute Z
exactly and usually will not even atltempt to compute it (except when using a two-pass algorithm).
Instead, we use some rough estimate which is casily computed without a separate pass through all
of the data.

Frequently a shift d is obtained by simply “eycballing” the data. Such a technique might be
expected to yield an approximation d which is within a few standard deviations of the mean. This
is sufficient to give completely satisfaclory bounds on k. Recall that the standard deviation is
\/S/N and suppose that |z — d| < py/S/N for some small p. Then (3.2) gives

&% < 1+9p% (3.3)

For example, if d is within one standard deviation of the mean then # < /2. This result is
completely independent of S and N.

It is not always possible Lo obtain an approximation in this manner, nor is it always valid to
make such an assumplion on its accuracy. Another bound on & can be easily obtained by assuming
only that

mln z;<d < max:c'

This is easily guaranteed for example by choosing one of the data points as the shift. When
minz; < d < maxz,, we have (Z —d)2 < ¥ ,(z — z;)2 = S and so from (3.2),

2 <1+N. (3.4)

This bound is not as satisfactory as (3.3), bul for modecrate values of N il may be suflicient to
guarantee acecplable errors in S.

For the case in which we shifl by a single data point, d = z; for some j, we can obtain some
interesting probabilistic refinements of (3.4). Equality in (3.4) is unattainable and approximate

equality holds only when
(z —z;)? Z(x - z;)?

i.e., only when z; lics considerably farther from Z than do any of the other z;. If z; is picked at
random from the sample {z;}, then the expected value of %% will be much smaller than 1+ N. In
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fact, since E[(Z — z,)?] = §/N, (the definition of the sample variance), we have from (3.2) that
E[z%) =2 (3.5)

independent of N and S. Note that this is also independent of the underlying distribution of the
{z:}. We assumed only that z; was chosen from {z,} with a uniform distribution. Allernatively
we could choose the data value with a fixed index, say z;, and assume that the data is ordered
randomly. This may not be a valid assumption if, for example, initial transients are present in the
data.

Improved upper bounds of the form (3.4) can also be obtained probabilistically which hold
with probability close to 1. For fixed &, 1 < k < N, the inequality

(z—-1z)? > kS/N

can hold for at most N/k values of i. Otherwise we would have Y (z — z,)? > X (kS/N) = S.
Thus if z; is chosen at random, there is a probability of at least (N — N/k)/N =1 — 1/k that
(z-2;)2 < kS/N. 1t follows that '

&% < 1+k  with probability at least 1 — 1/k for 1 < k < N. (3.6)
If N > 100 we have, for example,
%% < 101  with probability 0.99.

This is again indcpendent of N and S when the shift z, is chosen at random from the sample.

We can generalize this choice of d by using the average of some p data points, p < N. This
average will be denoted by Z, = 3_ z,/p, the sum being over the chosen p data points. We assume
that p is sufliciently small that rounding errors in computing Z, can be ignored. Specifically this
requires kpu < 1. The condition number corresponding to this shift is bounded by using Cauchy’s
inequality,

2

- i’p)z

1]

n

B2 =1+ —(

N{1<&, 2

1+ -S—(;‘Z;l(z - z,))
N & .

Sl‘*“s_‘pzc‘“zj)

g==1

2

<14 —.
4
For p = 1 this reduces to (3.4).
We now consider the case in which the computed mean is used as the shift. In general we
cannot ignore rounding errors in computing Z. Instead we compute some approximate floating
point value fi(Z), given by

N
_ 1
fi(z) = & ; z:(1 + &) (3.8)
where the & are bounded by
& < Nu (3.9)



when the usual (forward) summation is used. If pairwise summation is used, the N here and below
can be replaced by log N. Now we can bound &% by

=1+ %’»(5 - i(z))?

1 N 2
=1+_ﬁ§ ;z;&)

1
Sl+Nmemﬁ

1
=1+ o ll€ll
< 1+ w2llElE: (3.10)

Here we have used (2.1) and the general inequality ||¢||Z < N||¢]|%, where ||€]|co = max; |&;]. Using
(3.9) we can rewrite (3.10) as
#? < 14 N2x2u?, (3.11)

Note that due to the dependence on «, the bound (3.11) may be worse than the bounds obtained
for more primitive estimates of d. This reflects situations which can actually occur in practice.
One can easily construct examples where the computed mean does not even lic between min z; and
max z; and hence(z — fl(z))? is larger than max;(Z — z;)%. In this case onec is better off shifting by
any single data point than by the computed mean.

Of course shifting by the computed mean may also be an undesirable choice from the standpoint
of efficiency, since it requires a separate pass through the data to compute fi(Z). Nonetheless, when
a two-pass algorithm is acceptable and N2k2u? is small (< 1, say), this shift followed by a one-pass
algorithm provides a very dependable method for computing S. The corrected two-pass algorithm
(1.7) is of this form, it consists of the textbook algorithm on data shifted by fi(Z). Its error bound
Nu(1 + N2k2u?) is easily derived from (3.11) and the textbook algorithm bounds of Table 2.1.

Other one-pass algorithms could also be used in conjunction with a shift by the computed
mean. However, if a good shift has been chosen so that & = 1, all one-pass algorithms are essentially
equivalent with a bound Nu (or ulog N for algorithms using pairwise summations). Since the
textbook algorithm is the most efficicnt one-pass algorithm (requiring only N multiplications and
2N additions as opposed to 4N multiplications and 3N additions for the updating algorithms, for
example), it is the method of choice except in rare instances.

4. Recommendations.

The results of the previous sections provide a basis for making an intelligent choice of algorithm
for accurately computing the sample variance. First we note that if a parallel processor is available,
the data can be split up into smaller samples and the sum of squares computed for cach sample
individually. These can then be combined, and the global sum of squares computed, by using the
updating formulas (1.5). In thal casc the considerations below apply for cach processor.

There is one situation in which the textbook algorithm (1.2) can be recommended as it stands.
If the data consists only of integers, small enough that no overflows occur, then (1.2) should be
used with the sums computed in integer arithmetic. In this case no roundoff errors occur until the
final step of combining the two sums, in which a division by N occurs.

For non-integral data we must first decide whether to use a onec-pass or a two-pass algorithm.
If all of the data fits in high-spced memory and we arc not interested in dynamically updating
the variance as new data is collected, then a {wo-pass algorithm is probably acceptable and the
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corrected two-pass algorithm (1.7) is recommended. If N is large and high accuracy is needed, it
may be worthwhile to use pairwise sumnmation in implementing this algorithm.

If a one-pass algorithm is to be used, the first step is to shift the data as well as possible,
perhaps by some Z, as discussed in Section 3. Now an appropriate one-pass algorithm must be
chosen. We should first estimate &, the condition numter of the shifted data, perhaps by onc of the
bounds of Scction 3. If N%2«u, the crror bound for the textbook algorithm, is at least as small as
the desired relative accuracy, then the textbook algorithin can be used on the shifted data. If this
bound is too large, we should resort to a less efficient algorithm for safety. The dependence on N
can be reduced by the use of pairwise summation. The dependence on & can be reduced by using
an updating algorithm. The use of the pairwise algorithm should reduce both of these factors.
When N is a power of 2 the pairwise algorithm is fairly easy to implement and requires only 2N
multiplications and 4N additions, which is better than the updating algorithms. For general N
slightly more work (particularly human work) is required, making it less attractive.

The decision procedure just described is shown graphically in Figure 5.1.
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Figure 5.1. Decision procedure for choosing an algorithm to compute the vanance For dctails
sec the “Recommendations” section.
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