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PROLOGUE

The need for secure transmission of information among many users through
the microelectronic media, has made inevitable the departure of cryptography
from the old notion of absolute security to embrace the new notion of relative
security. Thus, in the first case the designer bases the security of the cryp-
tosystem on absolute criteria (e.g. Shannon’s Information Theory), while in
the second case he proves that the system he designed is secure assuming that
a certain problem (usually in Number Theory) is difficult to solve. This new
idea has made possible the construction of cryptosystems, called public key
cryptosystems.

The purpose of the present monograph, which is an outgrowth of twelve
lectures at Yale University Computer Science Department in the Fall of 1984,
is to isolate and explain the most important mathematical notions which arise
from the recent literature on public key cryptosystems. And in doing this, I have
made every posssible effort within the bounds of reason to make this monograph
as self-contained as possible.

The work is divided into three main parts. The first part consisting of two
sections develops the necessary number theory and probability theory (sections
1 and 2 respectively.) The second part consists of the discussion of certain
pseudo random generators (section 3) and public key cryptosystems (section 4);
their development tends to emphasize those concepts which can be generalized
to develop a general theory. Finally, the third part (section 5) develops the
general theory of pseudo random generators and public key cryptosystems.

The reader should be aware of the many different viewpoints given in the
papers cited in the bibliography, not all of which could paturally be included
in the present study. The exercises given at the end of most subsections are of
three types: those that give a different proof of a result proved in the maiu text,
those that give additional results, and those which remind the reader that he
must complete the details of the proof of a result given in the text. In any case,
pone of them is difficult and they should all be attempted by the reader.

I have made every possible effort to attribute the theorems presented in the
text to their original inventor. If sometimes I failed to do that it is due to
ignorance rather than intent. At the same time I accept full responsibility for
whatever flaws or errors the monograph may contain. and 1 would be greateful
to receive any comments and suggestions that will improve the presentation.

In addition, 1 am particularly thankful to the insightful comments of the sem-
inar participants during the above mentioned lectures. These included: Dana
Angluin, Mike Fischer, Dan Gusfield, Neil Immerman. Susan Landau. and the
students: Josh Cohen, Ming Kao, Phillip Laird, Jerry Leichter, Lenny Pitt and
David Wittenberg. 1 would also like to express my deepest appreciation to Mike
Fischer for his undiminishing support and encourangement as well as for the the
pumerous penetrating discussions that helped me improve the presentation of
section 5.



FREQUENTLY USED NOTATION

e |A|; the cardinal of the set A.

e o; end of proof symbol.

o §; the empty set.

® AUB,ANB, A - B; the union, intersection and difference of the sets A, B.
e f: A — B; a mapping of a set A into a set B.

e z — y; the mapping carries the point z to the point y.

e 3,V,=, &; there exists, for all, implies, if and only if.

¢ z = y modn; z congruent to y modulo n.

(z]y); the Jacobi symbol of z with respect to y.
o 7y = {z < n:ged(z,n) =1)}.

Za(+1) = {z € Z} : (z|n) = +1).
Za(-1)={z€ 2 :(z|n) = -1}.

p(n) = |Z2]; the Euler function.

); the Carmichael function.

7(n); the number of primes < n.

index, ¢(n); the index of z with respect to g€ Z;.

[2], |z],|z]; ceiling of z, floor of z, integral part of z.
e Pr|E]; probability of the event E.

Pra|E] = Pr[E|A]; conditional probability of the event E with respect to
the event A.

E[X], Var[X],v D|[X]; expectation, variance, divergence of the random vari-
able X.

By (E); the number of occurrences of the event E in n indepedent trials.
Fo(E) = Ba(E)/n.
® RSA; the Rivest, Shamir, Adleman cryptosystem.

e QRA; the Quadratic Residuosity Assumption.

e DLA; the Discrete Logarithm Assumption.
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1 NUMBER THEORY
1.1 INTRODUCTION

The purpose of the present section is twofold: on the one hand, to introduce
the reader to the basic concepts of number theory, and on the other hand,
to provide proofs of some efficient procedures arising in the development of
algorithms for the solution of some number theory problems. both of which
will be essential to the discussion of pseudo-random generators and public-key
cryptosystems.

The concepts introduced in this section include: Fibonacci Numbers, the Eu-
ler function, primitive roots, the Carmichael function, Langrange-Jacobi sym-
bol, indices and continued fractions. In addition, complete proofs of the fal-
lowing theorems are given: Gauss theorem on the characterization of those m
for which the multiplicative group Z2 is cyclic, in theorem 1.9, the Law of
Quadratic Reciprocity, in theorem 1.13, Chebyshev's proof of a weaker version
of the prime number theorem, in theorem 1.20, and a theorem on Diophantine
approximations. in theorem 1.23. Theorem 1.7 provides an application of the
Chinese Remainder Theorem to threshold schemes.

The algorithms described include: the method of exponentiation by repeated
squarings and multiplications, in theorem 1.8, the method of Adelman. Manders
and Miller for computing square roots modulo a prime, in theorem 1.15. and
the method of Pohlig and Hcllman for computing indices. in theorem 1.18.

It is true, that the details of the proofs of some of the theorems presented
in this section (e.g. theorems 1.9, 1.13 and 1.20) are not necessary for un-
derstanding the concepts included in the sections of pseudo-random generators
and public-key cryptosystems. However, a thorough study of the proofs and the
exercises that follow the individual subsections will undoubtedly enhance the
reader’s proficiency with the number theory concepts involved.

1.2 THE HOMOMORPHISM THEOREM

Let G, H be two abelian groups such that H is a subgroup of G. Fora € (&
consider the coset H +a = {h+a: h € H}, where + is the group operation
on G. G/H is the quotient group of G modulo H. It consists of all cosets
H + a, where a ranges over G. The group operation @ on G/H is defined by
(H+a)@ (H +b)=H+ (a+8). Itis not hard to show that G[H with this
operation is also an abelian group. It is clear that the family {H+a:a€G}of
cosets is a partition of G into sets each of which has size exactly |H|. It follows
that |H| divides |G]|. ,

Let [ be an epimorphism from G onto another group H. The kernel K =
Ker(f) of f, is the set of all elements ¢ € G such that f(a) = the identity
element of H. It is not hard to show that the group G/K is an abelian group
which is isomorphic to H. The required isomorphism is given by the mapping
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F(K +a) = f(a). Hence the proof of the following theorem has been outlined:

Theorem 1.1 (Lagrange)
(i) If H is a subgroup of G then |H| divides |G|
(%) If [ is an epimorphism of the abelian group G onto the abelian group H

and K is the kernel of [ then the group G/K is isomorphic to the group H.
Moreover, |G| = |H| - |K|, and for alla € G, [/~'{a}] = |K]. o

EXERCISES

1: Let G be a finite abelian group. Show that all equations of the form
z? = g, where a € G, have exactly the same number of solutions in G. Hint:
Consider the abelian group H = {a?: 0 € G} and let f be the epimorphism
f(z) = z°. Then use theorem 1.1.

2: Extend exercise 1 to equations of the form z" = a, whereza € G,n > 1.

3: Show that the definition of the operation @ is independent of the coset
representation. »

In the next two exercises H is a subgroup of the abelian group G. Complete
the details of the proof of theorem 1.1 by showing that:

4: foralle € G, |H +a| = |H|.

5: {H +a:a € G} forms a partition of G.

1.3 FIBONACCI NUMBERS

The sequence fy, fi,..., fa,... of Fibonacci numbers is defined by induc-
tion on n > 0 as follows:

0 fn=0
fJa=4 1 if n=1
Saci1+ facz i n2>2

It will be useful to know the order of magnitude of the n-th Fibonacci number.
This is easily determined as follows. The quadratic equation z2 = z + 1 has the
two square roots (1++/5)/2 and (1-/5)/2. The positive square root (1+4/5)/2
is called the golden ratio, and is abbreviated with R. It is now easy to check by
induction on n, that forall n > 1, f, > R*~2, Indeed, assume that f, > R*-2,
Then, fayy = fa + faey > R*~2 4+ R*-3 = R*%(R+1) = R*~3R2 = gn-1,
The Fibonacci numbers arise very naturally in the study of the number
of steps needed to evaluate the greatest common divisor of two integers. In-
deed, assume that ¢ > b > 0 are two given integers. Use the Euclidean
algorithm to define sequences 0 < fa < faey € ... <1 < rpg =5H <
f-1 = 6,dy,dz,...,dn,dny; such that Tieg = diricy + 15,8 = 1,...,n and
Ta=1 = dn4174. It is clear that r, = gcd(a, b) (see exercise 1 below.) It follows
by reverse induction on § = mn=1,...,0,-1that r; > fo\) ;. In particular,
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@ > foyo and b > fo4. However, it is clear that the number of division steps
needed to compute gcd(fn42, fa+1) is exactly n + 2, which is also the number
of division steps needed to compute gcd(a,b). Since, a 2 foy2 2 R", it follows
that logg a 2 n. Therefore the following theorem has been proved. '

Theorem 1.2 (G. Lamé) If N is an integer > 0, then for any pair a.b of
positive integers < N, the number of division steps required to compute ged{a. b)
is of most =2+ [logg N]. o

EXERCISLES

1: Show that r, = gcd(a,b).

2: Show that the Euclidean algorithm leads to an efficient algorithm which
given any integers a,b will compute integers o, 5 such that gcd(a.b) = aa + Fb.
Generalize this to the greatest common divisor of n integers.

3: Prove a similar theorem for the greatest common divisor of n integers.

4: Prove a similar theorem for the least common multiple of n integers.
Hint: Use the identity lem(a;,...,a,) = (a;---a,)/ ged{a1....,a,).

5: Show that the length of the side of the canonical decagon inscribed in
the unit circle is equal to R, where R is the golden mean.

1.4 CONGRUENCES

Let a,b be integers. The symbol a|b means that a divides b i.e. b= ka, for
some integer k. The integers a,b are called congruent modulo the integer m,
and this will be abbreviated a = b modm, if m|(a — b), otherwise a and b will be
called incongruent modulo m, and this will be abbreviated by a # 5 modm. It
is clear that for each fixed m, the relation = modm is reflexive, symmetric,
and transitive, and hence it is an equivalence relation on the set Z of all
integers. For each integer ¢ let a denote the equivalence class of a i.e. the set
of all integers z such that z = ¢ modm. For each m there exist exactly m
equivalence classes modulo m, pamely 0,1,---,m-1. Z, = {0,1,--- .m - 1}
is the set of all equivalence classes modulo m, and Z}, = {a: gcd(a.m) = 1}.

One can define two operations, addition (+) and multiplication (-} on the
set Z, as follows: a + b (respectively a - b) = the equivalence class of ¢ + &
(respectively a - b). The set Z,, endowed with these two operations forms a
commutative ring with unit. In fact both < Z,,,+ > and < Z},,- > are abelian
groups.

Example 1.1 Figure I gives the multiplication table of Z},.

If ged(a, m) = 1 then there exist integers b, ¢ such that ab+ cm = 1. Hence,
a-b = 1ie. aisinvertible in Z,. The order of the group Z, is denoted by
p(m), and ¢ is called the Euler totient function.
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. 11 2]3]4|5([6[7][8[9 10
11112 /3[4]|5[6[7|8/[9]10
21246 ]|8[10[]1]3]5 7|9
313|6]9]1]4]7]10]2]5]8
4 |4 | 8|15 |9[2]6]10]3]7
5 | 5|10/4]9[3[8 27 1]6e
6 |6 | 1| 7]2[8[3[9]| 4105
Tl7/13|100/6[2[9]5]1]8]4
8 8|5 [2[10[/7[4[1]9 63
9 19|75 |3|1]10]/8]6 4] 2
10{10/9 /8 |7 |6|5]4[3]2]1

Figure 1: Multiplication table of Z},

An important corollary of the above considerations is the following
Theorem 1.3 (Euler-Fermat)For all a € Z2,,2°(™) = 1 modm.

Proof: Let a be as above, and let Uy,...,U,(m) be an enumeration of all
the elements of Z3. It is clear that a - Uy,...,@ U,(m) is also an enumeration
of all the elements of Zpy. Consequently, a-u, A Ug(m) = Wy Ug(m
and hence a¥(™) . y, "rUp(m) = U1 ---Up(m). But it follows from the above
observations that the element u, "**Ug(m) is invertible in Z,,. Consequently,
a*(™) = 1 modm.e

In order to avoid unnecessary motational complications, from now on the
same symbol will be used for an integer a and its equivalence class a modulo a
certain integer m. This will cause no confusion because it will always be clear
from the context which of the two notions is meant.

Theorem 1.4 (Euler) Zam e(d) =m.

Proof: Let p4(m) = the number of integers z € Z,, such that ged(z, m) = d.
It is then clear that Zdlm va(m) = m. However, p4(m) = p(m/d), provided
that d divides m. It follows that

m=3 pa(m) =3 p(d/m) =3 ¢(d),

dim d|m dim

which completes the proof of the theorem. o

Any equation of the form f(z) = 0 modm, where J(z) is a polynomial
expression in the variable z with coefficients in Zp, is called congruence mod-
ulo m. Such a congruence is called solvable if there is an z € Z,,, such that
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J(z) = 0 modm; the set of all z's in Z,, which satisfy this congruence is called
the set of solutions of that congruence. One of the most important ques-
tions in Number Theory is to develop methods to solve equations of the form
f(z) = 0 modm, where f(z) is a polynomial expression in the variable r with
coefficients in Z,,. For linear congruences with one unknown this question is
answered in the theorem below:

Theorem 1.5 (Solving Linear Congruences) The linear congrusnce azr =
b modm is selvable if and only if g = ged(a, m) divides b. In fact if 7o 1s any
solution of az = b modm then the list

im .
1','=1'0+7, wheret =0,...,9-1,

forms the complete set of its distinct solutions modulo m.

Proof: If the congruence az = b modm is solvable then m must divide
ar — b. Since g|m and g|a it is clear that g|b. Conversely, assume that g|b. It
follows that b = kg, for some integer k. It is well known however, using basic
properties of the greatest common divisor, that there exist integers A,y such
that

g=Aa< pm.

It follows that ‘
b=kg=kla+kum = (k))a + (kp)m,

and hence k) is a solution of the congruence az = b modm.

It is not hard to see that if zo is any solution of the above congruence so
is any of the z;'s defined above, moreover the solutions z; are distinct modulo
m. It remains to show that any arbitrary solution c of az = b modm, is equal
to some z,. Indeed, since ac = arg = b modm, it follows that mla(c — zo).
But g = gcd(a, m), and hence (m/g)|(c — zo), which completes the proof of the
theorem.e

EXERCISES

1: Show that for all n > 1, n is prime & ¢(n)=n-1.

2: Show that for all t > 1 and all prime p, p(p') = (p = 1)p'~!. Use this to
compute (n) for all integers n > 0.

1.5 THE CHINESE REMAINDER THEOREM

Systems of linear congruences may not necessarily have solutions although
each of the congruences of the system do.
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Example 1.2 Both congruences:
z2=0mod3, and z =1 modé

have solutions, but the system does not.

However, if the moduli are pairwise relatively prime, the system has a soly-
tion as this is shown in the theorem below.

Theorem 1.6 (Chinese Remainder Theorem)

The system a;z = b; modm;, { = L,....k has ezactly one solution modulo
™ =m, ---myg, provided that my,..., m; are relatively prime and ged(ay, m;) =
= ged(ag, my) = 1.

Proof: The uniqueness of the solution follows easily from the fact that
the integers m,,..., Mg are relatively prime. Next, find integers c; such that
8i¢i = 1 modm;, where i = 1,... .k If m = ™My ---mg and n; = m/m; then it
is clear that ged(ny,...,m) =1. Hence, it follows from the basic properties of
the greatest common divisor, there exist integers ¢, ..., ¢ such that

ting 4.+t = 1.
Put ¢; = t;n,;. Then one cah easily verify that
€ = [® mbdmj,

where §; ; = 1ifi = Jand & ; = 0ifi # J. Now, choose ¢ = erciby+- - +epcyby.
It remains to show that ¢ is a solution of the above system of congruences.
Indeed, for each 3,

gic=aibjeje; +--- + abrercr = a;bieic; = b; modmy;,

and the proof is complete o

An interesting application of the Chinese remainder theorem, which is also
relative to the security of message transmission, is to the construction of (£, n)
threshold schemes. A (k,n) threshold scheme consists of n people Py,..., P,
sharing a secret S in such a way that the following properties hold

1. Each P; has some information J;.
2. Knowledge of any & of the {h,..., I.} enables one to find S easily.

3. Knowledge of less than k of the {h,... ;I } does not enable one to find
S easily.

Theorem 1.7 For all 2 S k< n there ezists a (k,n) threshold scheme.
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Proof: (Mignotte) The construction of (k,n) threshold schemes is based on
the construction of (k,n) threshold sequences. A (k,n) threshold sequence
is an increasing sequence m; < --- < m, of relatively prime positive integers
such that

My My Mg > My Moy - Mp_gg2. (1)
Assume that a threshold sequence m; < --- < m, has been constructed and
let M =my -my---mg, N=mp -mu_y - Mu_ks2. Let the secret S be any
integer such that N £ S < M and let the information I; be defined by

i = Smodm,, i=1,...,n.

It will be shown that the above defined secret S and-informations {/;,...,/,}
form a (k,n) threshold scheme. Indeed, let {I;,,...,I;,} be given. By the
Chinese remainder theorem the system

z= I modm;, i € {i;,... ik},
has exactly one solution. The proof of theorem 1.6 show}s that this solution is
S and is given by ‘
S=e, Ii,+ - +e, I, modi(.r‘n,l ceemy, ),
where ¢, = & ; modm,. It follows from (1) that in fact
S=e, Li,+ - +6&, I

On the other hand if only {/;,....,Ii,_,} are given, then it follows again from
the Chinese remainder theorem that

S L+ te Ty mod(mi, - mi,_,). (2)

Clearly, (2) is the only congruence available in order to compute the value of S.
It follows that there are at least L’;——"l values for S satisfying (2). To conclude
the proof of the theorem it remains to construct (k,n) threshold sequences such
that the quantity M;N is big. This will make it difficult to compute S if less
than k of the {I,,...,J,} are known. This is done using: inequality (21) in
exercise 3 of subsection 1.15. Indeed, find ¢ such that inequality (21) holds. It

2_ 2
follows that there exist at least n distinct primes in the interval (pfk D/ VPt
Let m,,...,m, be the last n primes in the last interval i.e. m, = Pt—n+i. Where
+=1,...,n. It remains to show that this is a (k, n) threshold sequence. Indeed,

k3
-5 k=1
M=m -my---mg 2p, >Ppf 2 My -May - Mu_kp2 = N.

This completes the proof of the theorem o

EXERCISES

1: If r is the number of prime factors of m > 1 then z° = z modm has
exactly 27 distinct modulo m solutions. Hint: Use the Chinese Remainder
Theorem.
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1.6 MODULAR EXPONEN TIATION

Given a fixed modulus m and an exponent ¢, the problem arises to compute
z° modm, for any given z. The method to be described below, which solves
this problem is called the method of exponentiation by repeated squarings
and multiplications.

Theorem 1.8 Tﬁere i8 an efficient algorithm A such that given as inputs m,e,z
i will output A(m,e, z) = z° modm. The algorithm A requires at most [log, ¢]

squarings, 2|log, e] multiplications and 2|log, e| divisions.

Proof: Let e,m and z be integers as above. Consider ¢'s representation
in the binary system i.e. e = 2%¢, + 2 len y +.. 2¢ey + €y, where n =
[logye]. Then z¢ = z2"¢a+...+2e,+¢, modm. Define the sequences Z0y.n, 2y
and y;,...,y, by reverse induction as follows: Zn = 2%y, = z2 modm and
Tn=i = Yn—i412°*~i modm, Yn—i = 1:,2,__.- modm. It follows easily by reverse
induction that Zo = z° modm.

The above recursive construction is also exhibited in the algorithm below:

Input: e,m, z ‘ '

Step 1: Compute n, and bits €0,€1,...,6, such that

e=2"p +2" e, 4. +2'e; + €5, where ep #0.

Step 2: Set y:=1.
Step 3: For s = n,n—1,...,0 repeat

set: ¥y = y?z° modm,
Output: y.e

Example 1.3 Using the table in Ezample 1.1 and the above algorithm, the table
in figure 2 shows that 7' = 3 modl11.

Ve | y=3y7-7% modil Output
311 1°. 76 ' 7
211 7¢.7% 2
1/0 2. 70 6
01 6. 7¢ 3

Figure 2: Computation of 713 mod11.

EXERCISES
1: Find a similar algorithm for modular multiplication.



1 NUMBER THEORY ' : -9

1.7 PRIMITIVE ROOTS

Call an integer ¢ € Z3 a primitive root modulo m if g generates the
multiplicative group Z5, ie. Z2 = {g9,9°> modm,...,g*(™ modm}. If there
is a primitive root modulo m then the group Z, is cyclic, and vice versa. In
the sequel, it will be useful to know for which m is the group Z;, cyclic. The
following theorem gives the complete answer.

Theorem 1.9 (Gauss) For all m, Z;, is cyclic if and only if m is equal to one
of Li’,-i,p",’.’p", where p is an odd prime and k i8 a positive integer.

Proof: (<)

If m is equal to either of 1, 2, 4 it is easy to see that Z, is cyclic (see
exercise 2 at the end of this subsection.) Next it will be shown that for each of
the possible values of m the group Z, is cyclic. Let p be an odd prime.

Z, is cyclic:

The order of an element z € Z, — {0} is the least exponent € such that
z° = 1 modp. For each divisor d of p — 1, let Sg = {z € Z,: the order of z
is d}. Howevever, for each z € S; and each ¢ < d,z° € S; & ged(c,d) =
(Indeed, on the one hand (<) if z* = 1 modp then d|ci, and hence d|i. Thus,
the order of z¢ modp is d, and on the other hand (=) if ¥ = gcd(c,d) then
(z°)¥* = (z¢/*)® = 1 modp which implies that k = gcd(e,d) = 1.) Let a
be an arbitrary element of S,. Then it is clear that a® = 1 modp. Since
Zp is a ﬁnite field, the equation z¢ = 1 modp can have at most d solutions,
’ namely a, a?,...,a9. Therefore, S; C {a a?,...,a4}. It follows from the above
characterization of 54 that if S4 is nonnmpty then |S4] = ¢(d). But, the family
{Sa : d|(p = 1)} forms a partition of Z;. It follows from Euler’s theorem that

p=1= ) ¢eld= Y IS

d|(p—-1) dl(p—-1)

Consequently, for all d|(p — 1),|Ss] = ¢(d) and Z; must be a cyclic group.

The following claim will be useful in the sequel:

Claim 1: There exists a primitive root g modulo p such tbat forall k > 1,
g¢®"™ 2 1 modp*.

Proof of claim 1: Let g be a primitive root modulo p. Then notice that
(94+p)"1 = g*"' 4+ (p-1)pgP~2 = ¢g*~! — pg?~2 modp?. Hence. at least
one of the two primitive roots g,9 + p, say go, must satisfy the congruence
zP~! # 1 modp®. The rest of the proof of the claim is by induction on k. It will
be shown that gy satisfies the requirements of the claim. The proof in case k =
bas already been completed. Assume by induction that g”’ K Z1 modp".
By the theorem of Euler-Fermat there exists an integer t such that g °(’ M=
1+ tp"’ . By the induction hypothesis p does not divide t. It follows that
gp(’ Y= (1+1tpE=1)P = 1+ tp% +(1/2)p(p - 1)62p%*=2 = 1+ tp* Z 1 modp*+!.
This completes the proof of claim 1.



1 NUMBER THEORY : _ 10

Z;. is cyclic: A
Let g be a primitive root modulo p which satisfies the condition of claim
1. It will be shown that for all £ > 0, ¢ is a primitive root modulo p*. Let
k > 1 be fixed, and let ¢ = least exponent such that 9° = 1 modp*. Clearly
9° = 1 modp, and hence (p - 1)le. However, elo(p*) = (p - 1)p*-1, I follows
that e = p(p) = (p - 1)p'=1, for some ¢ < k. But it is clear from the choice of
g that ¢ must be equal to & i.e. ¢ = p(p*).

Z34 i8 cyclic:

Let g be a primitive root modulo p*, where £ is positive. Let gy be the odd
number among the two integers g, g+ p*. It will be showm that g, is a primitive
root modulo 2p*. Indeed, ©(27*) = o(p*). If one defines ¢ = least exponent
such that g§ = 1 mod(2p*), then it follows from the Euler-Fermat theorem that
ele(2p%), and hence e < p(2p*). But gy is a primitive root modulo p*, and
hence e > p(p*). Hence ¢ = ©(p*). This completes the proof of («) '

(=) :

Suppose that m is not of the form 1,2,4,p%,2p*, where p is an 0dd prime
and & > 0. It will be shown that

Claim 2: Foralla € 2%, q¢(m)/2 = ¢ modm

Proof of claim 2: It m = 2*, thep p(m)/2 = 2¥=2. The claim will be
proved by induction on k. The initial step k = 3 is trivial. Assume 42" =
1 mod2* is true. Then 02"~ = | +12%, for some t. Hence, 52"~ = (1+12F)2 =
L+ 12k +1 4 4292k = | poqok+r

m=2%" where k > 1and n > 0, then p(m)/2 = 25=2pr=1(p _ 1) is
divisible by both ©(2*) and ©(p"). Hence the claim follows in this case easily,
using the result in case m = 2* and the Euler-Fermat theorem.

If m = 2kpm “=-pp” where k > 1,r > 0 then it is clear that p(m)/2 =
2*=2o(p}1) - . #(pr*). It follows that p(m)/2 is divisible by each of the integers
v(2¥), o(p]1),..., ©(pr*) and the rest of the proof can be completed exactly as

|35 [7 N [ B[ 17 (1923139 T3
LolzleTaTet ot ot o]

Figure 3: Table of primitive roots.

EXERCISES
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1: Let g be a primitive root modulo m. Then for all nonnegative integers
t,g' modm is a primitive root modulo m if and only if ged(t,e(m)) = 1. In
particular, there exist exactly ¢(¢(m)) primitive rcots modulo m, provided
there exists at lcast one primitive root modulo m.

2: Show that the groups Z7, 23, Z7 are cyclic.

3: If m = p{'---pi" is the prime factorization of m and ¢; = p{’ for i =
1,...,r then the group Zy, and the product group Zg, x---x Z; are isomor;.lic.

4: Show that for each odd a and each r > 3,41'*"'2 = 1 mod2".

5: Use exercise 4 to show that if r > 3 then Z3, is isomorphic to the product
of a cyclic group of order 2 and a cyclic group of order 2"~2. Hint: —1 generates
the group of order 2, and 5 the group of order 272,

1.8 ARTIN’S CONJECTURE

Theorem 1.9 gives a complete characterization of those m, for which the
multiplicative group Z,, is cyclic i.e. Z; has a generator. Howevever, the
following natural questions arise: '

. Question 1: Is there an efficient algorithm which when given as input a
prime number p will output a primitive root modulo p?

Question 2: Given a specific integer g, determine the primes p such that g
is a primitive root modulo p.

The second question is also mentioned by Gauss in [Ga] for the special
case g = 10. The results of section 3 make apparent the importance of these
questions for the construction of pseudo-random generators. Nevertheless, to
this date both of the above questions are open. Some empirical evidence is
provided below (see [Scha], pp. 80 - 83, for additional empirical data ). Let
rg(n) = the number of primes p < n such that g is a primitive root modulo p,
-and let 7(n) = the number of primes < n.

g | 14(10%) | r,(10%)/x(107)
2 470 .382
3 476 387
) 492 .400
6 470 .382
7 465 378

Figure 4: Artin's Constant

Based on probalistic heuristic considerations, Artin has conjectured that:
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Conjecture 1: (Artin) Every integer g # —1,1 which is not a complete
square is a primitive root of infinitely many primes.

More exactly it is conjectured that:

Conjecture 2: For every integer g # —1,1 which is not a complete square,

Ve(n) ~

m ~ P A
where A is Artin's constant (approximately equal to .37395...), and which is
independent of n,g and Fy is a rational given in [Hool; for many values of g
(e.g. g=2,3, 6) F, =1.

It is significant to note that Hooley in [Hoo] has confirmed Conjecture 2

under the assumption that Riemann’s hypothesis holds for certain Dedekind
functions.

EXERCISES

1: (Pratt [Prat]) The following result can be useful in testing if a given g is
a primitive root modulo n, assuming that the prime factors of n — 1 are known.
Show that: g is a primitive root modulo n & for all prime factors p of n — 1,
9"=V/7 # Imodn.

1.9 THE CARMICHAEL FUNCTION

A useful generalization of Euler’s criterion is given through the Carmichael
function ). For each integer m, A(m) is defined as follows:

: 2 if t<3
M) = { ﬁfch/z ift>3

for any given integer m = 2'n, where 7 is odd, one defines
A(m) = lem(A(2%), p(n)).

The intended improvement of the Euler-Fermat theorem (see theorem 1.3) is
given in the theorem below

Theorem 1.10 (Carmichael) For all g € Zm,a*™ =1 modm.

Proof: It has been shown in theorem 1.8 that for any integer m which is
not of the form 1,2, 4, p*, 25*, where P is an odd prime, k£ > 0, and for all 4 in
/3

a®™/2 = 1 modm. (3)

Let po,py,...,p, be the distinct prime divisors of m, and for each 1 let ¢, be
the largest power of pi dividing m. Hence, m = 90 ' 91 ---gr. By the theorem of
Euler-Fermat and the observation in equation 3, it is true that for alle € Z3,,
and alli=0,...,rq%@) = modg;, and if p, = 2 then g*(%) = | modgy. But
this is enough to complete the proof of the theorem.o
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EXERCISES

1: Let m be odd. Show that A(m) is the least exponent e such that for all
a € Z),.a¢ =1 modm. Hint: Let p;,...,p, be the distinct prime divisors of
m, and for each ¢ let g; be the largest power of p, dividing m. For each 1 let g;
be a primitive root modulo ¢;. Fix an s = 1,...,r. Use the Chinese Remainder
Theorem to find an a,;inZy, such that ¢; = g, modg, and g; = 1 modg, for all
J #1. Let.e be the least exponent e such that for alla € Z,, 2 = 1 modm. By
assumption, af = 1 modm and hence gf = 1 modg;. But g, is a primitive root
modulo ¢;. Thus, ¢(g,)]e.

1.10 THE LAGRANGE SYMBOL

Call an z in Z}, quadratic residue modulo m, if z = y*> modm for some
y € Z); otherwise z is called a quadratic nonresidue modulo m. Let QR,,
(respectively QN R,,) be the set of all quadratic residues (respectively non-
residues) modulo m.

For each prime number p, and any z € Z2, let

[ 1 itzeQR,
(zlp) ‘{ -1 il z€QNR,.

(z|p) is called the Lagrange symbol of z modulo p.

Remark:The symbol (7) is also widely used in the literature as identical to
the symbol (z|p). »

One of the most useful properties of the Langrange symbol is expressed in
the following

Theorem 1.11 (Euler’s Criterion) For all prirhes p>2,andallz € Z;,
2(*=Y/2 = (z|p) modp

Proof: Let z € Z;. Then z°~! = 1 modp, and hence either z(P=1)/2 =
1 modp or z{P~!)/2 = —1 modp. The mapping [ : Z; — {=1,1} such that
f(z) = z(P=1)/2 modp, is a group homomorphism. Since for any primitive root
gof Z;,g"‘”/"’ = -1 modp, the mapping f is onto and consequently the kernel
K of J is a proper subgroup of Z; of size (p — 1)/2 (see theorem 1.1).

If (z]p) =1, then z € QR,. Thus, z = y? modp for some y € Z;. It follows
that z(P=1)/2 = y»=1 = ] modp, by the theorem of Euler-Fermat (see theorem
1.3.) Thus, z € K = z(P=1)/? = | modp.

However, QR, = {17 modp, 2% modp,...,(p — 1)* modp}. Moreover. (p —
z)?=p* -2pr+ 2> = 22 modp forall z € Z;. Thus, exactly one half the
numbers in Z; are quadratic residues, and the other half quadratic nonresidues
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modulo p. Since, K 2 QR,, and both K,QR, have exactly the same size,
(p = 1)/2, it follows that K = QR,. Thus, K = QR,.

If (z]p) = -1, then z € Q@NR;. 1i follows from the above remarks z g K ang
z(P=1/2 = modp. Thus, z & K = z(p=1)/2 = =1 modp. which completes
the proof of the theorem.o ’

EXERCISES

1: The following is a generalization of Euler’s criterion (see theorem 1.11)
: for all primes p > 2, for all k£ > 0, and all 2 € Z;.,z“’("‘r)/2 = 1 modp &
Z € QR,.. Hint: Argue as in the above proof to show that the mapping 1 :
Z3s — {-1,1} such that f(z) = zeo")/2 modp*, is a group epimomorphism,
wf:ose kernel K equals QR,e.

2: Use exercise 1 to show that for all integers z € Z;,,, ZEQR, v z€ QR
Hint: (=) Let z € QR, and put g = z(#)/2, Thep pl(z(*)2 — 1), Hence,
ZeON/2 _ g =gt (a=1)(a?* ™"~ ygp*~t-2 +a+1). Notice that
the second factor of the last product is divisable by pk-1,

3: i both z,y € QNR, then zy € QR,.

1.11 THE LANGRANGE-JACOBI SYMBOL

The definition of of the Langrange symbol can be extended to all m and
all z in Zm. Indeed, let m = P1--'pr, Where py,....p, are primes. Then the
Langrange-Jacobi symbol is defined by (z|m) = (zlpy)--- (zlp;). One also
defines the sets In(+1) = {z € 23 : (zlm) = 1}, and Zn(-1) = {z€ Z3 :
(zlm) = -1}. v

In determining whether a given z € Z; is a quadratic residue modulo a
prime p one needs to compute (z|p). This is in fact done using the next two
theorems.

Theorem 1.12 (Evaluating (z|m)) Let 2,y € AN
(1) If 2= y modm then (z]m) = (y|m)

(ii) (z|m) - (ylm) = (z -y|m)
(ii1) (=1jm) = (=1)(m=1)/2

(i) (2|m) = (=1)m*~1)/8 yporn o is odd.

Proof: The proofs of (i), (ii) are easy and are left as an exercise to the
reader. As a first step, the theorem will be reduced to the case of the Lagrange
symbol, i.e. both m and n are primes. This reduction is based on the following
claim whose proof is straightforward

Claim: If s, ¢ are odd then

=1 t-1 _ st-1i

+— =

2 2 2
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2 -1 t2-1_ s%%2-1

8 T8 - 8
Using the definition of the Jacobi symbol, the reduction to the case of
the Langrange symbol is an immediate consequence of (4-7) below. Let m =
Py Pryn = q -+ g¢ be the prime number factorizations of m, n respectively.

Then the above claim implies that

mod2

p_‘?-l+..,+p'2—15m—g—lmod2, (4)
q‘_;_l.,... q';lsn;lmod., (3)
Pfs—l +ot p?s-l = ng—l mod2, (6)
‘1128"1+...+q’2;l = n28-1 mod2. (7)

From now on it will be assumed that m = p, n = ¢ are primes.

It is now obvious that (iii] is an immediate consequence of Euler's criterion.
It only remains to give the proof of (iv)

Since ((p — 1)/2)! is the product of numbers all of which are less than p, it
is clear that p does not divide ({p — 1)/2)'. Also notice that

k=] K if k is even
(-1) k_{p—k if k is odd

It follows that on the one hand

(1112 (et (®)
(2;2’_1)!(_1)1+2+-~+(ﬂ—1)/2 = (7’_;_1)3(_1)(7:’—1)/5‘ (9)

and on the other hand using the theorem of Euler-Fermat,
(—1)‘1(-1)"2~-(—1)“’-”/?”—-;-—l =2:4:6-(p-1)= (10)
2p=1)/2 (%)3 = (2|p) (’%1>' modp. (11)

The result now follows combining equations (8-11) and the fact that p does not
divide ((p — 1)/2)".0

Theorem 1.13 (Law of Quadratic Reciprocity, Gauss) For all 0dd m,n >
2 which are relatively prime the follouing equation holds

(n}m) - (m]n) = (=1)m=D/2 . (—1)(r=D)/2
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Proof: For any set M C Z;, define the set —-M = {-a : a € M}. For the
given primes p, q let P = {1,2,...,(p~1)/2} and @ = {1,2,..., (¢~ 1)/2}. It
is clear that for any ¢ € Q there exists b € Q such that either pc = b modg or
pc = —b modg (a similar property holds for P). Define n(p, ¢) = the number of
times that pc is congruent modulo g to an integer in —Q, as c runs through Q.
The proof is based on the following

Lemma 1.1 (Gauss’ Lemma) (plg) = (-1)"(P9)
Proof of the Lemma: For each ¢ € Q one can find s, b,
pc = s.b. modg, (12)

where b, € Q and s. = +1 or —1. The mapping ¢ — b.(c € Q,b. € Q) is 1 -1
(and hence also onto.) Indeed, assume that b, = bs. Hence, either pc = pd modg
of pc = —pd modg. But p, g are relatively prime. It follows from the definition
of Q that ¢ = d. Hence, the mapping ¢ — b is a permutation of Q and

-1
(qT)!zblb2"'b(q—l)/2' (13)

. Multiplying the congruences (12) as ¢ ranges over Q and using (13) one
obtains that, :
pl4=V/2 = (=1)*?9 modg.e
The proof of the lemma can now be easily completed using the Euler’s criterion.

Returning to the proof of the theorem let ¢ = e2ilp (respectively g = €27i/9)
be the primitive p-th (respectively g-th) root of unity. It follows from Gauss's
Lemma and the fact that for all ¢ € Q there exists b € Q U (—=Q) such that
pa = b modg, that

pa __ ,—P8
(plg) = (1)~ = [ L=2—. (14)
e &0 |

However, the following identity holds for all z # 0,

P -z77 = H (z9° = z7197Y) (15)
ez,

To see this, multiply both sides of (15) by z? and use 9” = 1 to show that the
resulting polynomials have the same leading coefficient 1 and the same zeroes:
9%, ~9%, where b = 0,...,p — 1. Combining (14) and (15) one easily obtains

that
(plg) = (H IT (e*o* - 2"0"’))/ (H (e* - e"))
- \eeertez, €Q
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- H H (g‘t’b- 2-419-6)

neQbEZ,f{M
= H H(Qaﬁb_ Q“ﬂ—b)-(g_aﬂb-g“l?'b),
e€EQ bEP

Hence,

(Rl =TI (0% +072) = (&% + o7%)).

8€EQ.bEP

Interchanging the roles of p and ¢ one also obtains

(ale)= T ((e* +e72) = (9% +97%)).
a€EQ . bEP

Since, each of the last two products has (p — 1){g — 1)/4 factors, the procf of
the Law of Quadratic Reciprocity is complete.o

It is not hard to see that computing the Jacobi symbol (z|m) of two rolatn'el)'
prime integers r, m is similar to computing the greatest common divisor of 7. m.
This is illustrated in the example below. .

Example 1.4 Show that 76 € QN Rys;. Indeed,

(76]131) = (2131) - (2]131) - (19[131) =

(19]131) = (131]19) - (=1)3$1=1)/2 . (=1)09=-D/2 =

(17]19) - (=1) - (=1) = (1917) - (- 1) 8=D/2 - (—)0IT=1/2 =
—(19]17) = —(2)17) = =(-1)07*=1/8 = )

An analysis similar to that in the proof of Lamé's theorem. (sce theorem
1.2) shows that

Theorem 1.14 If N > a,b > 0 are integers, with a,b relatively prime then the
number of steps required to compute (a|b) is O(logg N).e

EXERCISES

1: Prove properties (i), (ii) of theorem 1.12.

2: Compute (56/39).

3: Determine (3|p), where p is a prime > 3.

4: For k> 2 and 6 0dd, 3 € QR,» « a = 1 mod8 Hint: (=) see the proof
of claim 2 in theorem 1.9;(<) use exercise 5 of subsection 1.7.

From now on assume that p is an odd prime and k ; 1.

5: Show that (1+p)*" ™" = modp* and (1+p)*" > = (1+p%=') # 1 modp*.
Hence, (1 + p) generates in Z;. a cyclic subgroup H of Z;. of order p*¥-!
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~ 6: (This is a continuation of exercise 5.) Let g be a primitive root modulo
p. Then gy = g”._' is a primitive root modulo p and g, generates a cyclic
subgroup G of ZJ, of order p—1. Moreover, G x H is isomorphic to Z},. Every
element a € Zr“ can be written uniquely in the form a = g{(1 + p)” modp*,
where 0 <t <p—1and 0 < r < p*~!. (exercise 6 gives a new proof of the
cyclicity of Z},, for k > 1)

7: For all g, if a is relatively prime to p ihen a € QR, & a € QR,» Hint:
(=) Write a in the form ¢ = g{(1 + p)” modp*, where 0 < ¢t < p — 1 and
0 < r < p*~!. Notice that ¢ is even. Find c¢ such that 2¢ = 1 modp*~! and
let b= gf,/z(l + p)°" modp*. Show that ¢ = b2 modp*. (exercise 7 gives a new
proof of exercise 2 in subsection 1.10.)

8: Give the proof of theorem 1.14.

1.12 COMPUTING SQUARE ROOTS

One of the most important problems in complexity theory is to find an
efficient algorithm which given as input an z € QR, and an integer n it will
output a square root of z modulo n. It will be seen in the sequel that such
an algorithm exists if n is prime. It will also be shown that for composite n,
the above problem is equivalent to the problem of finding an efficient algorithm
which given as input n it will output the factors of n.

If p is an odd prime number then such an efficient probabilistic procedure
for computing square roots modulo p is given in the theorem below.

Theorem 1.15 (Adleman-Manders-Miller) There erists an efficient prob-
abilistic polynomial time algorithm which when given as inputs an odd prime p
and an a € QR, it will output a square root of a modulo p.

Proof: Let p be a prime and a € QR,. Write p — 1 in the formp—-1 =
2°P, where P is odd. Choose any random b € QNR,. Define a sequence
01,82,...,Qy,... of quadratic residues modulo p and a sequence of indices ¢ >
ki >...> k, > ... as follows by induction on n:

a, =a,
kn—1 = least k such that aii’: = 1 modp,

o—h o
Gn = Qpq_yb? ! modp.
However, it is true that

2da-1-tp _ e—Rg_ 1 okacr1-tp
(-1 = (a,._,bz )2 P =

PP = (21)(-1) = 1 mody,
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The proof of the last congruence uses the fact that 5*° ' F = p(»=1)/2 = (1];) =
—1. Using the minimality of k,_;, the above congruences, and the Euler-Fermat
theorem, it follows that for all integers n if &, > 0 then k, < k,_;. Hence,
there exists an n < e such that k, = 0, and for such an n, a2 s a square
root of a,. Next one defines by reverse induction a sequence ry,...,r, such that

for all i, r? = a; modp. Indeed, let r, = aS.P"'”/2 modp. Assume that ., has

already been defined and let r; = r,41 (6> " "")=! modp. It is straightforward
to see that for all i,a, = r? modp.

The above observations provide an efficient algorithm, described more ex-
plicitely below, to compute square roots modulo a prime number p. One merely
chooses a random b such that (b|p) = —1 and then follows the above described
procedure with input p,a. More explicitely,

Input: p (prime), a € QR,.

Step 1: Compute an odd P and € such that p—1 = 2¢P.

Step 2: Choose random b such that (b|p) = ~1.

Step 3: Set y:=a,r:= a(P+1/2 modp.

Step 4: Find the least k such that yQ'P = 1 modp.

Step 5: If k£ =0 then output r else set

y=95""" modp,r = r(5*"7")"! modp

and go to step 4.

Output: r.

The running time of the algorithm is a polynomial in the lengths of p and
a, plus the time required to find an integer b such that (b|p) = — 1.0

The case of composite n is studied in the theorem below.

Theorem 1.16 For allz € Z;,, wherep,q are distinct odd primes, z € QRyq .
€ QR, and z € QR;. Morcover there is an efficient algorithm which given as
inpuls r,u,v,p,q, where p and g are distinct odd primes and z = u® modp and
7 = v? modyg, will output 8 w such that z = w® mod(pq).

Proof: Suppose that z,u,v,p,q are as in the hypothesis of the theorem.
Since p, g are relatively prime one can compute efficiently integers a,b such that
l=ap+bg. Putc=08g=1~apandd=ap=1-bg. It is then clear that

¢ =0modg,c =1 modp,d =0 modp,d = 1 modg.

It will be shown that w = cu + dv is a quadratic residue modulo n. It is
enough to show that w is a quadratic residue both modulo p and modulo q.
Indeed, :

w? = (cu +dv)? = (?u? + d°v? + 2cduv) = u? = z modp.

A similar calculation shows that w? = z modg. This completes the proof of
the theorem.e



1 NUMBER THEORY ' 20

EXERCISES
1: Extend theorem 1.16 to the case of products of relatively prime integers.

1.13 INDICES

Let p be a prime and let g be a primitive root modulo p. It is known that
Z; = {°¢",...,97~2}, and hence for any z € Z; one can define the index
or discrete logarithm of z with respect to g, abbreviated index; ¢(z), as the
unique m < p — 2 such that z = g™ modp.

The following theorem gives a very useful characterization of quadratic
residues in terms of the above defined index.

Theorem 1.17 (Characterization of Quadratic Residues) Let p be an odd
prime, and let g be a primitive root modulo p. Then for anyz € Z;,z € QR, &
index, ¢(z) is even.

Proof: The proof of (<=) is easy and is left to the reader.

(=)

Let z be a quadratic residue modulo p. There exists an integer u such that
z = u? modp. Let t = index; 4(u) < p—1. Then u = ¢* modp and z = ¢** modp.
It follows that index, 4(z) =.2t mod(p ~ 1), and hence index, o(z) is even.e

If n = pq is the product of two distinct primes then the product mapping
< z,y >— zy is an isomorphism between the groups Z; x Z; and Z;. Let g
(respectively k) be a primitive root modulo p (respectively g). Then any element
in Z2 can be written in a unique way in the form z = g"hf. As before, let the
index of z with respect to g, h, abbreviated index, 4 n(z) be the pair < r,t >.

Using the multiplication table of Z7, one can compute the following table of
indices:

z 12
index;;,2(z) | O

w
-
o
[~}
-
oo
©
1S

—
0o
[~
£-S
©
-
w
=]
o

Figure 5: Table of values of index,, 2(z).

EXERCISES

1: Prove (<) in theorem 1.17.

2: Let n = pg be the product of two distinct odd primes such that g (re-
spectively k) is a primitive root modulo p (respectively g.) Forany z € Z3,z €
QR, ¢ both components of index, g,5(z) are even.
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3: Let g be a primitive root modulo the prime p > 2. Show that for all
a,b€ Z;,and all n >0,

1. index, o(ab) = index, 4(a) + index, 4(b) mod(p - 1).

2. index, g(a™) = n - indexp g(a) med(p - 1).
3. indexp (1) = 0.
4. index, 4(g) = 1.

5. index, o(=1) = (p - 1)/2.

4: If g is a primitive root modulo p, then g € QR;.

1.14 COMPUTING INDICES

One of the most significant problems in complexity theory is to find an
efficient algoritim A such that for any prime p, any primitive root g modulo p
and any zr € Z;,A(p, 9,7) = index, ¢(z). This problem is very significant for the
construction of secure cryptographic protocols. In general, no such algorithm is
known. However, the theorem below provides such an efficient algorithm in the
case where the prime factorization of p — 1 is known. For each integer n, |n|
denotes the binary length of n.

* Theorem 1.18 (Pohlig-Hellman) For any polynomial poly(.) there erists an
efficient algorithm A such that if p is & prime such that the prime factors
Piv..-yPr of p =1 satisfy pr....,p, < poly(|p|).g is a generator of 2}, and
Y€ Z; then A(p.g,p1y... Pr,y) = index, o(y). Moreover, A runs in time pol-
unomial in the length |p| of p. :

Proof: Let p be a prime number such that prime factors p;,...,p, of p—1
satisfy py,...,p, < poly(|p|). Let g be a generator of Z;.and let y € Z;. For
each j=1,...,r, let ¢; = the largest exponent e such that Pil(p—1) and let g, =
p;’. Foreach j =1,...,r define y; = y*=1)/% modp, g, = ¢*~")/% modp, z; =
the unique z such that g; = y; modp. Notice that z; < g;. Thus, z; can be
represented in the number base p, as follows:

2 , e _l R
Ty =Zj0+ TP+ Ty2p) + .+ Tie,m1p, wherezi i <py. (#);

The idea of the proof is the following: first, one gives an algorithm A; which
on input p,p,,g,y computes z,, as above; second, one extends A4, to give an
algorithm A; that on input p,p,,g,y computes z;; and third, one uses the
Chinese Remainder theorem to compute the index, ,(y) from the previously
computed z,.

The algorithm A, is given below.

Input: PiP5r 9y Y-
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Step 1: Compute g;, g;,y; as above.
Step 2: Compute z; = y(.’—l)/”' modp.

Step 3: Compute ig = the first § < p, such that z; = '(’ D% modp.
Output: s,.
It is a consequence of the Euler-Fermat theorem that iy = z,,0. Indeed using

(*); one obtains iy = z,o through the following congruences: z; = g;"(’ “O/ri =

y§7 N/pi = = g3;(7 D/p; = = g3: o(p=1)/5, modp.

An easy extensxon of the above algorithm gives a new algorithm to compute
z;. Indeed, consider the following algorithm A, defined by

Input: p,p;,9,y.

Step 1: Compute g;, 5, 95, Y5-

Step 2: Compute A,(p, p;, 9,9)-

Step 3: Put gj0 = gj,¥j0 = ¥5:¢i0 = A1(p, 25s 9, 9)-

Step 4: For ¢ =0 to e;_, do: Compute the following

95i+1 = g5 modp, yjis1 = ¥5.i9;, * modp.

Step 5: Compute Cii4l = Al(Pv pjigJ.h’-liyJ,hl-l )l

Output: c;o + ¢;,15 + €207 +... + Cie;m19;

To prove the correctness of A; one shows by induction on s
¢ji = Zj,i e.g. it has already been shown that z;¢ = ¢;,0. Thus,

< ey, that

- ~C5,0 — -
Yin = Y500, =
2,195+ +3; A =3
F AP T oee J.C,'-l’j =( pj)zj,,+...+z,~..j_.yj
95 =19y

Consequently,
Z51 = A, (Py Pjy.g;i ’ ng;”.'o) = A (pa Pjs 95,15 Y54 ) = Cj,1-

The proof of ¢;; = z;; (¥ > 1) is similar.

The rest of the proof is an application of the Chinese remainder theorem.
Indeed, consider the following algorithm A:

Input: Py 9sP1ye-eyPrs Y.

Step 1: Compute z; = A2(p, p;, 9, ).

Output: The unique z such that forall j=1,...,r,z = 2z; mod(q, ... q,).

To see that A works notice that for all j = 1,...,r,yP~1)/0 = g2i(p=1)/4s
modp and z = z,; modg;. Since, gcd((p - 1)/q1,...,(p — 1)/g,) = 1, there exist
t1,...,ts such that t;(p - 1)/q1 +... + t,(p - 1)/g, = 1. It follows from the
Euler-Fermat theorem that

y=y' = yhr-D/atette(r=1/ar = fip=1)/ar _ te(p=1)/2r =
g=1t(P=/as e g¥rte =D/ = gth(r—l)lcn+---+s,¢-(p—l)/¢. = ¢* modp,

which completes the proof of the theorem.e
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1.15 THE PRIME NUMBER THEOREM

Let b,c be relatively prime positive integers, and let 7, .(z) = the number
of primes p < z such that p is of the form p = bk +c. If b = 1,¢ = O then
7(r) = 71,0(r) = the pumber of primes p < z. The prime number theorem
is the following statement (where the logarithm is taken with respect to the base
€):

Theorem 1.19 (Dirichlet, Hadamard, de la Vallée Poussin)
If ged(b,c) =1, then

Toe(z) 1

1—co z/logz ~ ¢(b)
. In particular, as a special case of theorem 1.19 one obtains that

7(z)
im =
21— z/logz

The following table gives some values of 7(n).

i n (107 710°710° ] 107 10° 10° 107 ]
[ 7(n) | 4 ] 25 1168 1,229 | 9,592 | 78,498 | 664,579 ||

Figure 6: Table of values of 7(n).

A proof of thcorem 1.19 would lie outside the scope of the present section.
However, the proof of the following weaker version of the prime number is very
simple and elegant.

Theorem 1.20 (Chebyshev) For all z > 1,200,

z 17 =

< < —
log z "(2) 10logz

(16)

Wi

Proof: (Zagier) For simplicity throughout the present proof p will range
over prime numbers. For each real r, let [r] denote the integral part of r.

Proof of the lower bound: This is is based on the following

Claim: For all z, k the following holds:

(£) == )
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Proof: Let z be fixed. It is clear that for any power p! of the prime p the
number of integers among 1,2,...,z - 1, z divisable by p* is exactly [z/p]. For
each integer n let

e(n, p) = the largest exponent e such that p*|n,

Further, let
A.={1<d<z:p|d}).

It is then clear that

Moreover,

However, forany 1 <d < z,
d ¢ Ae(d,:)-H’ d€ Ac(d,z) C---CA.

Hence, each 1 < d < z is counted in the sum }_ 5, |A.] exactly e(d, z) times.
It follows that -

e(z!p) = ie(d,p) = Z |A| = Z :e

=1 e21 e21

It follows from the laét equation and the definition of the binomial coefficient
that

e((F)r) =eletpr = el = 11p) = ekt ) =

SGEEED e

Since, each of the summands in (18) is either 0 or 1, and all summands vanish if

e > logz/logp, it is clear that e ((;),p) < [log z/log p] and hence, pl(d)?) < 2.
Now, the claim follows from the fact that

(:) = [] @ < 270,

p<sz

This completes the proof of the claim. To complete the lower bound proof apply
(17) to k =0,1,..., z, and add the resulting inequalities to obtain:

2* = i (:) <(z+1)-27,

k=0
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Taking the logarithm of both sides of the above inequality one obtains that

rzlog2 log(z+1) 2 =z
logz logz 3logz’

(z) 2

(Notice that the right side of the last inequality is valid for r > 200.)
Proof of the upper bound: It is clear from the definition of the binomial

coefficient that
divid (22
“ p divides . )

2<p<2z

But, the product to the left of the above equation has exactly 7(2z) — =(z)
factors, all of them > z. Hence, using the binomial theorem one obtains that

(2)-x(2) 27) (= (27 _ 2
*(22)-7(2) ¢ < (- e = Q22
z < II »s< (z) < Z ( i ) ’
z<p<2z =0
and taking the logarithm (in base ¢) of both sides of the above inequality

2z log2 z

77(21')* W(I) < lOgI . m

(19)

Next, assume by induction that the right side of equation (16) is true for z.
It follows from (19) and the induction hypothesis that

r(2z) < n(z) + 1.30—— < 3.00— < 1.7—--2—2——.
log z log z log(2z)

(20)

Moreover, using (20) one obtains that

z 2r+1
n(2z4+1) <72 1<309 —+1<1.7———,
(2z+1) < 7(22) + logz+ Ilog(27+1)
which completes the induction proof and hence the proof of the theorem. e
For more information the reader should consult [E] (pp. 23 - 25, and exercises
1.8 - 1.13 in pages 30 - 31).

EXERCISES

1: Use ©(4) = 2, to show that asymptotically for all z, half the primes p < =z
satisfy p = 3 mod4.

2: How many primes of a given length k exist? Hint: Use theorem 1.19.

3: The result of the present exercise is used in the proof of theorem 1.7. Let
pn be the n-th prime and let 0 < a < 1 be a fixed real number. Let 7(n,a)
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denote the number of primes in the interval (pg, pa]. Use the prime number
theorem to show that for all n, ¢,

Pn+t

w(n+m,a)z(n+t)-(l-a ll_a).

In particular, for any 2 < k < n there exist arbitrarily large integers ¢ such that

k-1
T (t, ——k—"'—) >n. (21)

1.16 CONTINUED FRACTIONS

For any two positive real numbers a, f§ let [a, f] = a + 1/5. This notation
is extended by induction to sequences ay,...,a,,... of positive real numbers
by the equation

‘ [ah---,auﬂ]=[01,I02,~--,0u+1]]»

For any real number a > 1 define the sequence oy, az,...,an,... of reals and the
sequence @,,82,...,8n,... of nonnegative integers as follows: a; = a,¢, = [a,.]
= the greatest integer < a,, and

Angl = ap —ap
i.e @y = [8n,an41]. The sequence [a,],[a1,a2],...,[a1,...,80],... defined as
above from the given real number a is called the coniinued fraction expan-
sion of a.

Remark 1: Notice that if a, = a, then a,4; is undefined for all i > 0
Moreover, for all n,

ap = [avnan+l] = [an,an+lsan+2] =

In particular, |
a= [01’02] = [a;,ag,asl =...,

The continued fraction expansion [a,], [21,82),...,[a1,...,an],... of the real
number a breaks-up if for some n,a, =a,.

The following observation which is an immediate consequence of the above
definitions and the Euclidean algorithm, will be useful in the sequel: if d is
the divisor and r is the remainder in the Euclidean division z = yd + r, where
z>y>r>0and ged(z,y) =1 then

d= ljJ and [d,%] =§.

Theorem 1.21 A real number > 1 is rational if and only if its continued frac-
tion ezpansion breaks-up.
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Proof: Let @ > 1 be a real number with continued fraction expansion
l[a1,az)....,]a1,. .. 8n],.... If for some n,aa = a, then an easy computation
shows that a = [a1,...,80-1,as] = [81,...,8n—1,84] is rational.

Conversely, assume that a = ¢/b is rational. Use the Euclidean algorithm
to define sequences

0<rp,<rp_1<...<n <f‘0=b<r-1 ‘—'G,d],dg,...,dn,dn.n

such that ,
a=db+r,b=dyr; 4+ 1o,
ri=daro + 73,00 The2 = dafney + rayTaey = dpg1Ta.

It follows by induction on ¢ that

Ti-2 .
ap = ,a;=4d,, fori=1,...,n

Tyi-

Moreover,
Tn—1 =d _
Ant1 = =dnt1 = 01 ®
n

Let [a;,az],....[a1,...,a4],... be the continued fraction expansion of the real

number a > 1; define the sequences
A_1,40,A41,...,Ap,...,B_y,Bo,By,...,Bqp,...,
as follows:
A-] = 0,.40 = 1,B-1 = I,Bo = 0 and
Ap = apAny + An-2,Bn = apBay + Ba_2.
The fraction A, /B, is called the n-th‘convergent of a.

The basic properties of the convergents can be found in the theorem below.

Theorem 1.22 Let a > 1 be a real number with continued fraction ezpansion
lay,az] ... [ay,...,84),... and convergents A, /B,. For any integer n > 0 the
Jollowing hold

(i)  AaBa-y = Ap-1Ba = (-1)".

(ii) gcd{An,Bn) =1.

(i) Ag< A < <A, <---, B<B,<---<B,<---.

(it) a=(Ancnt1 + Anz1)/(Branss + Baoy)yn 2 1.

(v) |a= An/Bal <1/BZ, if apy) is defined.

(vi) An/Ba = Aaci[Bn-y = (=1)"/(BaBp-1),n > 1.

(vii) Anp/Bn = Ap—2/Ba_3 = an(=-1)*"'/(BpBn-2),n > 2.

(1415) Azn—1/B2n-) < A2a41/B2a41 < @ < A2 [B2n < Azn—2/Bzn-2.
(iz) limp_—o An/Bs = a. '
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Proof: The proof of the theorem, although tedious, it is straightforward by
induction on n and is left as an exercise to the reader. Notice that (ix) follows
from (v) and the fact that the sequence B, has exponential growth. In fact, an
easy induction on n, using the definitions of A,, B, will show that A,,B, 2>
fa 2 R™"2%, where R is the golden mean. Hence, n < 2+ logg Ba,2 + logg Aq,
where n > 1 and the number of steps needed to compute A, (respectively
B, )isequaltoO(number of steps needed to compute f,).e

A rational A/B is called a Diophantine approximation of the real number
a > 1if and only if B > 0 and gcd(A4, B) = 1 and for all integers C, D with
D < B and C/D # A/B the inequality |A — Ba| < |C — Da| holds. It is easy to
see that if A/B is a Diophantinc approximation of @ > 1, then for all integers
C,D,

A

E -
The following theorem will be essential in the study of the 1/p pseudorandom
generator.

D<BandC/D#A/B=>

<|§-a
D

Theorem 1.23 Let A/B be a rational and a > 1 a real number such that B > 0
and gcd(A,B) = 1. Then the following statements hold

(i) A/B is a Diophantine approzimation of a = A/B is a convergent of a.
(i) |« — A/B| < 1/(2B%) = A[B is a Diophantine approzimation of c.

Proof: (i) First notice that

A2 A cac B h
B, <EF < <5, <B"
At first it will be shown that A/B is either a convergent or else lies between
two convergents of a. Indeed, assume on the contrary

A 4
B, B’
Recall that a; /1 = A, /B,. It follows that
ay |A - aB| ay
N D LN . P D LN
which is a contradiction. Hence, 4, /B; > A/B. Next, assume on the contrary
that
4,4
B, " B’
Recall that By = a;. It follows that
A A A, 1
b S22 s -
B¢ IB B,| = B;B
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Thus,

Now it can be shown that A/B is a convergent. Indeed, assume on the contrary
that A/B lies strictly between two convergents i.e.
Apyr A Aay

Bn+l < .B_ < Bn—l ’

A contradiction will be derived by distinguishing two cases.
Case 1: n is odd (see figure 7).

A; A Anci A Ans An_
B, B 5o B Ben a 2o 2 7
Figure 7: The Convergents of o
ﬁ _ Any I = l('l)nl =
Bn Bn-l BnBu—l
1 S é _Ana ’ > 1 ‘
BuBn-l B ) Bn—l BBn—l .
It follows that B > B,. Moreover,
,lé_azé_,‘inH) 1 S 1
B B Bn+] - BB,;+] - (Bn0n+1 + Bn—l }I}
and
a—i’.‘. _ An0ﬁ+x+/4n_] —ﬁ < 1
Ba Bnan-H + Bn-) Bn|~ (Bna‘n-q—l +Bn—l)Bn'

It follows that
|Ax = aBa| € —— < |A - aB| < |4, - aBa),
Bu+l

since B, < B, and A/B is a Diophantine approximation of @, which is a con-
tradiction. :
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Case 2: n is even.
This is omitted because it is similar to the proof of case 1. Hence the proof

of (i) is complete.
(ii) Assume on the contrary that A/B is not a Diophantine approximation
of a. This means that there exist integers C,D with D < B and C/D # A/B

such that the following inequality holds:
|A = Ba| 2 |C - Da (22)

In the proof below it will be assumed that @ < A/B. The case a > A/B is
treated similarly. Notice that |[AD — CB| > 1, and hence,

A C 1
_-—=]> —. 2
|B D|2 8D =
Case 1: C/D< A/B<a
In this case one has
0<é_g_<a_g__Da-C<Ba—A_
B D D~ D - D

which contradicts equation (23).
Case 2: A/[B<C[/D<a
In this case one uses D < B to obtain
cC A A 1 1
0<p~B<* B 2B 2BD’
which contradicts equation (23).
Case 3: a < C[D

0<_q_a_C—Da<A-Ba_B(a_,4>
D °° D - D "D B)’
It follows that A/B < @ < C/D. Consequently,

0 € — -~ — = — — a+ _ﬁ<£ _é.{, -é
D BTD *=B=D\°" B B
+

_(HE)(O,_A;)_D B(, Ay D+B 1
“\U"D B)~ D B D 2B

(B
= D 2B BD’
which contradicts equation (23). This completes the proof of the theorem. o

EXERCISES
1: Give the details of the proof of Theorem 1.22.

2: What is the limit of the sequence [1,1],[1,1,1],...7.
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1.17 BIBLIOGRAPHICAL REMARKS

The approach taken in this section is to provide a self-contained introduc-

tion to all the material on Number Theory, necessary to understand the results
on the security of Pseudo-random Generators (section 3) and Public-key Cryp-
tosystems (section 4). There are numerous nice introductory or advanced books
in Number Theory. Such books include, [W] [Vi], [Lev], [NZ], [Kr], [Scha]. Since
the present chapter is intended to empasize techniques useful to understanding
the security of Public Key Cryptosystems, the material presented is comibined
with the study of the complexity of certain problems in Number Theory. A
more exhaustive study of such Algorithms can be found in |[Kn], as well a< in
Anj|.
[ {“or more information on Lamé's theorem (1.2) see [Kn] (page 313.) The
result on (k,n) threshold schemes is originally due to [Sham2]. However. the
proof of theorem 1.7 given here follows the presentation of [Mi]. The character-
ization, in theorem 1.9, of those m for which Z;, is cyclic, as well as the Law of
Quadratic Reciprocity (theorem 1.13) was first proved by Gauss in [Ga]. The
interested reader can find a lot of information on Artin’s conjecture in [Scha]
(pp. 80 - 83, 222 - 225) as well as in [Has] (pp. 74 - 75 ).

The Law of Quadratic Reciprocity is very useful in solving Diophantine
equations. More than 150 proofs of this theorem have so far appeared in the
literature, including 8 given by Gauss himself. The present simple proof ap-
pears in [Ge|. Some interesting proofs and comments on the Law of Quadratic
Reciprocity can also be found in [Pi]. ' '

A procedure for finding square roots modulo a prime number first appeared
in [Ber]. The present proof of Theorem 1.15 is from [ANMM]. Computing the
index of a number z modulo a prime number p is in general an open problem.
The algorithm given in theorem 1.18 is from |[PH].

A complete proof of theorem 1.19 can be found |La] (part €) or [Prac] (pp.
131 -139 .) The proof of the weaker version of the prime pumber theorem
1.20 presented in subsection 1.15 is due to Chebyshev and follows closely the
presentation of Zagier in ([Z].) For more information the reader can consult the
beatiful expository articles: Prime Numbers, by Mardzanisvili and Postnikov in
[Ma] and Die ersten 50 Millionen Primzahlen, by Zagier in |Z].
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2 PROBABILITY THEORY
2.1 INTRODUCTION

The present section introduces the reader to the fundamental concepts of
probability theory. The development of the concepts is limited to the material
necessary to understand the proofs in the sections on pseudo random generators
and public key cryptosystems.

Subsection 2.2 includes all the necessary introductory notions i.e. o-algebra,
probability space, product and sum of events. The notion of random variable is
developed in subsection 2.3. Further, this subsection includes the fundamental
theorems for computing expectations and variances of random variables. The
binomial distribution, which is studied in subsection 2.4, will be the only proba-
bility distribution to be exhibited in the present monograph. Chebyshev’s law of
large numbers is proved in subsection 2.5. The strengthening of the weak law of
large numbers, proved in subsection 2.6, will be very useful in the development
of the general theory of the security of pseudo random generators and public
key cryptosystems. An introduction to the Monte Carlo method, is exhibited
in subsection 2.7.

2.2 BASIC NOTIONS

A o-algebra A on a nonempty set {1 is a nonempty set of subsets of )
which satisfies the following three properties:

1. € A
2. HE€AthenQ-E€A.
3. If {En :n 20} C A then (U,5, Ea) € A

Examplve 2.1 The set {Q,0} is a o— algebra.

Example 2.2 The set of all subscts of a nonempty set Q is a o algebra.
A probability space is a triple (2, A, Pr), where |
1. Q is a nonempty set,
2. Ais a o~ algebra on the set {2, and

3. Pr is an experiment on the o— algebra A i.e. Pris a function Pr: A —
[0, 1], with domain the o~ algebra A and range a subset of the unit interval
[0, 1] such that

(a) Pr[Q] =1 and Pr[p] =0,
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(b) For any family {E, : n > 0} Q- A of pairwise disjoint subsets of 2,

PriJE.| = i Pr(E,).

n20 n=0

The subsets of ) are called events, while the subsets of {1 which belong to
the o~ algebra A are called observed events; the elements w € 0 are called
the possible outcomes of the experiment Pr. An event E is called certain
(respectively impossible) if Pr[E] =1 (respectively if Pr|E]| = 0). The set 0
is called the sample space of the experiment.

Example 2.3 The experiment determined by the flipping of a fair coin consists
of the sample space Q = {H,T}, where H = Head and T = Tail, the 0 — algebra
A of all subsets of ) and the experiment Pr which satisfies:

Pr|{H,T}|=1, Pr[{H}] = Pr|[{T}|=1/2, Prl§] =0.

Example 2.4 The ezperiment determined by the tossing of two fair dice con-
sists of the sample space Q = {(1,7) : 1 1,7 < 6}, the o~ algebra of all subsets
of Q and the experiment Pr which salisfies

Pr|E] = |E|/36, for all events E.

Example 2.5 In the above erperiment one can also consider the following o—
algebra of observed events: an event E € A if and only if for all (1,7), if (1,7) €
E then (5,1) € E.

Corresponding to the set theoretic boolean operations of union, intersection
and difference of sets, one can define respectively the sum, the product and
the difference of events. Hence, given two events E, F one defines the sum
(respectively product, difference) of the events E, F to be the event EU F
(respectively ENF, E - F).

Given a probability space (2, A, Pr) and an observed event K. such that
Pr|K] > 0 the conditional probability space with respect to A, is the triple
(0, 4, Pri), where the new experiment Pry is defined by

PrlE N K]

PrelEl = —prm]

In addition, the notation Pr|E|K| will also be used as identical to Prg|[E].

Given a probability space ({1, A, Pr) and two observed events E, F the fol-
lowing three rules are very useful for the study of probability theory and can be
derived easily from the above defining properties of Pr:

1. Difference Rule: If E C F then Pr|F - E| = Pr|F] - Pr|E].
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2. Sum Rule: Pr|E U F| = Pr[E] + Pr|F] - PrlEnF].
3. Product Rule: If Pr[F] > 0 then Pr|E n F| = Prg|E] - Pr|F].

Events E, F are called indepedent with respect to the probability space
(D, A, Pr) if PrlE N F] = Pr|E]- Pr|F].

EXERCISES
1: Show that every o— algebra is closed under countable intersections.
2: Show that the empty set is a member of every o~ algebra.
3: Prove in detail the Difference, Sum and Product rules.
2.3 RANDOM VARIABLES

Let R be the set of all real numbers. A random variable on the probability
space (02, A, Pr) is a real valued function X : @ — R such that for any open
set I of real numbers,

X '={wen:X(w) eI} €A

A vector random variable on the probability space (Q, A, Pr) is a real
vector valued function X : Q — R™ such that for any open subset I of the set
of n tuples of real numbers,

X ={weQ:X(w)eI}eA.

It is easy to see that if X,,...,X, are random variables on 2 then the
function {X;,...,X,) is a vector random variable on f).

For any random variable X and any real number k, let X = k denote the
event {w € Q: X(w) = k}. A random variable is finite (respectively discrete)
if it takes on only a finite (respectively countable) number of values.

For any random variables Xj,..., X, and any function f: R® — R, let
J(X1,...,Xn) denote the composition of the functions f,(X,...,X,) i.e. for
all w € Q, f(Xy,...,Xa)(w) = S(X1(w),..., Xn(w)). If [ is continuous then
the inverse image under f of any open set is open. Hence, if all the X,;,..., X,
are random variables and f is continuous then f(Xj,...,X}) i3 also a random
variable. In particular, if X, Y are random variables so are X+Y, XY, exp(X),
etc.

For any random variable X the (probability) mass or (probability)
distribution function of the random variable X is the function px defined for
real numbers & by

px(k) = Pr|X = k).
Hence, if the random variable X takes on only the values z,,...,z,,... then its
corresponding probability distribution function px will take on only the values
px(zl),..f,px(z,.)‘....
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For simplicity from now on and for the rest of this section all
the random variables used will be discrete and bounded i.e. there
exists a real number B such that for all w € ,|X(w)| £ B. Moreover,
the probability space used in each particular case will not always be
explicitely mentioned, unless there is a cause of confusion.

Let X be a random variable which takes on only the values z),...,7a....
and let px(71) = p1,..-+Px(Za) = Pn,... be the corresponding values of it
distribution function py. (Here it is asssumed that z; # z;, for all +#7.) The
expectation of the random variable X, abbreviated E[X]. is defined by

E[X]=) zn-pn. (1)

n=0

The variance of the random variable X, abbreviated Var[X], is defined by

Var[X] = E [(X = E[X])?] = Y_(za = E[X])* - Pa. (2)

n=0

The square root of the variance of X is called standard deviation of X and

is denoted by D[.Y] i.e.
D|X] = VVar[X]. (3)

Example 2.6 For the ezact fitting of a certain part of 8 precision instrument it
is required to make 1,2,...,9 trials. The number of trials necessary to achiere
ezact fitting of the part is o random variable, denoted by X. The behavior of the
probability distribution function of the random variable X can be best represented
in the graph of figure 1.

Example 2.7 Consider the random variable X given in ezample 2.6. Then the
expectation of X is given by
E|X]=1-1+2-15+3-.25+4-34+5-2=335

Thus, the number of trials necessary to achieve ezact fitting will on the average
be .85 i.e. the exact fitting of 100 instruments will on the average require 335
trials.

Example 2.8 Consider the random variable X given in example £.6. Then the
variance of X is given by

Var|X] = (2.35) .1+ (1.35)° -.15+ (.35)7 - .25+ (.65)* - .3+ (1.65) -.2 = 1.795
The standard deviation of X will be
D[X] = Vv1.795 = 1.34.

Thus, the standard deviation D|X| gives the magnitude of the oscillations of X
sround the ezpectation E|[X].
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.25

.15

Figure 1: Graph of px

The covariance of two random variables X, Y, abbreviated Cov|X,Y], is
- defined by _
Cov|X,Y] = E|(X - E|X])- (Y - E[Y])]. (4)
Remark: Since the random variable X is bounded the infinite series in
definition (1) is absolutely convergent. Hence, the definition of E[X] does not
depend on the given enumeration of the values taken on by X.
The following two theorems will be useful in the sequel.

Theorem 2.1 (The Expectation Theorem) Let X,Y be two random vari-
ables. Let the random variable X take on only the values zo,...,Zn,... and let
px(20) = Poy---,px(Zn) = Pn,... be the corresponding values of its distribution
Junetion px. Then

1.Ela-X+b-Y]=a E[X]|+b:E[Y], where a,b are reals.

2. If X,Y are indepedent then E|X - Y] = E|X] - E[Y].

8. For any continuous function f: R — R, E[f(X)] = Lazs /(2a) - Pa-
Proof of 1: Only the proof of E|X + Y] = E[X] + E[Y] will be given; the

rest will be left as an exercise to the reader. Suppose that the random variable
Y takes on only the values yo,...,Ym,... and let py (¥o) = qo,.--,Py(ym) =
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gm.... be the corresponding values of its distribution function py. Let Z =
X + Y and suppose that zp,...,zx,... are the distinct values taken on by the
random variable Z. Finally put pa.m = Pr|X =z, and ¥ = ym). ’

From the definition of expectation,

EIX+Y|=E|Z]= EZ" - Pr|Z = z].

k>0
However, for all k > 1

a-PriZ=zal= Y (Za+¥m) Pam-

Zatym=2za

It is then clear from the last two equations that

E[X+Y]= Y (za+¥m) Pam =

n,m>0

-Zo (Sre) o S ()

n>0 m20 m20 n20
On the other hand it is obvious that

Pn = E Pams dm = Epn,m-

m20 n20

The result now follows immediately from the definition of expectation and the
last two equations.

Proof of 2: The notation of the proof of part (1) will be used in the proof
of part (2) as well. Since the random variables X, Y are indepedent, it is clear
that for all n,m > 0, N

Pa,m = Pn " Gm.

Obp the other hand using the definition of expectation, and arguing as in the
proof of part 1 it can be shown that

E[X'Y]'—' Z Zn Ym " Pam = E In  Ym "Pn " dm-
n.m2>0 n,m220
It follows that
E[)i' . Y] = Z Zn 'Apn . Z Im qm | = EP‘] : E[)]'
n20 m20 )

which completes the proof of part (2).
Proof of 3:
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Let zo,...,2k,... be the distinct values taken on by the random variable
f(X). For each k > 0, let I = {n20: f(za) = zx}. Clearly, the event
(f(X) = 2x) occurs if and only if for some n € I, the event (X = z,) occurs.
Hence, the distribution function of f(X) is given by

prylz) = Y PriX =za]= ) pa.
n€ls n€ly
It follows from the definition of expectation that

E[f(X)] =) 2 prooy(ax) =

k>0

z:zk-(zpn){:mnrpn.

k20 n€le n20
This completes the proof of part (3) and hence of the theorem o

Theorem 2.2 (The Variance Theorem) Let X,Y be two random variables.
Then for all real numbers a,b,

I Varle- X +b-Y] = a? - Var[X] + b - Var[¥] + 2ab - Cor[X, ¥].
2. If X,Y are indepedent then Var[X + Y] = Var|X] + Var[Y].
Proof of 1: Only the proof of Var[X +Y] = Var[X]+Var|Y]|+2C0or(X, Y]
will be given; the rest will be left as an exercise to the reader. Let E [X] =

#, E[Y] = v. Using the definition of the variance and the expectation theorem
one can show that

VarlX +¥] = E[(X+Y = p—v)?] =
E[(X -pf+ (Y =vf+2-(X-p) (Y -] =
=Var|X]+Var[Y] + 2Cor[X, Y].

Proof of 2: Using the definition of the covariance and the expectation
theorem it is easy to see that

CorlX,Y] = E[(X - E[X]) - (Y = E[Y])] = E[X Y] = p 0.

But the right side of the above equality is 0 because the random variables X,V
are indepedent. This completes the proof of (2) and hence of the theorem o

EXERCISES
1: Let X be a random variable. Show that for all real numbers ¢, b,

1. Ela- X +b]=a - E[X] +b
2. Varla- X +b] = a? - Var|X]
3. Dla - X +b] = |a| - D|X]
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2.4 THE BINOMIAL DISTRIBUTION

A random variable X which takes on only the values 0,1,...,n is said to
have the binomial distribution with parameters n,p if and only if for any
0<k<n,

PriX =k = (:)p"(l - )"k

For any event E in a given probability space and any integer n let the random
variable B,(E) denote the number of occurrences of the event E in n indepe-
dent from one another trials. The n—th relative frequency of the event E,
abbreviated F,(E), is the random variable

FalE) = i‘r(‘—E—)

The following theorem will be very useful in the sequel.

Theorem 2.3 (The Binomial Distribution Theorem) For any svent E in
g given probability space such that p = Pr|E] and any integern > 0 the random
variable By (E) has the binomial distribution with parameters n.p. Moreover,

1. E|Ba(E)] = n - p.E|Fa(E)| = p, and
2. Var[Ba(E)]=n-p-(1-p)Var|Fa(E)] = (1/n)-p-(1-p).

Proof: To see that B,(E) satisfies the binomial distribution. notice that
the event (B,(E) = k) occurs exactly when the event E occurs k times and
the event (O — E) occurs (n — k) times. Each such event-sequence occnrs with
probability p¥(1 = p)*~*. Hence, the first part of the theorem follows from the
fact that there exist exactly (:) such sequences. ‘

Proof of part 1: Using the definition of expectation, and trivial algebraic
manipulations one obtains, '

E|B.(E)] = 3 k- . ".(1- )’*—k=
|Bn(E)] g (k)x’ P

" /n-1 _ .
R S L
k=1

=np-(p+(1-p)""" =np.

The computation of the quantity E[F,(E)] follows easily from the expectation
theorem.
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Proof of part 2: Using the definition of variance, the result in part (1) and
trivial algebraic manipulations one obtains,

Verlaa(E) = 3otk = nalt (7)1 pt =

k=0

=§k2°(2) P (1-p)Ee

mpz.g::o(:) - (1-p)k _gnp.gk. (’I:) P (1-p)k =
-n®p +kz;:ok2. (:) B D P

n i n - L n , -
-n‘p2+zk(’€-l)~(k)'p"-(l-p)" "+Z’°'(k)-p"~\l—p)" k=
k=0 k=0

—n2p? + n(n — 1)p? + np = np(1 - p).

The computation of the quantity Var|F,(E)| follows easily from the variance
theorem o

2.5 CHEBYSHEV’S LAW OF LARGE NUMBERS

In general, a law of large numbers gives a set of sufficient conditions to
enable the arithmetic mean of a sequence of random variables to tend to a
fixed constant number with high probability, when the number of summands is
increasing. The first such law to be proved is based on the following inequality.

Lemma 2.1 (Chebyshev’s Inequality) For any random variable X, and any
real number € > 0, ' ' ,
Var[X]

2

PriX - EIX)| 24 <

Proof: Let the random variable X take on only ihe values zg,...,Tp,..-
and let px(z0) = po,---,Px(Za) = Pa.... be the corresponding values of its
distribution function px. Put g = E[X]. Then

Var|X] = Z(z, - u)? - pa.
n20

It follows that
VarlX] 2 Y. (za—8)* pa

l2a=nl2e
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2> z: (Q'Pn=€2' Z Pn =

I2a=ul2¢ lza—nl2¢
e Z PriX =z,]=€®- Pr[|X = u| 2 c|o
lzn—nl2e

As an immediate application one obtains the following

Theorem 2.4 (Chebyshev’s Law of Large Numbers) Let X,...., X, be
indepedent random variables and let the random variable X dencte their arith-

melic mean i.e. R )
X1+ -+ X,

n

X
Then for any e > 0,
iz VorlXy]

n? . ¢

Pr[|lX - E[X]| 2 ¢ <

Moreover,
max;<i<na Var[_\'.]

n-e

Prl|lX - E[X]|2 ] €

Proof: The proof is immediate from the variance theorem and Chebyshev's
inéquality e

The next theorem, which is an immediate consequence of Chebyshev's in-
equality, will be applied frequently in sections 3 through 5.

Theorem 2.5 (Weak Law of Large Numbers, Bernoulli) Suppese that the
event E occurs with probability p. Then for any integer n > 1 and any « > 0,

p-(1-7) 1
-pl2¢ < < .
PrilFa(E) - pl2 4 n-e2 T 4n.¢2
Proof: This is immediate from the binomial distribution theorem, Cheby-
shev's inequality and the fact that 4p(1-p) <1 e

2.6 BERNSHTEIN’S LAW OF LARGE NUMBERS

The Bernoulli estimate for the weak law of large numbers given in theorem
(2.5) can be substantially improved. The improvement is based on the following
inequality.

Lemma 2.2 (Markov's Inequality) For any random varisble X, any real
number ¢ > 0, and any nondecreasing continuous function [: R — R, which
takes on only positive values,

El(X)]

PriX 2¢ < 1)
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In particular, if E[X] > O then
PriX 2 ¢ EIX]| < <.

Proof: Let the random variable X take on only the values zo,...,Zn,...
and let px(zo) = Pos.-.,Px(Za) = Pn,... be the corresponding values of its
distribution function px. From the expectation theorem, ’

EU(X)] = Zf(zn)‘pn 2

3 f(za) pa2 Y Sle) pn=
za2e¢ za2¢
£€)- S pa = 1(e) - PriX 2 .

zp2€

This completes the first part of the lemma. To prove the second part, apply the
first part to the identity function and use ¢ = ¢- E[X]e

As an immediate consequence of the second part of Markov's inequality, with
X' = eflX—EIXD ¢ = ¢t one obtains that for all ¢,

Pr [ee(x-E[X]) >E [ee(x-s(xl)] e‘] <et. (5)
Clearly inequality (5) is equivalent

t+logE [e‘(X'E(XI)]] < ot

(6)

Pr [x > E|X] + :

The next lemma constitutes the major step in proving Bernshtein's sharp-
“ening of the weak law of large numbers.

Lemma 2.3 (Bernshtein) Let X, ..., X be a sequence of indepedent random
variables with zero ezpectations and which are bounded by the constant K. If
X=X,+-Xn then

2.
Pr [e"x] < exp [C——V—gr—[—)ﬂ (l + Eg— ‘e‘K)] .

Proof: It is clear from the expectation theorem that

E [e"xl = l:I E [e;'x‘] . (7)

=1

&
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Hence, using the variance theorem and equation (7) it can be assumcd without
loss of generality that n=1,X = X;. LetV = Var|X]. It follows that

E[eX]=E [:O %x“] = i %E [x¥] =

=0 k=0

2 o0k
1+ E[X]+ SE[X]+ 3 SEXY) <

k=3

2 = e"v n n
1+ -;;V + _;_ -k—'E [X'] ]\'k"’ =
“ k=s

€2 =Lk k2
Cy CykE?=
1+3 +§_:3 A

” /] o0 k=2
€ € (eK)s—* _
”EV"EV}‘; T

1
2 6 (8)

3

K
1+EV |-+ cKe ] .

Using the inequality 1+ u < ¢* and equation (8) one obtains that

N K
E [e"x] <exp |V (,1, + eKe )] o

6

Let X,....,Xn be a sequence of indepedent random variables with zero
expectations and which are bounded by the constant K. PutX=X+-X,.
Using inequality (6) to X,-X, applying lemma 2.3 to the random variables
X1,....Xn and =X},...,—Xn, and using the fact that E[X] = 0 it follows
that for all t,

t+Var|X] (1 + KX
Pr [le > e(' s ) <2t (9)
Putting
(2]
D = D|X],e= ——‘/lg—?,/\ = /2t

inequality (9) becomes

Pr [|X|2AD (1+%%e*5“)] <2.eF, (10)
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Assuming that "T;(- < 1, one obtains that

AK
eD <e<3,

AK
[I—A'(l‘fﬁ).

and using the fact that 4 > ) inequality (10) becomes

Putting

2
Prl|X| > uD] € 2-¢~% <exp |-

(11)

2
K
2(1+%)
To sum up, it has been shown that

Lemma 2.4 Let X;,..., X, be o sequence of indepedent random varisbles and
let K be a constant such that for all i, | X; - E[Xi]| < K. If X=X, +---Xn
then for all0 < p < -,5-('-,

u?

2 (14 25)

Using the last lemma and the binomial distribution theorem one easily ob-
tains that

Pri|X - E[X]| 2 pDX]| S 2 ¢ <2 exp |-

Theorem 2.6 (Bernshtein’s Law of Large Numbers) Suppose that the
event E occurs with probability 0 < p < 1. Then for any n > 1 and any
0<e< p(l - P)’

—ne?
<2.exp|———1.
z| = "[4p(1 =7)

—ne?

Pr[|FalE]=p| 2 €] < 2-exp
2(1 - p) (1+ g50i55)

EXERCISES
1: Derive theorem 2.6 from lemma 2.4 . Hint: apply lemma 2.4 to the
random variable X = B,(E), to K = 1 and p = (ne)/D.

2.7 THE MONTE CARLO METHOD

There are many computational problems whose solution via deterministic
procedures is cumbersome. For such problems it was observed that statistical
sampling methods can approximate the solution much faster than numerical




2 PROBABILITY THEORY 45

methods based on classical analysis. Apn example of such a problem is the
computation of 7, the area of the unit circle.

Buffon’s Needle Problem: Suppose that parallel lines are drawn on the
floor at a distance d from one another. Let a needle of length ¢ less than d be
thrown at random on the floor. What is the probability that the needle will
touch one of the parallel lines?

Cy/e.

s d—Te— |e_1ZI

Figure 2: Buffon's Needle

Let the position of the needle be as in figure 2. Suppose that C is the center
of the needle, z (respectively d — z} is the dictance of the center from the line L
(respectively L') and i the angle between the needle and the line perpendicular
to L (see figure 2). For the sake of the argument that follows it will be assumed
that the angle p and the distance z are distributed uniformly over the range
-7/2 < £7/2and 0 £ z < d respectively. It is apparent that the position
of the needle is uniquely determined from the pairs of coordinates (zr, ), where
0<z<dand ~7/2 < ¢ < n/2. It is also clear from figure 2 that the needle
will pot touch any of the lines L, L’ if and only if

Spgg, %-cosp(z(d—é-cow (12)

Let 1 be the set of pairs (z,¢) satisfying equation (12). Hence, the probability

that the needle will not touch any of the parallel lines is

area(Ql) _ d‘ﬂ—Q-l_l
d-rn ~  d-m

where the area of {2 is computed via

[ ST

(]
~

(13)

_a
Y

x/2

area(]) = / do(d~ L -cosp)
2

—'/

It follows from equation (13} that the probability p that the needle will touch
one of the lines is

2:¢
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Equation (14) and the weak law of large numbers can be used as the basis for
an experimental evaluation of 7. Indeed, assume for simplicity that d = 2 and
¢ = 1. Then p = 1/7. Consider an experiment in which the needle is thrown
indepedently n times, and let the random variable X; be equal to 1 if the needle
intersects a line on the s-th throw and 0 otherwise. It follows from theorem 2.5
that for any € > 0,

7 ~4n-e?’ (15)

P’_HX1+---X,. 12€]< 1
n 7

Hence, with high probability (the lower bound 1 — 1/(4n¢?) on the probability
is determined from inequality 15),

TN —
= X!+"’X“'

In general, a Monte Carlo method is a statistical sampling method that
can be used to approximate the solution of a certain problem. The computa-
tion necessary to find the solution is called a Monte Carlo computation.
Although a problem might admit more than one Monte Carlo solution, there
exist problems for which no Monte Carlo solution is known.
~ In sections 3, 4 and 5 several Monte Carlo computations will be included
in the construction of circuits. As described above these computations will in
fact be statistical sampling techniques which will enable the construction of
polynomial size circuits solving the corresponding problems.

It should also be pointed out that an essential step in applying the Monte
Carlo method for the solution of a certain problem is the ability to do random
sampling. However, due to apparent technical limitations it would be unrealistic
to hope that one could produce via an unbiased execution of an experiment a
perfectly random sampling. Thus, one is led to replace the notion of random
with that of pseudo random. Details 6n this last concept will be studied in the
next section 3.

2.8 BIBLIOGRAPHICAL REMARKS

|GK] and [Kol] give nice introductory accounts of the theory of probability.

All the random variables considered in this section were discrete. However,
this restriction would not be necessary if the reader were familiar with the
notion of Lebesque integral. For a more general development of the notions of
probability theory the reader should consult e.g. [F|, [Gn], [Rel], [Re2] ,[Ro].
The procf of Bernshtein’s law of large numbers given here is partly based on
the account given in [Rel], pp. 322 - 326, and [Re2], page 200.

Buffon’s needle problem is due to Buffon (1707 - 1788) and is described in
his Essai d’Arithmetique morale. For more information on the Monte Carlo
method the reader can consult the excellent introductory book [So|. There are
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numerous books and essays on the Monte Carlo method. These include [Hou],
[Shr], [Br], [N], [Hal].
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3 PSEUDO-RANDOM GENERATORS
3.1 INTRODUCTION |

Of the four pseudo-random generators presented in this section the first two,
the Linear Congruence Generator and the 1/p-Generator (see subsections 3.2,
3.3) are predictable, while the other two, the Quadratic Residue Generator and
the Index Generator (see subsections 3.10, 3.8) are unpredictable.

In subsections 3.2, 3.3 the proof of the predictability of the Linear Con-
gruence Generator and the 1 /p-Generator respectively is studied. Subsections
3.5 and 3.6 examine questions relating to factoring and to the periodicity of
quadratic residues respectively, and they will be used in the study of the se-
curity of the Quadratic Residue Generator. The definition of the model of
computation to be used in the sequel, the probabilistic polynomial size circuit,
is given in subsection 3.7.

The reader should notice some of the general notions emerging from the
presentation in subsections 3.10, 3.8. These notions, whose study is postponed
till section 5, include the notions of 1 — 1, one-way function, amplification of
advantage and unpredictable pseudo-random generators. An understanding of
the present material will not only provide a good introduction to the general
theory, but will also help introduce a number of examples essential to clarifying
the development of the above concepts.

32 THE LINEAR CONGRUENCE GENERATOR

Let z,a,b,m be given fixed but unknown positive integers such that m is
greater than max{a,b, z}. Define the infinite sequence zo, zy,..., Zi, .- and the
. infinite sequence z},z5,...,z},... of differences as follows:

I if 1=0
*= 1 (a-zi=y +b)modm if i >0,

and
ziy, = (zig1 — 7)), where i 20.

Notice that for all + > 1,
zi,, =a - zymodm.

The linear congruence generator, abbreviated LGEN accepts as input
a quadraple < z,a,b,m > as above; the output LGEN(z, 4,5, m) is the infinite
sequence Zg,Zy,...,Z;,... defined from z,a,b, m as above.

Example 3.1 LGEN(8,7,5,12) = 8,2,7,6,11,10,8,2,7,6,11,10,. ..

The problem to be investigated in the sequel is the following:



3 PSEUDO-RANDOM GENERATORS 49

Question: Does there exist an efficient algorithm which when given as input
a sufliciently long initial segment of the infinite sequence 7o, 7;....,7,... will
output integers a’,b', m' such that for all i, z; = (&' - z,_; + ') modm'?

For each i > 1, let g, = ged(z},...,z}).

Lemma 3.1
The least i > 1 such that g|7},, is <2+ [log, m].
Proof: Let t = the least 1 > such that g,|z},,. It is clear that for all 1,
g =71} and g4y =ged(g, 7iy,y)
However, if g; does not divide 7], then giy; < gi /2. Consequently,

-2 gt-3 9
gt-1 < g2 S T < 31
It follows easily that,

[
ge-1 S ot—z = oi-2°

and hence,
t -2 < log, |z} < log, m.

This completes the proof of the lemma.e
Using the notation described above the following result can be proved.

Theorem 3.1 (J. Plumstead) There is an efficient algorithm A which when
given as input lhe sequence r9.75,.... Zi41, produced by LGEN (z.a,b.m),
where t = the least § 2 1 such that gi|z}, , it will output integers a',b' such
that for alls 21,

7, =(a' - zi-y +b') modm.

The algorithm A runs in time polynomial in log, m. Moreover, t < 2+ [log, m].

Proof: The upper bound on the size of ¢ is an immediate consequence of
lemma 3.1. The algorithm A is defined as follows:

Input: IOy T1aeeey Ttgye

Step 1: Put 7} = z; = z,_,, where 1 <i <t +1.

Step 2: Put d = gcd(z},...,z}).

Step 3: Compute uy,..., u; such that

Output:
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b= Zy — G' - Ty
It will be shown that
Claim: o'z} = z},, modm, for all i 2 1.
Proof of the claim: Let g = gcd(m,d). Then

t t
— ! — [
ad=a§ .u.--z,-=E 6 -u;-z, =

i=1 i=1
t t z'_
Zug Tipy = dz g - -'—;l = o'd modm.
i=1 =1

It follows from the definition of g that

e = a'mod (2) .
g9

However, for all § > 1, g] ged(z!, m). It follows that for alli > 1,

a = a’mod (g—c_d—('::—,_m_)) (1)

But a is a solution of the congruence
) [ R—
vz} = zj,, modm. (2)

Ap immediate consequence of the theorem on solving linear congruences is that
every solution of (2) is of the form

Jjm . ’
—_ 7=0,1,..., '.m) = 1.
a+ ged(=,m) J 1 ged(zi, m)
* 1t follows from (1) that a’ must be a solution of congruence (2). This completes
the proof of the claim.

The rest of the proof of the theorem follows from the above claim and the
following congruences:

a"$§+b-2(+1-='a"$¢+(31—d"20)-2(+15

[}

i
' (zi = 20) = (zig1 = 71) = G'ZI;: - ZI;:+1 =

k=1 k=1

%
Z(a' -z} = z}4,) =0 modm.e
k=1
Predicting the modulus is a rather intricate problem and the reader is ad-
vised to consult [Pl] for more details. The periodicity of the linear congruence
generator, as well as the problem of choice of modulus that will make the gen-
erator as secure as possible is studied in detail in subsection 3.2.1.2. of [Kn].
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EXERCISES

Throughout the exercises below the notation of the above subsection will be
used. Show that foralln > 1,

1: 1, =a"ro+ ("' +---+a +1)b modm.

2: 1, = a7} modm.

Further, assume that gcd(a, m) = 1 and show that

3: 7, = (zn4; = b)a¥(™)=! modm.

4: If (a — 1)|b then 7, = 7. (m)4n. Hint: use exercise 1.
5: 1, = T (;ny4n- Hint: use exercise 2.

3.3 THE (1/p)-GENERATOR

Throughout the present subsection p will denote an odd prime
number, g will be a fixed primitive root of Z;, and [p| the length of
p in base gi.e. [p| = [log,p]. An integer r such that 0 < r < g will also
be called a g-digit. Given any integer r such that 0 < r < g define the infinite
sequence ro,f1,..., m,... as follows

rm =ro-g™ modp, m 2 0. (3)

Since g is a primitive root of Z;, it follows using the Euler-Fermat theorem,
that for any 1 < r < p the period of the sequence ro,r),..., m,... equals p~ 1
ie. p—1 = the least m such that ro = r,,. Moreover, {ro,r1,...,rp_2} =
{r.2,....p-1}.

It is an immediate consequence of the Euclidean algorithm and the definition
of rp that for each m > 0 there exists a nonnegative integer ¢,4; < g, such
that

1
Tm o Imt1 2 Tmi (1)
p [ [ p
It follows that for all m > 0,
To_ @1, Q2 gm 1 rm
—= =4 = 4. .= _— 5)
p 9 ¢ 9™ 9" p (
Multiplying equation (4) by g™ p one obtains
rog” = (010" 4 020"+ gm)pt (6)

For any sequence z,,72z,...,2m of g-digits let the notation
Z1Z2...Zm, I1XT2...Zpm,
be used as an abbreviation of

- - T
VA Y L Y I 7+—§+--.+——.
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respectively. With these abbreviations, equations (5), (6) can be generalized,
for each 1 2 0, to

ri 1 r
;‘ = gi419i+2 -+ Jigm + r —:;ﬂ, (7)
rig™ = (qi419i42 - - Qi4m)P + Titm (8)

An infinite sequence z;,Z2,...,Zm,... of g-digits is called a de Bruijn
sequence of period p -1 and base g if the sequence z;,22,...,Zm,-..
of g-digits is periodic with period p — 1, every finite sequence of g-digits of
length |p| — 1 occurs at least once as a segment of z1,Z2,...,Zm,.. but every
finite sequence of g-digits of length |p| occurs at most once as a segment of
Zis 22y sy Tmgoeee

Example 3.2. For p = 3 (= 11 in base 2), the sequence 0,1,0,1,... is o de
Bruijn sequence of period 2 and base 2.

2. For p=5 (=101 in base 2), the sequence 0,1,1,0,0,1,1,0,... is a de Bruijn
sequence of period 4 and base 2.

The 1/p generator, abbreviated by PGEN, accepts as input the triple .
< p,r,g >, where p is a prime, 0 < r < g and g is a primitive root of Z;; the
output PGE N(p, r, g) is the infinite sequence ¢1,42,...,qm,- .. of g-digits which
arises when the rational number r/p is represented in base g (see equation (7)).

The notation established above will be used during the cource of the proof
of the theorems below.

Theorem 3.2 For any primitive root g modulo p and any g-digit r, the sequence
PGEN(p,r,g) is a de Bruijn sequence of period p— 1 and base g.

Proof: In view of equation (7) one obtains that for all £ > 0

o0 .
k44 ()

Tk
— = Gk+19k42--- = ;
P +19k+ P

=1

But the sequence ro,r;,...,7m,... is periodic with period p — 1 and hence for
all i >0, r; = riyp—1. It follows from this and equation (9) that

Qit10i42 o = QidpQitp4l - - (10)

It follows that the period of the sequence go,¢1,...,9m,... must be < p—1. It
remains to show that it is exactly equal to p— 1. Indeed, assume on the contrary
that the period is i and 0 < ¢ < p — 1. Then it clear that

Qiv19i42--- = Q142 -, (11)
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and hence ro/p = ri/p, which is a contradiction. lt will pow be shown that the
sequence ¢;.qz.... is a de Bruijn sequence. Let d = d,,...,d; be an arbitrary

finite sequence of g-digits of length t 2> |p|— 1. It is then clear that the following
statements (12 - 15) are equivalent

d is a segment of the sequence g;,¢q2,... (12)

for some i > 0,d is an initial segment of gi41,qu42y- - (13)

for some § > 0, d is an initial segment of the expansion of %‘ (14)
for some k > 0, d is an initial segment of the expansion of g (19)

However, to each finite sequence d = dy,...,d; of g-digits of length t there
corresponds exactly one subinterval

i1 ‘
[L!, ‘—-';-—) , where0 <1 < g'.
g g

of [0.1): namely, the subinterval to which the real number .d, ...d: belongs.
Since, g'FlI=! < p < g/l it is clear that

1 1 1

‘g-lf_“l < ’-, < ————gh’l-l . (16)

It is now easy to see using equation (16) and the properties (12 - 15) that for
eacht 2 0,

. k ) + 1
there is at least one k < p such that — € . 1 .
. P glpl‘l glﬂl’l

there is at most one k < p such that k € -'—, i+l .
P g'F| g'ﬂ
This completes the proof of the theorem.o
The unpredictability of the 1/p generator follows from the theorem below.

Theorem 3.3 (Blum-Blum-Shub) Let g be a primitive root modulo a prime
p, and 0 < r < p. Then there there exists an algorithm A running in time
polynomial in |p| such that if k = [log,(2p*)] then for all m 20,

A(ngm+lsqm+23-'-’qm+k) =< Dy™m > .

Proof: Let A, /B,, Az/B;, ... denote the sequence of convergents of the fraction
(gm+1qm+2 - --dm4+k)/g* (see section 1). By assumption, k = [log,(2p%)] 2
logg(2p2), and hence g* > 2p®. It is then clear, using inequality

1 Tk4+m 1

— < —

¢ r g
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and equation (8) that

(qx41- - qram) _m| 1 o 1
g pl ¢~ 2p°

It follows that rn, /p is a convergent of (gm+19m+2 - - - m+k) /g¢* and hence,

m _ -4-"-, for some ¢ > 0. (17)

p i
Since, gcd(rm,p) = ged(A;, Bi) = 1, it follows that rp, = Ai, p = Bi. To
complete the proof of the theorem it will be shown that A;/B; can be ob-
tained by generating the sequence A1/By,Az/Bz,... of convergents until the
j-th fraction A,/B; has gm4y1,dm+2+-- 1 Im+k 33 its k first g-digits. Indeed,
let j be the first index such that the first k g-digits of the fraction A;/B; are
Gm41:Gm42++--+gmak. It follows from equation (17) and the minimality of 5
that j < i. Assume on the contrary that A;/B; # A;/B;. Then it is clear that

A.'Bj—A,'B.“_lA_,"_ é_l
B;B; “|Bi B,

1
BiB; ~—

<Ll
PN

Since j < i, it must be true that B; < B; and hence 2B? = 2p% < ¢¥ < B;B; £
B?. which is a contradiction. The amount of steps needed to compute A B;is
O(number of steps needed to compute the i-th Fibbonacci number), and hence
both A; and B; can be computed in polynomial in |p| many steps.e

EXERCISES

Let ¢ be a primitive root modulo p, p a prime, 0 <r < p.

1: There exists a polynomial in |p| time algorithm, A, such that for all m,
Ay (Pv 9vdm+1,dm42s- - 9m+|p|) =Trm.

2: There exists a polynomial in |p| time algorithm, A2, such that for all m, 1,
A2(p,9,Tm t) =< Tm—1,Tm+is Imy- oy dmi >-

3: There exists a polynomial in |p| time algorithm, Aa, such that for all
m, if rmg # rm+1 then Az(g,rm,rm41) = p. Hint: Let S be the set {{grm —
rme1)/i + i =0,1,...,9 — 1}. By equation (4), p = (grm - rm+1)/9m+1 € S.
Show that p is the unique z € S such that foralli=1,...,9, ged(z, i) = 1.

3.4 QUADRATIC RESIDUES IN CRYPTOGRAPHY

In constructing cryptographic protocols one considers integers n = pq, where
p, q are two distinct odd primes. For such integers n it will be necessary to study
the behavior of the Langrange-Jacobi symbol modulo n. From now on and
for the rest of this subsection it will be assumed that n = pg, where
p,q are two distinct odd primes.
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Let z be a quadratic residue modulo n. Call v a square root of r modulo
n, if 42 = r modn. The next theorem determines the number of square roots of
any given qudratic residue. ‘

Theorem 3.4 Any quadratic residue has ezactly four square roots modulo n.

Proof: By the Chinese Remainder theorem there exist integers a,b such
that
a = 1modp and ¢ = —1modg,

b= —1modp and b= Imodg

Since both p.g are odd it is clear that a,b,1,—1 are distinct modulo n.
Morcover, a2 = b2 = 1 modn. It follows that 1,-1,a,b are four distinct modulo
n square roots of 1. The rest of the proof follows from exercise 1 of the subsection
on the homomorphism theorem. o )

For the rest of this subsection it will be assumed that p = ¢
3 mod4, i.e. both (p—1)/2 and (g — 1)/2 are odd. It follows that (-1lp)
(-1|g) = =1 and (-1|n) = (-1|p)(=1|g) = 1. Hence, forall z € Z (-z|n) =
(z|n). ‘

Theorem 3.5 (i) Ifz? = y* modn, and z,y, —z,—y ore distinct modulo n then
(2]n) = = (gIn). '

(ii) The mapping z — z° modn(z € QR,,z° modn € QR,) is 1 — 1 and onto
i.e. every quadratic residue has o unique square root which is also o quadratic
restdue modulo n. ’

Proof:(i) Assume that z and y are as above. Then, it is clcar that n =
rq|(z® = y%) = (z - y)(z + y). Since z,-z,y,—y are distinct modulo =, neither
p nor q can divide both z — y,z + y. Without loss of generality assume that 7|
(r — y). and g|(r + y) (the other case is treated similarly.) Then z =y modp
and 7 = —y modg. It follows that (z]|p) = (y|p) and (z]g) = —(y|g). and hence
the proof of part (i) is complete.

(ii) Let a be any quadratic residue modulo n. By the previous theorem 2 has
exactly four square roots modulo n, say r, —z,y, —y. By part (i} (zIn) = =(ulr).
Let r be the square root of a such that (r|n) = +1. It fcllows that either
(r]p) = (z]g) = +1 or (-=z]p) = (—z|g) = +1. Thus, one of z.—r must be a
quadratic residue modulo n. This completes the proof of the theorem. o

The above theorem implies that the mapping

z — 2% modn, where (z € QR,, 7> modn € QR,)
is 1 — 1 and onto, and hence it has an inverse which will be denoted by

z — /2 modn, where (z € QR,, /7 modn € QR,).
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It is immediate from the above considerations that every quadratic residue
£ modulo n has four square roots z;, z2, s, z4 Which satisfy: (z:]p) = (z1lg) =
1, (z2lp) = (z2lg) = —L(zslp) = ~(zsg) = +L,=(zalp) = (zale) = +1.
Moreover, the square root z, is also a quadratic residue modulo n.

EXERCISES

1: Show that |QRa| = v(n)/4, |23 (+1)] = p(n)/2, |Z3(-1)] = p(n)/2.

2: The mapping z — z° modp(z € QR,, 22 modp € QR,) is 1-1 and onto
i.e. every quadratic residue has a unique square root which is also a quadratic
residue modulo p.

3.5 FACTORING AND QUADRATIC RESIDUES

The main theorem of the present subsection is due to Rabin. In a sense it
shows that the problems of factoring a composite number, and solving quadradic
congruences modulo a composite number are equivalent.

Theorem 3.6 (Rabin) The following statements are equivalent:

(i) There is an efficient algorithm A such that for all n, if n is the product of
two distinct odd primes both congruent to 3 modulo 4 then A(n) = p, where p is
a prime factor of n.

(ii) There is an efficient algorithm B such that if n is the product of two distinct
odd primes both congruent to 3 modulo 4 and z € QR, then B(n, z) = \/z modn.

Proof: (ii) = (i)

Assume the algorithm B is given. The algorithm A is defined as follows:

Input: n :

Step 1: Choose a random y such that (y|n) = -1.

Step 2: Compute z = y% modn.

Step 3: Compute z = B(n, z).

Output: gcd(y + z,n).

It remains to show that this algorithm works. Indeed, it is clear that r =
y? = 22 modn. Hence, n|(y2 - z?) = (y — z)(y + z). Assume that n = pq.
It follows that pg|(y — z)(y + 2). But, (y|n) = —(z|n) = -1 and therefore
y # z modn. Consequently, gcd(y + 2, n) must be one of the prime factors of n.

(i) = (i |

The algorithm B uses the Adelman-Manders-Miller algorithm for computing
square roots modulo a prime and is defined as follows:

Input: n,z

Step 1: Let p = A(n),q = n/p.

Step 2: Compute u € QR,, v € QR, such that z = u? modp, z = v? modg.

Step 3: Compute a,b such that 1 = ap + bq.

Step 4: Compute ¢ = bg and d = ap. '
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Output: cu + dv.

Let w = cu + dv. It is clear from the above algorithm that w? = z modn
It remains to show that w € QR,. (w|n) = 1. Indeed, notice that ¢ = 0 modg
and ¢ = 1 modp,d = 0 modp and d = 1 modg. Hence, (v|p) = (u[p) =1 and
(w]|g) = (v]g) = 1. Thus, w € QR, and w € QR, and consequently, w € QR,.¢

EXERCISES

1: Show that the following statements are equivalent:

(i) There is an efficient algorithm A such that for all n, if n is the product
of two distinct primes then A(n) = p, where p is a prime factor of n.

(ii) There is an efficient algorithm B such that if n is the product of two
distinct primes then B(n) = ¢(n). Hint: Notice that ¢(n)=n-p-g+1.

3.6 PERIODICITY OF QUADRATIC RESIDUES

For each n and each z in Z the order of z with respect to n, abbreviated
od,(z), is the least nonnegative exponent e such that z° = 1 modn. Through-
out this subsection n = pg, where p, ¢ are two distinct odd primes such that
p = ¢ = 3 mod4. For each quadratic residue z € QR, define the infinite
sequence i
' s Tn, =2y Tn,=1.Tn 0 =TI, Tn1yTn2s---

of quadratic residues as follows:

z,..-E{ 2 modn if {20
: VI i i<0
The modulus n used as a subscript in 7, ; will usually be omitted. but this will
cause no confusion because n will be easily understood from the context.

Call period of z, abbreviated #(z), the least positive integer ¢ such that
z; = z. The purpose of the theorems below is to determine the size of 7(z).

Theorem 3.7 (Blum-Blum-Shub)
odn(z) = Mn)/2 and ody(n)/2(2) = MA(n)) = A2 (n)) =7(s).

Proof: Put ¥ = #(z). By assumption A{n)/2 is the least exponent ¢ such
that ¢ = 1 modn. But r5 = r = 22° modn. It follows that 22" =1 = 1 mod».
and consequently A(n)/2}(2¥ = 1). Thus, 2 = 1 mod(\(n)/2). Usinc the
bypothesis od(a)/2(2) = A(M(n)) one obtains that A(A(n)) = the least exponent
e such that 2¢ =1 mod(A(n)/2). It follows that A(A(n))|7.

Hence, the theorem will follow from the following

Claim: 7|A\(A(n))

Proof of the Claim: First notice that if ¢ = 5% modn then od,(a)|oda(b).
Indeed, set ¢ = odn(b). Then b* = 1 modn. Hence, a¢ = b°¢ = 1 modn.
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Thus od,(a)|oda(b) = e. It follows from the above observation that for all
i,0dn(2i41)|0dn(zi). However zo = zy. Itis therefore clear that for all i,0d, (z;)
= odn(70). Further, it can be proved that od,(z) is odd. Indeed, assume on the
contrary that od,(z) = 2°m, where m is odd, e > 0. Then 22'm = g2 Im =
1 modn, which contradicts oda(z1) = 0da(Zo)-

It is immediate from the definition of 7(z) = 7 that 7 = the least exponent
e such that 2¢ = 1 mod(oda(z)). Since gcd(2,0dn(z)) = 1, it follows from
Carmichael’s theorem that 7|A(oda(z)). But ods(z)[A(n), and consequently
A(odn(2))|A(A(n)). This is enough to complete the proof of the claim, and
hence of the theorem.e ’

The above theorem gives necessary hypothesis which imply that MM(n)) =
7(z). Next it will be determined for which integers are these conditions satisfied.
A prime number p is called special if there exist prime numbers p;, p2 such that
p=2p +1,p1 =2p2+1and p; >2. The number n = pq is called special if
both primes p and g are special. ’

Remark: It is conjectured that there exist infinitely many special primes.
Some examples of special primes are obtained for ¢ = 11,23, 83, in which case
p = 2¢ + 1 is a special prime. For a detailed discussion of this conjecture, as
well as for a table of bigger special primes see [Scha] (pp. 28 - 30).

Theorem 3.8 (Blum-Blum-Shub) Let n = pq be special, such that p = 2py +
1,py =2p2+1,9=2q + 1,1 = 292 + 1, and p1,p2, 01,92 are primes. If2 is a
quadratic residuc modulo at most one of p1,q1 then

odr(ay/2(2) = M(A(n)).

Proof: It is an immediate consequence of the definition of the Carmichael
function that A(n) = 2p1q1, A(n)/2 = P11, A(M(n)) = 2p2qa, MAMn)/2) = 2p2ge.
It follows from Carmichaels theorem that ody(n)2(2)|}(Mn)/2) = 2p2gz. As-
sume on the contrary that Od)‘(n)/g(2) = 2p,q2. In each of the three cases below
a contradiction will be derived

Case 1: 0d)(n);2(2)|2p2

It is clear that 2272 = 1 mod(A(n)/2) = 1 mod(piq,). Hence, 27 =
1 modg,. By the Euler-Fermat theorem it is true that 2292 = 1 modyg,. It
follows that 26<4(22.242) = 1 modyg,, and consequently 2° = 1 modyg;, since
gcd(2p2,292) = 2. But this contradicts the fact that ¢, > 3.

Case 2: ody(n)/2(2)]292

This is similar to case 1.

Case 3: 0odx(n)/2(2) = P2¢2

It is clear that 227292 = 1 mod(A(n)/2) = 1 mod(p1q:). Hence, 2?7272 =
1 modg,. Since p; is an odd prime the last congruence implies that 292 #
-1 modg;. By Euler's criterion, and since g; = (1 — 1)/2, 292 = (2|q:) modg,.
It follows that (2|g;) = 1, and hence 2 € QRy, Similarly 2 € QR,,, which is a
contradiction.e
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Theorem 3.9 |{z € QR, : 0da(2) = /\(n)/Q}I = 0(n/((loglog n)?)

Proof: By assumption n = pg is a product of two primes. Z; (respectively
Z;) has exactly ¢(¢(p)) (respectively ¢(¢(g))) generators. Let g € Z, (respec-
tnel\ h € Z‘) be a generator of Z; (respectively Z7 ). By the Chmese Remain-
der theorcm there exist a unique modulo n integer a such that ¢ = g modp and

= h modg. It follows that odn(a) = A(n) = lem(p — 1,4 — 1). Consequently,
there exist at least (i (p)) - ¢(¥(g)) elements in Z} of order A(n). It follows
from a theorem of E. Landau that for all z > 2,

< 6loglogz.

z
p(z)
To complete the proof of the theorem notice that

clelp) - el (@)= elp=1) - ¢lg = 1) 2

p—1 g-1 Sn-p- q—l
Gloglog(p—l) GIogIog(q—l) ~ (Gloglogn)?

(n/2)/(6loglog n)? = Q(n/(({loglog n)?).

But the mapping z — 2> modn(z € Z}.z° modn € QR,) is 4 — 1. Morcover,
if r € Z} is of order A(n) then 22 modn € QR, is of order A(n)/2. Using this
observation one can complete the proof of the theorem easily.e

The next theorem establishes the connection between computing the period
of quadratic residues and the factoring problem.

Theorem 3.10 (Blum-Blum-Shub) Assume there erist efficient algorithms
A. A’ such that for all-n which is the product of two distinct odd primes. for ell
€ QR, and alli 20,

A(n,z) =7(z) and A'(n.z.i) =1

Then there exists an efficient algorithm which given as inpul an integer n which
is the product of two distinct odd primes, it will output a prime farcter of n .

Proof: The factoring algorithm is defined as follows:

Input: n

Step 1: Choose a random y such that (y|n) = -1.

Step 2: Compute z = y* modn.

Step 3: Compute ¥ = A(n, z).

Step 4: Compute z = A'(n,z,7 - 1).

Output: gcd(z — y,n).

The proof that the above algorithm works is similar to the proof of theorem
3.6 and uses the fact that in the above algorithm z = y? = :? modn.e
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EXERCISES
1: Prove results similar to those of theorems 3.7, 3.8, 3.9 for quadratic
residues modulo p, where p is prime; to be more specific show that for z € QR,:
(i) 1f odp(2) = Mp)/2 and 0dx(p)/2(2) = M(p)) then A(A(p)) = 7(z).
(ii) If p is special and 2 € QN R(p_)/2 then odx(p)/2 (2) = M (p))-
(iii)| {z € QRy : 0dp(z) = A(p)/2}| = Q(p/ loglog p).

3.7 THE CIRCUIT AS MODEL OF COMPUTATION

An (n,t) circuit is an acyclic, labeled (i.e. with labeled nodes), digraph (i.e.
with directed edges) consisting of

1. alist of n distinguished input nodes each of which has indegree 0 (i.e. no
entering edges) and outdegree 1 (i.e. no exiting edges),

2 internal nodes each of which has outdegree 1 and is labeled with one of
the symbols &, -,

3. a list of t distinguished output nodes each of which has outdegree 0 and
is labeled with one of the symbols &, -.

The nodes of the circuit are also called gates. Each gate of the circuit
can hold one of the two boolean values 0 or 1. An assignment of the input
nodes of an (n,t) circuit is an n- tuple (z1,.--,25) € {0,1}". If an internal
@ (respectively -) gate has indegree k then the output of this gate on input
(uy,...,ux) € {0,1}* is uy @ - -- ® ux (respectively u;---ug.) The value of the
circuit on the input assignment (zy,...,2,) € {0,1}" is the value of the circuit
obtained at the ¢ output gates when one evaluates the output of each of the
internal gates in topological order along the circuit.

Thus, every (n,t) circuit C determines a function

Jo: {01} — {0,1}!

such that fo(zy,...,%a) = (%1,...,4t), where (y1,---,%¢) is the value of the ¢
output gates of the circuit C when the input assignment is (21,...,2%a)-

Example 3.3 The circuit in figure | computes the function

f(z1,... ,Ty) = [(21 Dz,D23)D (24 15)] 5 [(26 -z7) - (78 @ 1’9)].

The size |C| of the circuit C is the total number of its gates and the depth
d(C) of the circuit is the length of its longest path.

An (n, m,t) probabilistic circuit C is an (n+m, t) circuit with two distinct
types of input gates:

1. a list of n distinguished input gates called deterministic gates,
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Figure 1: A Deterministic Circuit

2. a list of m distinguished input gates called random gates.

Let C be an (n,m,t) probabilistic circuit. To evaluate the value of (' on
the input assignment (z,,...,2,), one assigns the deterministic input gates
the values (r;,...,7,), the random gates the values (y;,...,ym) each with
probability 1/2 and then computes the output of the circuit C on the input
assignment

(T10. e s Zno¥1ee ey Um)-

A polynomial size family of probabilistic circuits is a family ' =
{Ca : n 2 1} of probabilistic circuits such that

1. each circuit C, has n many deterministic input gates, and

2. there exists a polynomial with positive integer coefficients of degree > 1
such that |C,| < P(n), for all n > 1.

From now on and for the rest of the present monograph all the
circuita considered will be probabilistic, unless otherwise mentioned.
For that reason, the name circuit whenever used will be identical to
probabilistic circuit. In addition, in order to siinplify the notation,
for any circuit C considered, mention of its random gates will usually
be suppressed. Thus, if C is an (n,m, 1) probabilistic circuit and ¢ > 0 then
the symbol

PrlC(z)=0]2¢

will mean that with probability > ¢ the circuit C will output 0 on inpnt =z,
where the probability space is the set {0,1}™.
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3.8 THE QUADRATIC RESIDUE GENERATOR

Throughout the present subsection n will range over integers which are the
product of two distinct odd primes p, ¢ such that p=¢ =3 mod4; N = {N:
k € I} will denote a family of nonempty sets N of nonegative integers such
that I is an infinite set of indices, and for all n € Ni the integer n has binary
length exactly k. By theorem 3.5 the squaring mapping z — z2 modn (r €
QR,,z* modn € QR,) is 1 -1 and onto, and hence it has an inverse which will
be denoted by z — /z modn (z € QRy, /z modn € QR,).

From now on and for the rest of this section the capital roman
letters P, Q with subscripts or superscripts will range over nonzero
polynomials with one indeterminate, positive coefficients, and degree
> 1, and the lowercase greek letters ¢, § with subscripts or superscripts
will range over positive real numbers.

Definition 3.1 A polynomial size circuit C = {Cx : k 2 1} has s 1/P-
advantage for computing the parity function for the family N, and this will be
abbreviated by APAR(C,N,1/2+1/P), if for all but a finite number of indices
k € I the following property holds for alln € Ny,

1 1
Pr|z € QR, : Ck(n, ) = par(y/z modn)| 2 3%+ 208
Definition 3.2 A polynomial size circuit C = {Cx : k 2 1} has o 1/P-
advantage for determining quadratic residuosity for the family N, and this will
be abbreviated by AQR(C,N,1/2+1/P), if for all but o finite number of indices
k € I the following property holds for all n € Ny,
1

%(Pr[dk(n,z) = 1|z € QR,| + Pr|Ck(n,z) = 0| z € QR,)) 2 % + P’

where for each n € N, z ranges over Za(+1).

Theorem 3.11 For all polynomials P,
(3C)APAR(C,N,1/2+1/P) = (3C)AQR(C,N.1/2+ 1/P)

Proof: The proof is based on the following

Claim: For all z € Z2(+1), z € QR. ¢ par(z) = par(v/z? modn).

Proof of the claim: (=) Assume z € QR,. Then z is the unique square
root modulo n of z2modn. Hence, z = v/z2 modn. Conversely, (<) suppose
that z ¢ QR, and put 7o = VZzZ modn. Let n = p-q. By assumption, (z|n) =1
and z € QR,. Since, both z, zo are square roots of z2modn, it follows that
(zlp) = (zlg) = =1 and z = —zo. Thus, par(z) # par(v/z? modn), which is a
contradiction.
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Based on the claim one can give the proof of the theorem. Let C be a circuit
such that APAR(C.N,1/2+ 1/P). To find a circuit C' = {C} : k > 1} such
that AQR(C'.N,1/2 + 1/P). Define

Ci(n,z) = Ck(n, 2% modn) & par(z) = 1. (18)
It is clear from the definitions that
Cl(n.z) =1 & Ci(n, z* modn) = par(z). (19)

Consider the sets A, = {z € QR, : Cx(n,z) = parity(/z modn)}. Xy =
{zr € QR, : z° modn € An}, Yy = {zr€Z:+1)-QR, : 77 modn € 4,}.
W,={z€ Z;(+1) : 7° modn € A, }. It is then clear that Wy, = X, U}, and
|Xa| = |An] = |Ya| It follows that

[Wal

Prlz€ Zy(+1):z € W,] = 1] =

(20)

[Xa]+ |Yal _ |44l
= = Prlz€ QR, : 2 € An
20R] IQRa] = 1 '

As a consequence of equations (20) and definition 3.1 one obtains easily that

%(Pr[C,’c(n,vr) =1|7€QR,|+ Pr[Ci(n,2)=0|z€QR,]) =

Prire Z;(+1) :z€ Xpa|+ Prlz € Z3(+1):z€ Vo] =

1

1
: Y [ Q"
Prlz€QR,: 7€ A ]_2+P(k)

This completes the proof of the theorem.e
A strengthening of definition 3.2 is given in the following

Definition 3.3 A polynomial size circuit C = {Cx : k 21} hasa (1/2-1/P)-
advantage for determining quadratic residuosity for the family N, and this will
be abbreviated by AQR(C,N,1 = 1/P), if for all but a finite number of indices
k €l the following property holds for alln € Ny,

5(PrlCh(n,7) = 1| 2 € QRa] + PrlCa(n,2) = 0| 2 £ QRa)) 2 1 - ﬁ‘

where for each n € Ni, z ranges over Z3(+1).
Theorem 3.12 (Goldwasser-Micali)

(3C)(3P)AQR(C,N,1/2+ 1/P) = (VQ)(3C)AQR(C,N,1-1/Q)
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_ Proof: Assume that C is a polunomial size circuit and P is a polynomial
such that the inequality of definition 3.2 holds. Put

pn = Pr[Ck(n,z) = 1| z € QRaJandgs = Pr[Ci(n,z) =1|z & QR,].
Then it is clear that for all but a finite number of indices k € I,

Pa+(1"%l)>l 1

2 =2 P(k)’
and therefore p . 1
LI LA ey 2
2 2 = P(k) (21)

The aim of the construction below, which is based on the Weak Law of
Large Numbers, is to construct for every polynomial Q a new circuit C' that
will satisfy the conclusion of the theorem. Indeed, let Q be given and define the
circuit C’ as follows: ‘

Input: k> 1, n € Ni, 2 € Z5(+1).

Step 1: Put m = 4-Q(k) - P(k)%. : ,

Step 2: Select m random quadratic residues s3,..., 82, € QR,.

Step 3: Compute the following two integers:

R, =|{1 <i<m: Ck(n,s? modn) =1}| and

Raz=|{1<i<m: Ck(n,z- s} modn) =1}
Step 4: Compute dp ; = |Rp — Ra |

Output :
1 if das < p%ﬂ
Ci(n,z) =

0 if dus> Bl

It remains to show that the above polynomial size circuit C' satisfies property
AQR(C',N,1 - 1/Q). First notice, see exercise 5 at the end of the present
subsection, that if £ € QR, (respectively z € QRy,) then

z¢? modn, ..., ze2, modn

is a sequence of m random quadratic residues (respectively nonresidues). Let
the notation Pr4|E] abbreviate the conditional probability Pr[E|A] of the event
E under the condition that the event A holds. Next, the Weak Law of Large
Numbers implies that, v
Pn — &l > ! ] !
m

Prqr. [z € Za(+1): 2P(R)) < 1Q(k)’

Y
* m

Prgr, [ze Za(+1): >

_1_] <
2P(R)] ~ 2Q()
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Rns
m

n —

P > 1 ] < 1
roN s 2P(R)] ~ 4QUF)
Now, the following two claims will be proved (in the proofs below z ranges over
Za(+1)): _
Claim 1: Progr.[|Ra/m = Ras/m| < 1/P(K)] > 1-1/Q(k).
Indeced, _
Rn  Rns

m m

By (o )
m Pn m Pn

Fﬁ.! -

PrQR_ [

PrQR_ [

R, 1
o <
m ”"l = 2P(k)

< 2Pl(k)] 'P'Q”-[ roal
(1- ) (- 7am) > e

Claim 2: PrQNR,[IR,./m —ﬁ,._,/m] > I/P(k)] >1- l/Q(L)
By the assumption in equation (21),

and

Pf'QR_ [

R
P"QR. ”—'n;i = Pn

2
gy > —.
p’l q’l - P(k)
Since,
Ra 1 1
Prong, [ o - pal| > Q_P(k)] < —__4Q(k) and

—qn

Pr [ L) > 1 ] < L
@NBa | 'm 2P(k)) T 4Q(k)"
with probability > 1 —1/(4Q(k)), Rn/m must lie outside the closed interval

[ __ +_‘__].
YIS LY TV Y

For the same reason, R, ,/m must lie outside the same closed interval. It follows
that

1 1\ 1
> ——| 21—} >1 = —.
P(k)] - ( 4Q(k)) Q)
This completes the proof of the theorem.o
Recall that to each z € QR, an infinite sequence

Ra R

m m

PrQNR. [

ceeyIn =21Tn,=11Tn,0 = Z,Zpn1Zpn,2---
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of quadratic residues was associated as follows:
r = 22 modn if i20
= "za"'.*l if i < 0

For each z € QR, and each integer i, define the bits
bn,i(z) = par(za,)-

The Quadratic Residue Generator, abbreviated QRGE N, accepts as in-
put a pair < z,n >, where z € QR,; the output is the infinite sequence
ceerbpi=1(2),bn,i(2),0n,i+1(2), ... of bits.

Remark: The sequence ..., by i=1(2),bn,i(Z),bn,i+1(2), ... of bits, can also
be defined as follows. Given an integer n as above define the function

fa : QRy — QRy : 2z — fa(z) = 2% modn.

Further, let the functions fi be defined as follows:

aa={ Fien w13
For each n, and each z € QR, define the bits
by.i(z) = Ba(/i(2)),
where for z € QR,,
B.(z) = par(z).

It is easy to show that for all n,z as above
b:n,i(z) = bn.l'(z)

Definition 3.4 A polynomial size circuit C = {Cx : k > 1} has a 1/P-
advantage for predicting sequences of bits of length Q(k) produced by the gen-
erator QRGEN for the family N, abbreviated by APR(C,N,Q,1/2+ 1/P), if
for all but a finite number of indices k € I the following property holds for all
n € Ny,

1

Pr[Ck (bn,0(2), - "’b"-Q(k)-l(z)) = bu.-—l(z)l 2 % + m—i

(22)

Theorem 3.13 For all polynomials P,

(3C)(3Q)APR(C,N,Q,1/2 + 1/P) = (3C)APAR(C, N,1/2 + 1/P)
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Proof: Let P, Q be polypomials and C a polynomial size circuit such that
inequality (3.4) bolds. Define a new polynomial size circuit via the equation

below:
Ci(z) = par(Ci(bn,0(z),...,ba,Q(r)-1(7)) (23)

Notice that
Ck(b,,'o(l'),. .. vbn,Q(k)—l(z)) = bn,—!(:) = CL(‘I) = par(\/z modn)

One can then verify easily that the circuit C' satisfies the inequality in definition
(3.1).0
Remark: Theorem 3.13 will be further improved in section 5.

EXERCISES )
In the exercises below the notation of subsection 3.8 is used.
1: The location function, denoted by loc,, is defined by:

0 if z<n/2
"""'(’):{ 1t z>n52

Show that for all z € Z2, z < n/2 & 27 modn is even. Moreover, for all
r € QR,, par(2y/z modn) = loc, (/7 modn).

2: A polynomial size circuit C = {Cx : k > 1} has a 1/P-advantage for
computing the location function for the family N, and this will be abbreviat-d
by ALOC(C,N,1/2+ 1/P), if for all but a finite number of indices ¥ € I the
following property holds for all n € Ny
1

B —

Pr|z € QR, : Ck(n,z) = loca(VZ modn)| > T Pk)

RO »=

Show that for all polynomials P,
(3C)ALOC(C,N,1/2+1/P) = (3C)APAR(C.N,1/2+1/P)

Hint: Let C = {Cx : k > 1} be a polynomial size circuit such that the
above hypothesis ALOC(C.N,1/2+1/P) is true. It is required to find a circuit
C'={C} : k2> 1} such that APAR(C',N,1/2+1/P)is true. Use exercise 1 to
show that the circuit C;(n,z) = Cx(n,47'z modn), satisfies the requirements
of the conclusion.

3: Define, by analogy to the definitions of the previously defined predi-
cates ALOC(C,N,1/2+1/P), APAR(C,N,1/2+1/P), AQR(C,N,1/2+1/P),
AQR(C,N,1-1/P), APR(C,N,Q,1/2+1/P) the notions ALOC(C, N,1/2+¢),
APAR(C,N,1/2 + ¢),AQR(C,N,1/2 + ¢),AQR(C,N,1 - ¢), where ¢ > 0 is a
constant. Show that for all circuits C

1. (3¢)ALOCR(C,N,1/2 +¢) = (VP)ALOCR(C,N,1/2 + 1/P)



3 PSEUDO-RANDOM GENERATORS 68

2. (3)APAR(C,N,1/2 +¢) = (YP)APAR(C, N,1/2 +1/P)
3. (3¢)AQR(C, N,1/2 + ¢) = (YP)AQR(C, N, 1/2 + 1/P)

. (3P)AQR(C,N,1 - 1/P) = (Y)AQR(C,N,1 —¢)

5. (3¢)APR(C,N,Q,1/2 + ¢) = (VP)APR(C,N,Q,1/2 + 1/ P)

[

6. Prove corresponding versions of theorems 3.11,3.12 3.13 for the above
defined notions of advantage.

4: Show that for any family N the following statements are equivalent:

[y

. (3C)(3)AQR(C,N,1/2 + ¢)

2. (3C)(3)AQR(C,N,1-¢)

. (3C)(3P)AQR(C,N,1/2 + 1/P)
. (3C)(3P)AQR(C,N,1 - 1/P)

. (YP)(3C)4QR(C,N,1-1/P)

. (V€)(3C)AQR(C,N,1 - ¢)

[~z B~ L B N It}

5: Let z € Z3(+1) be fixed. Show that:
1. I z € QR, then QR, = {zs?: 5 € Z2}.
2. f z € QNR, then QNR, = {zs%:s€ Z}}.

3.9 QUADRATIC RESIDUOSITY ASSUMPTION

As in subsection 3.8, throughout the present subsection n will range over
integers which are the product of two distinct odd primes p, g such that p =
g =3 mod4; N = {Ni : k € I} will denote a family of nonempty sets Nj of
nonegative integers such that I is an infinite set of indices and for all n € N,
the integer n has binary length exactly k.

The notions of advantage defined in subsection 3.8 will now be altered in
order to reflect the fact that this advantage is valid only for a certain fraction
of the n € N;.

Definition 3.5 A polynomial size circuit C = {Cx : k > 1} has a 1/P-
advantage for computing the parity function for a fraction 1/P' of the integers
in Ni, and this will be abbreviated by APAR(C,N,1/P',1/2 + 1/P), if for all
but o finite number of indices k € I the following property holds

{ngNk : Pr(z € QR, : Cy(n, z) = par(/z modn)] > %+ ?%H}I > PLI%
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The remaining overlined versions of the previously defined notions of advan-
tage can be defined as above. In addition, one can prove the following theorem
exactly as before.

Theorem 3.14 For all polynomials P, P',
1.(3C)APAR(C,N,1/P',1/2+1/P) = (3C)AQR(C,N,1/P",1/2 + 1/P)
2.(3C, P)YAQR(C,N,1/P',1/2+ 1/P) = (VQ)(3C)AQR(C,N.1/P',1 - 1/Q)

3.(3C.Q)APR(C,N.Q,1/P', 1/2+1/P) =

(3C)APAR(C,N.1/P',1/2+1/P)e

Given a circuit C, an integer n € Ni, and an r € Z3(+1), Cx(n,z) decides
correctly if z € QR,, if and only if Cx(n,z) = 1 assuming that z € QR,. and
Ci(n,z) = 0 assuming that z @ QR,. Recall that from definition 3.2

%(Pr[Ck(n,:r) = 1|z € QR+ PrlCi(n,z) = 0| z & QRa]) =

= Pr|Cx(n, z) decides correctly if z € QR,]

Definition 3.6 The Quadratic Residuosity Assumption for the farmily N =
{Ne : k€l}, abbreviated QRA(N), is the following statement: if C = {Cy :
k > 1} is a polynomial size, 0, 1-valued circuit and P, P' are polynomials uith
positive integer coefficients then for all but o finite number of indices k € I the
folloutng holds ’

1 _L\_’;-l

{n €Ny : Pr[Ck(n‘I) decides correctly if r € QR,] 2 1 - ﬁ/;)_}l < PriE]

Theorem 3.15
QRA(N) & -(3P)(3P')(3Q)APR(C.N,Q,1/P',1 - 1/P)

Proof: Aszume that the hypothesis QR.A(/N) is true, but that the conclusion
-(3P)(3P')(3Q)APR(C,N.Q.1/P',1/2 + 1/P) fails. By theorem 3.14 there
exist polynomials P. P’ with positive coefficients, and a polynomial size circuit
C such that AQR(C,N,1/P',1 - 1/P). Consider the polynomial P"(}) =
P'(k)+1. On the one hand, the definition of AQR(C,N,1/P’,1~1/P}, implies
that for all but a finite number of indices k € I the following property holds

13
P'(k)

1

{n € Ny : Pr|z € QR, : Ci(n, z) = par(y/z modn)] > 1 - P—U—)}‘ 2
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On the other hand, QRA(N) implies that for all but a finite number of indices
k € I the following property holds

= Pi(k)

But this is a contradiction, because N # @. The proof of the other direction is
similar.e ’

Remark: A typical example of a family N to which the above results apply
is defined as follows: let Nj be the set of all integers n such that n is a product
of two primes p, g such that p = ¢ = 3mod4 and |[|p| - lg]| € 1, where |p|
(respectively |g| ) is the binary length of p (respectively g). The quadratic
residuosity assumption for this family is abbreviated by QRA.

{n € Ni : Pr|Ci(n, z) decides correctly if z € QR,|21- P(lk) }‘ < IN|

EXERCISES

1: Give the proof of theorem 3.14. -

2: Define explicitely the remaining overlined notions of advantage and show
that each of them is implied by its corresponding nonoverlined counterpart.

3: (Blum-Blum-Shub) The location loc, function defined in exercise 1 of
subsection 3.8 gives rise to a pseudo-random generator. Define this generator
and use QRA(N) to show that it is unpredictable.

3.10 THE INDEX GENERATOR

Let g be a primitive root modulo the odd prime number p. Let z € QR, be
an arbitrary quadratic residue modulo p. It is known that index, ¢(z) = 2t, for
some integer t < (p—1)/2 (see also exercise 4 in the subsection on indices). The
principal square of z with respect to p, g, abbreviated PQR(p, g, ), is the integer
g*modp; the nonprincipal square root of z with respect to p,g, abbreviated
NPQR(p,g,z), is the integer gt+(»=1)/2 modp. For each p,g as above define
the predicate B, 4 as follows: :

B, ,(z) = 1 if z=PQR(p,9g,z°modp)
»9\%) =1 0 if z=NPQR(p,g,z*modp)

It is now easy to see that

; 1 ift<(p—-1)/2
B”"(gtm"d”’:{ 0 it tzg’r—l;;z

A very significant observation is that the existence of an efficient algorithm
for computing the above defined function By, leads to an efficient algorithm
for computing the function index, , (see exercise 4 below.) The theorem below
shows tliat the existence of an efficient algorithm to compute PQR leads to the
existence of an efficient algorithm to compute the function index, g, something
that will be used in the sequel. For each p let |p| denote the binary length of p.
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Theorem 3.1G Suppose there erists an algorithm A running tn time polynomial
in |p| such that for any odd prime p, any primitive root g € Z;, and any 1 € Z;,

A(p,9,7) = PQR(p,9,2).

Then there erists an algorithm A' running in time polynomial in |p| such that
for any odd prime p, any primitive root 9 € Z;, and any z € Z,,

A'(p, 9, z) = index, ¢(2).

Proof: Assume that A is an algorithm that satisfies the hypothesis of the
theorem. Then on input p, g, r the algorithm A’, using the integer c as a counter,
outputs the sequence d of bits, which constitutes the binary representation of
index, ¢(z). and is defined as follows:

Input: p prime, g primitive root modulo p, z € Z;.

Step 1: Putd=9,¢c=0.

Step 2: Test if z € QR,.

Step 3: Put d = b(z)d, c = c+ 1, where

_J o if ze@R
“”‘{1 it z¢ OR,

Step 4: Put .
.=z if z€QR,
T | zg7'modp if z€QR,

Step 5: Put z:= A(p, g, 7).

Output: If ¢ < [p| - 1 then goto Step 2 with this new z, else output d and
stop.

The proof that this algorithm works is easy.e

Throughout the rest of the present subsection p will range over odd primes.
N = {Ni : k € I} will denote a family of nonempty sets N such that / is
an infinite set of indices and for all n € Ni the integer n is an odd prime of
binary length exactly k. From now on and for the rest of this section
the capital roman letters P, Q with subscripts or superscripts will
range over nonzero polynomials with one indeterminate. positive co-
efficients, and degree > 1, and the lowercase greek letters ¢, & with
subscripts or superscripts will range over positive real numbers.

Definition 3.7 A polynomial size circuit C = {Cx : k > 1} has a 1/P-
sdvantage for determining the indez for the family N, and this will be abbreviated
by AIND(C,N,1/2 + 1/P), if for all but a finite number of indices k € I the
Jollowing property holds for all p € Ny, and all primitive roots g modulo p,

. . 1 1
Prz€ Z] : Ci(p,g9,z) = index, 4(7)] > 3 + F(k—)
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Similarly, one can define the notion AIND(C,N,1 - 1/P).

Definition 3.8 A polynomial size circuit C = {Cy : k2> 1} has a (1/2-1/P)-
advantage for determining the indez for the family N, and this will be abbreviated
by AIND(C,N,1 - 1/P), if for all but a finite number of indices k € I the
following property holds for all p € Ni, and all primitive roots g modulo p,

1
Prlz€ Z; : Ck(p.g,7) = indexp (z)] 21— PR

For technical reasons, to become apparent in the proofs below, the following
notion will also be used:

Definition 3.9 For any polynomial Q let E(p, g, Q) denote the event:

index, 4(z) € [1, ’()2_(-1:;] 2 ,‘—12 + .}%/5

Definition 3.10 A polynomial size circuit C = {Cx : k 2 1} computes the in-
dices which lie in the closed interval [1, (p—1)/Q(k)] for primes p which belong to
Ny with 1/ P-advantage , and this will be abbreviated by IND(C,N,1/Q,1/P),
if for all but a finite number of indices k € I the followring property holds for all
p € Ny, and all primitive roots g modulo p,

1

. 1
Pre.9.Q) [z € Z, : Ck(p,9,7) = mdex,,g(z)] > 3 + I—’W

Theorem 3.17 (Blum-Micali}
(3¢)(3P,Q)IND(C,N,1/Q,1/P) = (VP)(3C)AIND(C,N,1 - 1/P)

Proof: Assume that P, Q are polynomials, and C is a polynomial size circuit
such that the inequality of definition 3.10 holds. The circuit C’ is defined as
follows: ‘

Input: p € Ny, g primitive root modulo p, z € Z3.

Step 1: Guess an integer i such that

i(p-1) ("+l)(p-1)]
Qlk) " Qk)

Step 2: Compute z; = zg~*(?=1)/QX) modp.

Step 3: Compute d = Cx(p, 9, z)

Output: If z = g¢+i(P=1)/Q(K) modp then output index,q(=z;) + i(p -
1)/Q(k)

else put 1 =i + 1 and goto Step 2.

The probability that the above circuit C’ will give the wrong answer depends
on the probability that the circuit C will give the wrong answer; in fact, this
probability is < 1-1/Q(k). Therefore, repeating the above algorithm a sufficient
number of times the advantage will be amplified as much as desired.e

index, 4(z) €
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Definition 3.11 A polynomial size circust C = {Cx : k 2 1} has a 1/P-
advantage for computing the function By o for the family N, and this will be
abbreviated by AB(C,N,1/2 + 1/P), if for all but a finite number of indices
k € I the following property holds for all p € Ny, and all primitive roots g

modulo p, .

1

Prlz € QR, : Ci(p,9,2) = By e(z)] 2 3%+ 0]
Definition 3.12 A polynomial size circuit C = {Cx : k 2 1} has a 1/P-
advantage for computing the function PQR for the family N, and this will be
abbreviated by APQR(C,N,1/2+4 1/P), if for all but a finite number of indices
k € I the following properly holds for all p € Nk, and all primilive roots g
modulo p,

1

" Pl

RO =

Priz € QR, : Ck(p.9,7) = PQR(p,z,9)] 2

Definition 3.13 A polynomial size circuit C = {Cx : k 2 1} has a 1/P-
- advantage for computing the function PQR for indices which lie in the interval
[1.(p=1)/Q(K)], for the family N, abbreriated by APQR(C,N,1/Q,1/2+1/P).
tf for all but o finite number of indices k € I the follouing property holds for all
p € Ny, and all primilive rools g modulo p,

1 1
Pre.9.0) (2 € QRy : Cilp,9,2) = PQR(p,2,9)] 2 5+ PA)

Theorem 3.18 (Blum-Micali)
(3C)(3P)AB(C,N,1/2+1/P) = (VQ)(3C.P')APQR(C,N.1/P',1-1/Q)

Proof: Let C be a polynomial size circuit which computes the function B, ,
with a 1/P-advantage. For each e € QR, let ¢’, " denote the two square roots
of e modulo the prime p. The function PQRC computes the principal square
root with the aid of the circuit C and is defined as follows:

P e' if Ck(p»gv 6’) > Ck(p’ g, ‘-'”)
PQR%(p,g,e)={ ¢€" if Cilp,g9.¢') < Crl(p.g.¢")
random{e',¢"} it Ck(p,g9,€¢') = Cx(p,g.¢")

Let Q be any polynomial, and let the polynomial P’ be defined by P'(k) =
4-P(k)-Q(k)*. It will be shown that there exists a polynomial size circuit C'
such that the property APQR(C',N,1/P',1 - 1/Q) holds, i.e. for all but a
finite number of k € I, and all primitive roots g modulo p,

Prep..0) |z € QRy : Ci(p,9,2) = PQR(p, g, z)] 21~ ﬁ
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The circuit C’ is defined as follows:

Input: p € Ny, g primitive root modulo p, e € QR, such that index, 4(e) <
(p - 1)/P'(K). ~

Step 1: Compute the two square roots ¢, ¢” of e modulo p.

Step 2: Put m = P'(k) = 4- P(k) - Q(k)?.

Step 3: Select m random integers ry,...,7n, such that 2ry,...,2r, < p-1.

Step 4: Compute ¢; = eg?"* modp, where i =1,...,m.

Step 5: Compute ¢/ = €'g"" modp, and €] = €"”g"" modp, where i =
1,...,m. -

Step 6: Compute the following two integers:

L'(p.g.e)=|{1 Si<m: PQRC(p,g,e:) = ¢}}]|
L"(p,g,¢)=1|{1<i<m : PQR(p,g,e;) = €!'}|
Output:

' _[ ¢ it L'(p,g,€)>L"(p,g,€")
Ck(e' P g) - { e if L'(p,g, 6,) < L"(P’ g, e”)

It remains to show that the above circuit C’ works. Let 2s = index, 4(¢) ,
T={1<i<m: 2s+2r; <p-1},and t = |T]|. It follows from exercise 3
that there exist at least ¢ many :'s such that

2r, € [(m" 1)(p - 1)’p _ 1] _
m
However, the above closed interval is the rightmost subinterval of the partition
{[t(p— 1), (i+1)(p- 1)] i< m}
m m

of the closed interval [(p — 1)/m, p — 1], into closed subintervals each of length
(p — 1)/m. Since the integers 2ry,...,2r, are randomly chosen from the closed
interval [1,p — 1], it follows that ¢t must be small. Moreover, forall i € T if y is
a square root of e then by exercise 2,

9" = PQR(p,g,e;) & y = PQR(p,g,¢).

Next, the following two cases can be considered.

Case 1: If ¢ = PQR(p,g,¢€)

In this case, using the fact that the circuit C has a 1/P advantage for
computing the function B, 4, the expected value of L'(p, g, €) is m/2+ m/P(k).
Similarly, the expected value of L"(p,g,¢€) is m/2 — m/P(k). Thus, using the
Weak Law of Large Numbers, with probability > 1 - 1/Q(k), L'(p,g,€¢) >
L"(p,g,¢)- :

Case 2: If " = PQR(p, g,€)
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In this case, using the fact that the circuit C has a 1/P advantage for
computing the function B, 4, the expected value of L'(p, g,€) is m/2— m/P(k).
Similarly, the expected value of L"(p,g,¢) is m/2 + m/P(k). Thus, using the
Weak Law of Large Numbers, with probability > 1 - 1/Q(k), L"(p,g,€) >

L'(p.g.€).
This completes the proof of the theorem.e
As an application of theorems 3.16 and 3.18 one obtains the following:

Theorem 3.19 (Blum-Micali)
(3CH(3P)AB(C,N,1/2+1/P) = (3C)(3P,Q)AIND(C,N,1/Q,1/2+1/P)

Proof: Apply the result of theorem 3.18 to the polynomial Q(k) = 2k to
find a polynomial P'(k) and a polynomial size circuit C' such that

. 1
PrE(P-ng) [I € QRP : Ci(p,g' I) = PQR(pv ng)] 2 1- 2_k

Next, apply the algorithm of theorem 3.16, but use the circuit C insted of the
algorithm A used there. Call C” the resulting circuit. As before, the circuit
C; will be applied |p| = k times. Each time C] will supply the correct ancwer
with probability > (1 = 1/2k). Thus, C}' will supply the correct answer with

probability
S 1\* -1
2\1-g3) m=xp\ 7

It follows that there exists a polynomial P(k) such that

k
(- £) 2 e 5
2k 2 P(k)
This completes the proof of the theorem.o
Given an odd prime p and a primitive root modulo p consider the function

Joo 0 25 — Z) i1 — fy4(1) = g" modp.

Further, let the functions f;,g be defined as follows:

o fosl2) it i=1
Jrolz) = { Lol fi5H=) i i> 1

For each odd prime p, for each primitive root g modulo p and each z € Z, define

the bits .

bp.g.i(z) = Bpg(f34(2))
The index generator, abbreviated INDGEN, accepts as inputs the triples
< p,9.z >, where pis an odd prime, g is a primitive root modulo p and r € Z?;
the output is the infinite sequence by g.0(z),bp,9.1(2),-..,bp,g.i(2), ... of bits.
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Definition 3.14 A polynomial size circuit C = {Cx : k 2 1} has a 1/P-
advantage for predicting sequences of bits of length Q(k) produced by INDGEN,
for the family N, and this will be abbreviated by APR(C,N,Q,1/2 +1/P), if
for all but a finite number of indices k € I the following property holds for all
p € Nk, and all primitive roots g modulo p,

Pr[Ci(bp,g.(2),. .. vbp,va(k)—l(z)) = bpg,0(2)] 2 % + ‘(Iﬁ (24)

Theorem 3.20 For all polynomiala P,
(3C)(3Q)APR(C,N,Q,1/2+1/P) = (3C)AB(C,N,1/2 + 1/P)

Proof: Let Q be a polynomial and let C be a polynomial size circuit such
the inequality in definition 3.14 holds. Define a new circuit C’ as follows:

Ci(z) = Ci(bp9,1(2),-- -, bp.y,Q('k)-l(z))
It is now easy to see that the circuit C' must satisfie the inequality of definition

3.11.e
Remark: Theorem 3.20 will be further improved in section 5.

EXERCISES

1: Complete the details of the proof of theorem 3.17.

2: Assume that z € QR, and 2r + index, 4(z) < p — 1. Show that for any
square root of y of z modulo p,

¥9" = PQR(p,g,2¢*") % y = PQR(p, g, 2).
3: If 1 <index, 4(z) < (p-1)/mand 2< 2r < p -1 then
(m=-1)(p-1)
. m '

4:(Blum-Micali) Repeat the proof of theorem 3.16 to show that if there
exists a polynomial in |p| time algorithm such that for any odd prime p, any
primitive root g € Z;, and any z € Z;,

A(p, 9,2) = By 4(2).

then there exists a polynomial in |p| time algorithm A’ such that for all p, g,z
as above,

2r +indexp 4(z) 2 p—=1=>2r 2>

A'(p, 9, z) = index, 4(z).
Hint: Steps 1 - 4 remain exactly the same. The new step 5 is the following:
Step 5: Use the Adelman-Manders-Miller algorithm to compute the two
square roots of z modulo p, say z', z".
The new step 6 to replace the old step 5 is the following:

Step 6: Put
r= Z if A(p,g,7')=1
Tl if A(p,g,2')=0
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3.11 DISCRETE LOGARITHM ASSUMPTION

As in subsection 3.10, throughout the present subsection p will range over
odd primes, N = {Ni : k € I} will denote a family of nonempty sets Ny of
nonegative integers such that / is an infinite set of indices and for all n € N,
the integer n is an odd prime of length exactly k.

From the notions of advantage defined in subsection 3.10 one can define
overlined notions, just like in subsection 3.9, as follows:

Definition 3.15 A polynomial size circuit C = {Cx : k > 1} has a 1/P-
advantage for computing the function By g for a fraction 1/P' of the primes in
N, and this will be abbreviated by AB(C,N,1/P',1/2+ 1/P), if for all but a
finite number of indices k € I, for all p € Ni, and all primitive roots g modulo
p the follouing property holds

. . 1 1 N
|{p€ Ne:Priz e Z, :Ck(p,9,2) = Bpg(2)] 2 §+ P_(ﬂ}! > II’_’(’;rl)

The remaining overlined versions of the previously defined notions of advan-
tage can be defined as above. In addition, one can prove the following theorem
exactly as before.

Theorem 3.21 For all polynomials P, P’,

1.(3C,P,Q)TND(C,N,1/Q,1/P',1/2+1/P) =

(YP)(3C)ATND(C,N,1/P',1 - 1/P)

2.(3C,P)AB(C,N,1/P',1/2+ 1/P) =

(3C,P,Q)IND(C,N,1/Q,1/P',1/2+1/P)

3.(3C,Q)APR(C,N,Q,1/P',1/2+1/P) =

(3C)AB(C,N,1/P',1/2+1/P)e

Definition 3.16 For any circuit Cx let F(p,g,C) denote the event:

~ Ci(p, 9,2z) = index, »(z).
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Definition 3.17 The Discrete Logarithm Assumption for the family N = {Ng:
k € I}, abbreviated DLA(N), is the following statement: ifC={Cx : k21}
is a polynomial size, 0, 1-valued circuit and P, P’ are polynomials with positive
integer coefficients then for all but 8 finite number of indices k € I the following
holds .

{P € Ni : (Vg) (Pr(E(P, 5,C)| 21~ P(lk).)} < N

where g ranges over primitive roots modulo p.

Now, it is not difficult to show that

Theorem 3.22
DLA(N) & =(3P)(3P')(3Q)APR(C,N,Q,1/P',1 - 1/P)e

Remark 1: A typical example of a family N to which the above results
apply is defined as follows: let N be the set of all primes such that [p| = k,
where |p| (respectively |g| ) is the binary length of p (respectively g). The
discrete logarithm assumption for this family is abbreviated by DLA.

Remark 2: The DLA is related to the Pohlig-Hellman algorithm given in
section 1.

EXERCISES

1: Give the proof of theorems 3.21, 3.22. .

2: Define explicitely the remaining overlined notions of advantage and show
that each of them is implied by its corresponding nonoverlined counterpart.

3.12 BIBLIOGRAPHICAL REMARKS

The linear congruence generator, LGEN, defined in subsection 3.2, is one
of the most popular pseudo-random generators in use today, and is based on a
scheme first devised by Lehmer. The general theorem 3.1 on the predictability of
the linear congruence generator is the main result of [P1]. Additional information
on the linear congruence generator can be found in [Kn] (pp. 1 - 37).

The 1/p-generator is due to Blum, Blum and Shub. The predictability of
the 1/p generator proved in theorem 3.3,as well as the exercises at the end of
the subsection are from [BBS].

The equivalence of factoring and computing square roots modulo a composite
number (theorem 3.6) was first discovered by Rabin (see [Rab].) The periodicity
of z2modn is useful in the study of the security of the z2modn generator. The
results of subsection 3.6 appear in [BBS].

The definition of the probabilistic polynomial size circuit given in subsection
3.7 is based partly on the definition given in [AB].
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A study of the security of the zZmodn generator, as well as the reduction
of its unpredictability to the Quadratic Residuosity Assumption can be found
in [BBS]. Theorem 3.12 on amplifying the advantage in predicting quadratic
residues is extracted from [GM]. The security of the index, 4 generator, as well
as the reduction of its unpredictability to the Discrete Logarithm Assumption
can be found in [BM].

It is interesting that both the Discrete Logarithm Assumption and the
Quadratic Residuosity Assumption were first considered by Gauss in [Gal.
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4 PUBLIC KEY CRYPTOSYSTEMS
4.1 INTRODUCTION

The systems presented in this section have been chosen in order to illuminate
the recent developments in public key cryptosystems following the suggestions
of Diffie and Hellman in [DH].

Subsection 4.2 sets the ground by giving all the necessary definitions ap-
propriate to understanding the importance of public key cryptosystems. The
RS A system is developed in subsection 4.3, the Rabin system in subsection 4.5,
and the Merkle-Hellman system in subsection 4.7. Subsection 4.9 presents the
Quadratic Residue System which is based on probabilistic encryption.

In addition, the security of the RSA and the Rabin systems is studied rel-
ative to the security of single RSA and Rabin bits respctively (see subsections
4.4 and 4.6 respectively.) The single iteration Merkle-Hellman system is not
secure; Shamir’s cryptanalytic attack is presented in subsection 4.8.

4.2 WHAT IS A PUBLIC KEY CRYPTOSYSTEM

Suppose that user S (sender) wants to transmit a given message P to
another user R (receiver) via a certain communication channel in such a way
that it will be very difficult to any unauthorized user to read the message P.
To accomplish this task the sender resorts to encryption or enciphering of
the message P i.e. he scrambles the original message P, also called plaintext,
and transmits the resulting scrambled text, say C. The scrambled text C thus
obtained from the plaintext P is also called ciphertext.

The receiver must now convert the ciphertext C back into the original plain-
text P. This conversion process is also called decryption or deciphering. In
addition, the encryption and decryption processes mentioned above are in fact
efficient algorithms, called the encryption algorithm and the decryption
algorithm respectively, transforming a given message into another one. The
function E (respectively D) determined by the encryption (respectively decryp-
tion) algorithm is called encryption (respectively decryption) function.

An interceptor is a user other than the sender or the receiver who gets hold
of the transmitted ciphertext C. An interceptor who tries to reconstruct the
original plaintext P from the inercepted ciphertext C is called a cryptanalyst,
and the deciphering analysis he applies is called cryptanalysis (see figure 1).

In order to make the cryptanalysis even more difficult the encryption and
decryption functions depend on a set K of parameters, also called the set of
keys; each k € K is called key.

Thus, a nonpublic key cryptosystem, abbreviated NPKC, cousists of two
families {Ex : k € K},{Dx : k € K}, of encryption and decryption functions
respectively such that

1. For all k € K, E; is the inverse of Dy.
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SENDER RECEIVER

M . « . . H H
P—=Enciphering —C ——*{ Transmission line ‘r—* C—+ Deciphering —P

Interceptor

Figure 1: Message Transmission

2. For all k € K, the algorithms E, Di are efficient.

3. It is difficult to compute the plaintext P from the ciphertext E;(P) alone
without prior knowledge of the decryption function Dy used.

To transmit messages the sender and the receiver agree in advance on a key, say
k, chosen from the set K of key's; the sender transmits the ciphertext Ex(P) to
the receiver; the receiver uses Dy (Ex(P)) = P in order-to obtain the plaintext
P (see figure 2.)

SENDER = KEYS; - *RECEIVER
!

k ' ‘ | k
P—Enciphering—=C —= Transmission line —s C—Deciphering =P

Interceptor |

Figure 2: Nonpublic key cryptosystem

Example 4.1 The Vernam System: Let both plaintezts and keys be repre-
sented by sequences of bits. Let k = (ko,... ka) be the key agreed by the sender
and the receiver. Let @ represent modulo 2 addition between bits. In this system
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Eyx = D¢ and for any plaintezt P = (P,,..., Py),
Ek(P) = (ko ® Poy...,ka ePn)»

Clearly, the Vernam system requsres a key of length at least as as long as the
message transmitted. This 18 accomplished by providing the key in a long enough
tape; the section of the tape used is then discarded (one-time-pad).

As was noted above, a nonpublic key cryptosystem requires the in advance
exchange of a key between the sender and the receiver. However, such a limi-
tation is indeed impractical for today's electronic communication requirements.
A public key cryptosystem, abbreviated PKC, overcomes this limitation by al-
lowing the existence of a private file as well as a public file (see table 3). Thus,

USER | PUBLIC FILE | PRIVATE FILE
A Ex Da
B Eg Dg
C Ec Dc

Figure 3: The Files in a PKC

for each user U, the public file of U is made available to all potential users;
each such public file includes the encryption function Ey;. However, the private
file of U is known only to U itself and consists of the decryption function Dy .
Moreover, the construction of the encryption and decryption functions is based
on the notion of trapdoor function. Loosely speaking, a trapdoor function is
a function [ such that the following properties hold:

1. f is easy to compute.
2. f~1 is difficult to compute.
3. f~! is easy to compute when a trapdoor or trick becomes available.

A function f satisfying only (1),(2) above is also called 1 — 1, one-way.

Consequently, a PKC consists of two families {Ey }, {Dy }, where U ranges
over the set of all potential users, of encryption and decryption functions re-
spectively such that

1. For all U, Ey is the inverse of Dy .
2. For all U, Ey is in the public file.
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3. For all U, Ey is a trapdoor function.

To transmit a plaintext P the sender S transmits the ciphertext Er(P) to the
receiver, where Eg is the public encryption function of the recciver R. The
receiver uses Dr(Eg{P)) = P in order to obtain the plaintext P (see also figure
4).

SENDER <—— |PUBLIC FILE | RECEIVER
Er Dx
P—{Eg(P) = C}|—+C —+ Transmission line [~ C—+Dg(C) = P:—=P
Interceptor

Figure 4: Public key cryptosystem

4.3 THE RSA SYSTEM

The first system to be examined is called RS A, named after the initials of
the last pames of its three inventors: Rivest, Shamir and Adelman. In the RS A
system each user selects a pair p, g of distinct odd primes, that he keeps secret,
and publicizes N = p - ¢; further, each user chooses integers e,d < N such that

ged(e,(N)) =1, e-d =1 modi(N)
The encryption and decryption functions respectively are
E(z) = z* modN, D(z) = z* modN

Figure (5) describes the RS A system.

Since N is the product of the two primes p,q, ¢(N) = (p—1)-(¢—1). Thus,
any prime e > max(p,g) will be relatively prime to o(N). Using the Euclidean
algorithm one can now determine an integer d such that e-d = 1 modN. It
follows from results of the section on Number Theory that both RS A encryption
and RSA decryption are easy (see subsection on modular exponentiation.) It
remains to show that the functions E, D are the inverse of each other i.e. to
show that for all z € Z},,

E(D(z)) = z, D(E(z)) = =. (1)
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USER | PUBLIC FILE | PRIVATE FILE

1 e, Ni=p1-q di,p1, 1
2 e2, N2 =ps-q2 dz2, p2, 92
3 es, Ns = ps -qs ds3, ps, 93

Figure 5: The RSA System

To prove (1) notice that
E(D(z)) = E(z* modN) = z°¢ modN.

However, e-d = 1 modip(N). Hence, there exists an integer k (computed easily
via the Euclidean algorithm) such that

e-d=1+k-p(N)
It follows that
E(D(z)) = z°¢ modN = 2! +¥ ¢ (V) modN

=z-25¢(N) modN =z - (2¥™)* modN = z modN,

using the Euler-Fermat theorem.

4.4 RSA BITS

In studying the security of RS A it is reasonable to examine specific bits of the
transmitted message. One might hope that it might be easier for a cryptanalyst
to devise an algorithm that will output a specific bit of the original message,
given the encrypted message. To be more specific the present subsection is
motivated by the following

Question: If a cryptanalyst knows an efficient algorithm which given as
input an RSA message z° modN (of a specific instance of RSA) will output a
certain bit of the original message z, can he devise an efficient algorithm which
given as input an RSA message z° modN (of the same instance of RSA) will
output the whole message z? v

Nevertheless, it might come as a surprise that for specific bits (to be studied
below) devising an algorithm that will output a specific bit of the original mes-
sage, given the encrypted message, is just as difficult as devising an algorithm
that will output the entire original message, given the encrypted message.
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If the representation of the integer N in the binary system is

n—1

N=) N2

=0

then let bit(/N) denote the sequence N,o_; ... No. Conversely, given a sequence
S = Np-1...Np of bits let the representation of S, abbreviated rep(S) be

n-1

rep(S) = Z JVj '2‘.

=0

For any instance N,e of RSA define the following bit functions:
Location Function:

. _Joifz<N/2
locy,e(z° modN) = { 1 if z> N/2
s-th Bit Function:

bit} . (z° mod¥) = z,,

where bit(r) = za_y...7,... Zo.
As a special case one obtains the
Last Bit Function:

0 if ziseven

10 e ! -_—
bity .(z mod.‘V)..{ 1 if zisodd

For any odd integer N such that bit(N) = N,_;... Ny, it makes sense to
define the significant position of N, abbreviated s(N), by
&(N) = the largest k such that Neyy =0 < Ny =--- =Ny = 1.

Notice that since N is odd, &(N) > 1.
The following result formalizes and answers the question stated above.

Theorem 4.1 (Goldwasser-Micali-Tong) Given any instance N,e of RS A
and any 0 < ¢ < ¢(N) the following statements are equivalent

1. There is an efficient algorithm A such that
A(z° modN) =z, forall z € Z},.

2. There is an efficient algorithm computing the function bi"?\’,c'

8. There is an efficient algorithm computing the function locy ..
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4. There is an efficient algorithm computing the function bity ,.

Proof: Fix any 0 < s < ¢(N). It is obvious that (1) implies each of the
statements (2), (3) and (4). Since N is odd N,2° are relativily prime; hence
there exists an integer I such that I-2° = 1 modN (such an I can be computed
using the Euclidean algorithm.) '

Proof of (2) & (3): It is clear that for all z € Z};,

z< % 2z modN is even (2)

It follows from (2) that
locn,(z) = bit .(2° - z modN), (3)
bt} .(z) = locw,.(] - z modN), (4)

(see exercise 1). Now, the proof of (2) ¢ (3) can be completed easily.
The rest of the proof will require the following simple lemma, whose proof -
is left as an exercise (see exercise 2).

Lemma 4.1 For I,N,e as above the following statements hokd
1. N -z¢ = (N - z)* modN
2. If z is even then I - z° = (3)° modN

8. Ifz isoddthenI-(N - z¢) = (5—2'—'-’-)‘ modN

From now on and for the rest of the proof of the present theorem
the subscripts of bit,'\,‘e will be omitted. For any sequence u = u,_y,...,uq
of bits let £(u) = n denote the length of u and let » { { denote the sequence
Up—1y..., Un—i, i.&. the sequence consisting of the first s bits of u. Hence, if
i > ¢(u) then u { ¢ = u. For any sequences u, u’ of bits let uAu’ denote the last
£(«’) bits in the binary representation of the number rep(u) — rep(u’), where
rep(z) > rep(u'); further, let ¥ —~ u’ denote the concatenation of u, u’ i.e. the
sequence obtained from u by adjoining at the end the bits of u’. It is then easy
to prove (see exercise 3) that

Claim 1: For any z < N/2 there exists a sequence of bits w such that

bit(N - 2z) = w ~ [ bit(N)A( bit(z) ~ 0)]

Proof of (2) = (1)

Let A be the efficient algorithm computing the last bit function. The idea
of the proof is based on repeating the following algorithm ¢( bit(/N)) times:

Input: z¢ modN

Step 1: Compute b = A(z® modN)

Step 2:
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1. If b = 0 then compute I - z¢ modN = (3)° modN
2. I{ =1 then compute I - (N = z¢) modN = (%52)¢ modN

Stepb3: Use the number computed in Step 2 as new input, and repeat the

process.
The sequence of bits given in successive applications of Step 1, constitute
the binary representation of z.
The formal aspects of the proof are given in the sequel. Let n = £( bit(N')).
Define r,,a,,t;, where { = 1,...,n, by induction as follows. Let

ry = z° modN;a, = bit?(r),

.= I -r,_y modN if a,-; =0
v I- (A’V - r.~_1) modN if Qij-1 = 1

Also, define by reverse induction ty, = a, and

¢ _ t.‘ ~0 if a; = 0
1= bit(N)A[t ~0] if oy =1

Clearly, for all i, £(t;) = n — ¢ + 1. Also, for each i there exists a sequence u;
such that uf = r, modN. Put v; = bit(y,). Then one can prove, by reverse
induction on i, that for all s there exists a sequence w; such that

Claim 2: v, = w;, —¢t,.

" Indeed, the case 1 = n is immediate from the definitions. Assume that the
claim is true for ¢, and let w; be the sequence such that v; = w; —~ t,. To
find a uv,_; such that v,_; = v,y — t,—;. I on the one hand a,_; = O then
ri=1-r,_, modN. Thus,

Uiy Eri =20, =204 = (2-w)° rﬁodN.
Consequently, 2-u; = u,_;. It follows frofx: the induction hypothesis that
vi—y = bit(u;—;) = bit(y,)~0=w; ~t; —~ 0.
If on the 6ther hand g;_; =1 thenr,=TI-(N —r,_;) modN. Thus,
yi_, =Sriy=N-2°-r,i=N-2°ul=
N-(2-4)=(N-2 1) modVN.

Consequently, N — 2 -u; = u,;_,. It follows from claim 1 that there exists a
sequence w_, such that

vi-1 = bit(ui—y) = bit(N = 2. u;) = w]_, ~ [ bit(N)A(r, ~ 0)]

Hence, the result follows easily from the induction hypothesis.
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Finally, claim 2 implies that w; = @ and hence v; = bit(z) = ¢,.
Proof of (4) = (1) ’
Define r;, e, fi,sy.--, fi,0, where i = 1,..., n, by induction on i:

Nie-1 == f1,0=0, fi,, = bit’(r;),
r1 = z° modN, a; = fi .
r; is now defined exactly as before i.e.

- I il modN if Qi1 = 0
"EY I (N-ric)) modN if a;y =1

Further, put

i fio= { fic1,8--- fie11 if a;,.; =0
hetrr o (1= ficre)ee - (1= fica) i @iy =1

The sequence ¢; is defined by reverse induction; one sets t, = f5,... fn0, and
for ¢+ > & + 1 one puts

. _ ti—~0 if iy =0
=T bit(N)A[ ~ 0] if gy =1
Clearly, forall 1 ¢ < n—3, {(ta41-i) = 2 +1. Hence, £(t,41) = n. As before,
let u; be such that uf = r; modN. It will be shown by inductionone+12>i> 1
that )
Claim 3: [fi,... fi,o] 1 § = [last & + 1 bits of bit(u;)] 14
Proof of Claim 3: The case ¢ = 1 is trivial. Assume the claim is true for
§. On the one hand, if a; = O then

[fivro---figr0) V(E+ 1) = fisr0fisofisom1 oo Jiamitr =
bit*(rig1)fi,efiom1--- fijomit1 =

[(8 + l) — st bit of bit(u.'.g,l)lf,',,f.',,_l . f.'.._,'.H.

The claim now follows from the fact that fio = 0, u; = 2u;4; (see claim 1).
On the other hand, if a, = 1 then

[fiwr0--figr0] T (1 4+1) =

[(8 + l) — &t bit of bit(u.-“)](l - f.",) e (l - f,",_.‘.'..l ).
The claim now follows from the fact that fio = 1, y; = N — 2u,4, (see claim
1).
Next, one can show as in claim 2 above that for all 1 > s + 1 there exists
a sequence w; such that v; = w; — ¢,. In particular, v,4, = t,4, and hence,
tg41 = bit(t,41). It follows from the definition of u; that for all i,

2 4i41 = u; modN or 2 - u;4; = ~u; modN.
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In particular, since z = u;
2' - u,4; = zmodN or 2’ - u,4; = —z modV.
It is now clear that if one puts y = 2* - rep(t,4;) modN then

_fvy if y=z° modN
TEUN-y if y°#z° modN

The above recursive construction can be easily converted into an efficient algo-
rithm for computing z from z° modNe

EXERCISES 1: Give the proof of equations (3) and (4).

2: Give the proof of lemma 4.1. Hint: Use the fact that e is odd 2nd that
I-2¢°=1modN.

3: Give the proof of Claim 1.

4.5 THE RABIN SYSTEM

The main strength of RS A is based on the (supposed) difficulty of factoring.
Thus, if a cryptanalyst knows how to factor efficiently he will also be able to
break RSA. However, it is not known if the converse of this last statement
is true. Rabin, in an attempt to resolve this intricate situation, has proposed
a public key cryptosystem, to be described below, for which the problem of
factoring is equivalent to that of breaking his system.

In the Rabin system each user selects a pair p, g of distinct odd primes, that
be keeps secret, and publicizes N = p- g; further, each user chooses an integer
b < N. The encryption function is -

Enps(z) =z (z+b) modN.

The decryption function Dy » supplies for each given encoded message m a
solution u (there are four possible such solutions) of the quadratic equation
z-(z+b) = mmodN. Figure (6) describes the Rabin system.

It is clear that the encryption Enp(z) = z - (z + b) modN requires one
addition, one multiplication and one division modulo N. Decryption is also
easy if the factorization N = p-g of N is known. Indeed, given an encrypted
message m (such that p,g Jm) use the Adelman, Manders and Miller algorithm
to compute the roots r, s of the congruences z-(z+5b) = m modp and z-(r+b) =
m modg respectively. Next, use the Euclidean algorithm to compute integers
k,l such that k-p+1-g = 1. It is now easy to see that Igr + kpe is a solution
of the congruence z - (z + ) = m modN. Further, it is easy to show that the
functions En s, Dy p are the inverse of each other.

It will simplify the remaining proofs if one notices that the congruence z-(r+

b) = m modN has a solution if and only if the congruence y* = m+ 943 modN
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USER | PUBLIC FILE | PRIVATE FILE

1 h,Ni=p1-q P qQ
2 by, N2 =p2-q2 P2,92
3 bs, Ns = ps - qs P3»3s

Figure 6: The Rabin System

has a solution. To see this last claim, one merely has to complete the squares
in the congruence zZ + z - b = m modN; this can be done since N is odd; one
merely has to define 4! modN, the inverse of 4 modulo N. Thus, from now
on only congruences of the form z> = m modN will be considered.

As promised, it remains to show that decryption is equivalent to factoriza-
tion. This is proved in the theorem below.

Theorem 4.2 (Rabin’s Factorization Theorem) Let N be the product of
two odd primes. Then the following statetements are equivalent:

1. There is an efficient algorithm A such that for all m < N, A(N m) is ¢
solution of the congruence z2 = m modN.

2. There is an efficient algorithm for factoring N.

Proof: The proof of (2) = (1) was given in the above discussion. Thus,
it remains to prove (1) = (2). 'Choose at random an integer & such that
gcd(a, N) = 1 and let m = a? modN. If u = A(N, m) then both a, u are solu-
tions of the congruence z2 = m modN. So, on the one hand if u € {a, N - a}
then gcd(N, u + a) is a prime factor of N; on the other hand if u € {a, N - a}
then choose another a and repeat the above procedure. Since, with probability
1/2, u € {a, N —a}, it is expected that after two trials one will be able to factor
N. More details on the proof can be found in subsection 3.5 e

A closer examination of the proof of the previous theorem can also show the
following

Theorem 4.3 (Rabin) Let A be an efficient algorithm such that for any N
which is the product of two odd primes, A(N, m) outputs in F(N) steps a solu-
tion of the congruence 2 = m modN with probability at least e(_lNY Then there
exists an efficient algorithm B such that for any N which is the product of two
odd primes, B(N) will output the factors of N in at most 2 e(N) F(N)+2-log-N
steps o
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EXERCISES
1: Prove theorem 4.3 using an argument similar to that of theorem 4.2.

4.6 RABIN BITS

Just like in the case of the RSA system it is reasonable to examine the
secutity of specific bits of messages transmitted via the Rabin system. To be
more specific the present subsection is motivated by the following

Question: If a cryptanalyst knows an efficient algorithm which given as
input a Rabin message z° modN (of a specific instance of Rabin's system) will
output a certain bit of the original message z, can he devise an efficient algorithm
which given as input a Rabin message z2 modN (of a specific instance of Rabin's
system) will output the whole message z?

Without further ado the notation of subsection 4.4 will be used in the present
subsection.

Each z € QRy has exactly four square roots; let z+ (respectively ™) denote
the square root of z which is < N/2 and such that the Jacobi symbol of zt
(respectively of z~) with respect to N is +1 (respectively —1.) For any instance
N of Rabin’s system define the following bit functions whose domain is the set
QRx of quadratic residues modulo N.

Parity Function:

Pary(z) = parity of z¥,
Parity Comparison Function:

_f 0 if parity of 2+ = parity of 7~
CPary(z) = { 1 if parity of z+ # parity of z~.

The following result formalizes and answers the question stated above.

Theorem 4.4 (Goldwasser-Micali-Tong) Given any N which is the product
of two odd primes p,q such that eitherp=g=1mod8 orp =g = -1mod8 or
p=g¢g=3mod8 or p =g = -3 mod8 the follouing statements are equivalent

1. There is an efficient algorithm for factoring N
2. There 18 an efficient algorithm computing the function Pary.
S. There is an efficient algorithm computing the function CPary.

Proof: Fix any N as above. It is obvious that (1) implies each of the
statements (2) and (3). Since N is odd N, 4 are relativily prime; hence there
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exists an integer I such that /-4 =1 modN (such an I can be computed using
the Euclidean algorithm.)

Proof of (2) = (1): The proof is similar to that of theorem 4.1. The
following algorithm factors N:

Input: N

Step 1: Choose a < N/2 at random such that (a|N) = -1.

Step 2: Compute r; = a2 modN, s, = Pary(r1).

Step 3: Compute the length n = ¢( bit(N)) of N.

Step 4: For i =1 to n compute

ri =I-ri.y modN, a; = Parn(r;)

Step 5: Compute t, = a,
Step 6: For i = n down to 2 compute

¢ - t -~0 if Q-] = 0
=17 big(N)A[ti ~ 0] if a1 =1

Output: gcd(e + rep(t1), N).

For each i let u; be the unique root of z> = r; modN such that u; <
N/2, (ui|N) = +1. However, recall the following properties of the Jacobi
symbol:

(-1|N) = (~=1)N=DP2, (2|N) = (-1)N* -0/,

Hence, for the N considered in the present theorem (-1|N) = (2|N) = +1.
Using this and arguing as in the proof of theorem 4.4 one can show that

gy =02y =2 4,

a.-..1=l=>u.~-1 =N—2»u.~.

For each ¢ let v; = rep(u;). As in the proof of theorem 4.4 it can be shown
that for all 1 there exists a w; such that v; = w; — ¢;. In particular, v; =t,. It
follws that ged(a + u;, N) is a prime factor of N

The proof of (3) = (1) is left as an exercise to the reader o

EXERCISES
1: Complete the details of the proof of (2) = (1) in theorem 4.4.
2: Give the proof of (3) = (1) in theorem 4.4.

4.7 THE MERKLE-HELLMAN SYSTEM

In the Merkle-Hellman system each user selects a pair w, m of positive inte-
gers, that he keeps in his private file, such that ged(w, m) = 1; w is called the
multiplier and m is called the modulus. In addition, each user keeps in his
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private file a superincreasing sequence a’ = (aj,...,a;) i.e. a sequence that
satisfies . " :
al > Z ajforalli > 1, and m > Za;.
=i+l =1
The user publicizes the sequence s = (a,,...,a4) which is defined by
6; = w-a, modm foralli > 1.

A message z = (z;,...,2,) (which is a sequence of 0,1 bits) is encrypted
via the encryption function
n
E(z) = Zz, - a;.
=1
The decryption function D supplies for each given encoded message S a solu-
tion u of the equation

S=iu.-a.~. (5)

=1

Figure (7) describes the Merkle-Hellman system.

i USER | PUBLIC FILE PRIVATE FILE i
1 !a(l)=(ay(1)....,00,(1)) [ (1), {0).a’{d) = (a}(1)..... ag (1)

2 jald)={(a1(2)... . an,(2)) | w(2),m(2).0"(2) = (a3 (2).... a7, (2))

I3 a(3) = (a1(3)....,an4(3)) | w(3),m(3),a"(3) = (a}(3)..... a,.(3))

Figure 7: The Merkle-Hellman System

Equation (5) is based on a knapsack problem and is ii general difficult to
solve. However, the following lemma indicates how one can solve efficiently
knapsack problems for superincreasing sequences.

Lemma 4.2 Let ¢' = (a},...,ah) be a superincreasing sequence of positive
integers and let S' > 0. Then the follouing equation has at most one solufion

z=(z;,...,7,) € {0,1}"
S = Zz,wa:. (6)

=1

In fact, equation (6) has a solution if and only if

§'< ia:.
i=1
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Proof: The proof is straightforward. One merely nceds to observe that for
alls=1,...,n,

=15 >4 + Z z;-aje
J=itl
It remains to show that encryption is easy. Indeed, when the user receives
the encrypted message S he is supposed to solve equation (5) to obtain the
original message z = (z,,...,z,). Instead, he computes w=!, the inverse of w
modulo m, and solves the equivalent knapsack problem

.S= Ez. -a! modN. (7)

=1

Since the sequence a' = (a},...,a}) is superincreasing, equation (7) can be
solved easily using lemma 4.2.

An obvious generalization of the a,bove system is the iterated Merkle-
Hellman system, also considered by Merkle and Hellman. In such a system one
successively applies pairs w*, m* of multipliers and moduli respectively (such
that gcd(w®, m*) = 1), where k = 1,...,r — 1 to the original vector a to obtain’
a sequence a = g% al,...,a" of vectors satisfying

k k41 . ak-H

a- =w modm*+!, fork=0,...,r -1,

(here, the symbol ¢ is used to indicate multiplication of a scalar with a vector.)
The last vector a” is chosen in advance to constitute a superincreasing sequence.
For more details the reader should consult [MH].

4.8 THE SECURITY OF THE MERKLE-HELLMAN
SYSTEM

Let w,m,a’ = (af,...,a}),8 = (a1,...,8,) be an instance of the Merkle-
Hellman system. A cryptanalyst is in possession of the sequence ¢, but not of
w, m,a’. In order to analyze the above instance, the cryptanalyst might try to
compute a trapdoor pair for the sequence a i.e. a pair W, of integers such
that the sequnce @ = (@;,...,3,) defined by

@ = a; - W modm (8)
is superincreasing and satisfies
LY -
Ya<m (9)
=1

It is clear from the argument in subsection 4.7 that any trapdoor pair could
be used to decrypt easily any transmitted message of the above instance of the
Merkle-Hellman system.
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Dividing congruences (8), (9) by 7@ one obtains that

LR

= = (a: m) modl1, (10)
"

Za.-~?modl <1, (11)
i=1

where F = £ The function (@, -7) modl is represented in figure 8. (Notice that
for convenience the unit length in the horizontal axis is smaller than the unit
length in the vertical axis.)

EIC

(a; - ) mod1
1
i
| iy
L]
!
|
: ' ?=2
o 1L 2 3 i pit! ai=1, "
a;, &, a, a; a;, °°° a;

Figure 8: The i-th sawtooth function

In order to compute such a trapdoor pair one first determines a point 7y on
the 7- axis such that inequality (11) is valid (of course such a point is guaran-
teed to exist because this is required in the construction of the Merkle-Hellman
system). Hence, an interval [r;,r;] must also exist such that for all points
F € [r1,r2] inequality (11) is valid. Let p, = the p;-th minimum of the i-th
sawtooth curve. One obtains the following two systems of inequalities with the
integral unknowns py,...,pa-

1<pp <oy -1, -2 <pifar = p2faz <€
1<p2<a2-1, —es S pifay —psfas < €y

. ) (12)
1<pa<a.-1, —€n Spl/al‘Pu/aqu;.

where ¢;,...,¢€4,¢€},..., ¢, are the acceptable deviations to the right and to the

left of p;/a, respectively (the deviations should be chosen in such a way that
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inequality (11) will be valid). System (12) can be solved using Lenstra’s integer
programming algorithm (see [Len]).

Let p, be one of the values determined by the above procedure and let
F1,...,7x be a list of all discontinuity points such that

+1
?,,...,er[z—‘,p#—),

arranged in increasing order, of all the sawtooth curves. Between any two such
discontinuity points each sawtooth curve looks like a line segment; moreover,
the linear segment corresponding to the i-th sawtooth curve is represented by
the formula 7 - ¢; — g}, where ¢! = the number of minima of the i-th sawtooth
curve which lie in the interval (0,7,). Thus, for each 1 <t < k conditions (10),
(11) can now be formulated as the following system of linear inequalities with
unknown 7, such that 7y < F < Feyg:

n
Y Foai-qf <1, (13)
=1
j=1
(F-a;—q,'-))Z(F-a.«—qf), forj=1,...,n. (14)

=1
The solution of the above system provides a subinterval of [Fi,7i41). Any 7 =
w/m lying in this subinterval gives a trapdoor pair @, 7. For more details the
reader should consult [Sham1].

4.9 THE QUADRATIC RESIDUE SYSTEM

The quadratic residue system, abbreviated QRS, to be described below,
replaces the notion of trapdoor function with the notion of probabilistic encryp-
tion i.e. to encrypt a given message the user will use the result of a sequence of
coin tosses in order to scramble the original message.

Suppose that a sender S wants to send a binary message M = (m, ---m,)
to receiver R. S obtains the numbers n,y, where y € QR,, corresponding to
R from the public file; n is the product of two odd primes p,q known only to
R such that p = ¢ = 3 mod4 (see figure 9). S encrypts the message M by
choosing a random sequence z = (z,,...,z,) of r elements of Z} = {1 <z <
n:ged(z,n) = 1} and letting

En(z; M) = (y™ - 22 modn,...,y™ - zZ modn).

Given (e;,...,¢,) the receiver who knows the factorization of n reconstructs the
message M = D,(ey,...,¢) = (my,...,m,) via

- 1 ife.-eQR..
"™E=10 i e € QRa,
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USER PUBLICFILE PRIVATE Fllﬂ
1 1 €QR., ,mi=p1 -0 P Q1 i
2 ¥2, € QRn, n2 = p2 - g2 p2.q2

3 ys, & QRny,n3 = Pps -qs Ps. g3 !

Figure 9: The Quadratic Residue System

where i = 1....,r.
The following definitions will be needed in the study of the security of the
QRS. The signature of an integer z € Z; is defined by

_J1 if z€QR,
”"(’)‘{ 0 if z¢QR.

Thus, the above definition of the decryption function D, implies that
Daler,....&) = (oaler). .- 0nler)).

The r-signature of the r— tuple z = (z,...,2,), where each z; € Z;, is
defined by
Onel(z1,-.0v2,) = (Oal21),. .-, 0nl2r)).

H¢=(4,...,¢)is a given sequence of bits let
Deme={(z1,...,2,) €(23) : One(z1,s...02Z¢) = £},

Given two sequences a = (a;,...,8,),b = (b1,...,b,) of bits the distance
between a, b, abbreviated dis(a, b), is the number of indices 1 < v < r such that
a; # bi; a,b are called adjacent if their distance is equal to 1.

Recall the notation of the subsection on the Quadratic Residue Generator.
N = {Ni : k € I} will denote a family of nonempty sets Ny of nonegative
integers such that 7 is an infinite set of indices, and for all n € Ny the integer
n has binary length exactly k; throughout the present subsection n will range
over integers which are the product of two distinct odd primes p, g such that
p = ¢ = 3 mod4. The capital roman letters P,Q, R with subscripts or super-
scripts will range over nonzero polynomials with one indeterminate, positive
coefficients, and degree > 1, and the lowercase greek letters ¢, 6 with subscripts
or superscripts will range over positive real numbers.

A decision function is any family d = {d, : n € Ni,k € I} of functions
dn : (22)P¥) — {0,1}, where P is a polynomial. For any decision function d
as above, any sequence £(n) of P(k) bits, and any n € N let

Pyn(t(r)) = Prlda(z) = 1]z € Qp(k).n.en)]
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For technical reasons, to become apparent below, the definition of advantage
for determining quadratic residuosity will be extended to the definition of ad-
vantage for determining quadratic residuosity assuming a quadratic nonresidue
is known.

Definition 4.1 A polynomial size circuit C = {Cx : k> 1} hasa (1/2-1/P)-
advantage for determining quadratic residuosity for the family N, assuming a
quadratic nonresidue is known, and this will be abbreviated by AQR*(C,N,1 —
1/P), if for all but a finite number of indices k € I the following property holds
for alln € Ni,

%Pr[Ck(n, z,y)=1|z€QR, and y € QR, |+

%Pr[Ck(n,z.y) =0|z¢QRyand y g QR 21~ F(IT)’

where for each n € Ni, z,y range over Z3(+1).
The following two lemmas will be used in the study of QRS.
Lemma 4.3 (Goldwasser-Micali)

(3C)(3P)AQR*(C, N,1-1/P) = (VQ)(3C)AQR(C, N,1 - 1/Q)

Proof: (Outline) Let C = {Ci : k € I} be a polynomial size circuit and
P a polynomial as in definition 4.1. Let n € N, and let Q be any given fixed
polynomial. Put m = 4-Q(k)-P(k)? and select at random m quadratic residues

af modn,..., af,, modn.

Further, select at random m elements

Y1r---, Ym € Z3(+1),

and put ¥ = {y1,...,ym}. The idea is now the following: one of the elements
of Y is a quadratic nonreridue with high probability (in fact the probability is
1 - 2"™); it is natural to search for such an element, say z € Y, and then use
the circuit C' defined by

Ci(n,z) = Ci(n,z,2), where z € Z3(+1). (15)

To search for such an element z € Y it is enough to check the performance of
the circuit C. -

Thus, fort=1,...,m do:

Step 1: Compute the integers

Rae=]{1 <i<m : C(n,e? modn,y) =1}|
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Raty; = {1 i< m : Ck(n,y; s modn,y)=1}|

Step 2: Compute
dnt,5 = |Rnt = Rn,t,l

until for some j = 1,...,m, the following holds

1 v

dp ¢ i > —— 6

LA > P(k) (l )

If a j can be found such that (16) is true then define circuit C' as in (15)

with z = y;. The rest of the proof is an application of the weak law of large
numbers and will be left as an exercise (see exercise 1) o

Lemma 4.4 (Goldwasser-Micali) Let P,R be polynomials and Ict d be an
easy to compule decision funclion such that the follouing statement holds fer
all but a finite number of k € I: for all n € Ny one can efficiently compute
u, v’ € {0,1}°"%) guch that

IP“J'(U') P‘ ﬂ(u')l > 50 R(k) (17)

Then one can prove that
(VQ)(3C)AQR*(C,N,1-1/Q).

Proof: Without loss of generality it can be assumed that u, v’ in (17) are
adjacent. To see this let n € N, and let u, u’ witness the validity of (17). If
A = dis(u, u') then there exists a sequence uo = u,u;,...,us = u' € {0,1}7¥)
such that for all 1 <i < A, u,_,u,; are adjacent. It follows that

ledn(ut—l)-Pdu(uu)l>|Pdn(u) Pda(u ”> R(k)

=1
Hence, there exists an 1 <1 < A such that

1 1
A R(F) 2 R()

where R'(k) = R(k) - P(k) (here one uses the fact that & < P(k).)
Next, for any polynomial Q define a circuit C as follows:
Input: n € N,z € Z3(+1),y € Z3(+1) — QRa.

Step 1: Put m = 4. Q(k) - R(k)%.
Step 2: Choose at random m quadratic residues

[Pan(ui1) = Paa(ui)] >

3 modn, ..., s2, modn € QR,

and put
%N Ez~af modn,...,ym = z- 82, modn.
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Step 3: Compute u = (uy,...,upk)), 4’ = (u,, .+ Up(y)) adjacent, wit-
nessing the valldlty of (17); let r be such that u, # u, (without loss of generahty

assume u, = 1,u, =0.)
Step 4: Choose at random m elements wi,...,wm € Qpx)ne and m

elements wi,...,w;, € Qpx)n,e-
Step 5: Fori=1,...,r—1,r+1,...,P(k) do
For j=1,...,m draw z; € Z3(+1) at random and put
yi.i =y~ - 22 modn.

Moreover, put .
Yir =Yy forj=1,...,m

Step 6: Foreach y=1,...,m put
Zi = (Yi00ee o) Ysie=12 Y5 Yisr 1o+ - Y5, P(E) ) -
Step 7: Compute
d(n1)+---+d(zm) _d(wa) +--- +d(wm) ,

day = m m
&, d(z1)+ +d(zm) _ d(wi) + - +d(wp) ‘
m m
Output:
1 if d;y < Wlﬂ'
Ci(n,z,y) = ¢ L .
0 if d;, < ZR(E)

To show that this circuit works notice that forall j=1,...,.m

_fow if i#r
o (1) “{ only;) i i=r

However, by definition either all the y; are quadratic residues or else they are
all quadratic nonresidues. It follows that either {z),...,zn} C Qp(k) e OF
{z1,...,Zm} € OQp(k),n,v* depending on whether z is a quadratic residue or not.
The rest of the proof is an application of the weak law of large numbers. Indeed,

let Ay ={(2,y):2€ QRa,y € QR.} and By = {(z,¥) : 2 € QRa,y € QRa}.

A1)+ + d(zm)

= Py,p(k),»

1
szm]saﬂ‘

PrA. [

Prg, [

d(zy) + - +d(zm)

- Py, p(k),»’

-zmu]<our
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Hence the result follows from the above inequalities as well as

Pr [Id(w,)+...+d(wm)

m
1 1
Pr[ > ——] < ——o
2R(k)] ~ Q(k)
Let P be a fixed polynomial, n € Ni. For each integer k let 8p() be the

set of all messages of length P(k). For any message M € ©py) let M) be the
set of all encodings of M i.e.

< 1 1
2 “‘"’mk)] oW

=Py pryn

d(uwq) +--- +d(vp)
m

= Py piryn

MO = (Ep(z: M) : 2= (21,...,2p)) € (Z3)T ).

It is easy to see that for any two messages M, M € Op(, [M(9)| = |ﬁ(e)| (see
exercise 2.) ,

A predicate S on the family of messages {8p) : k € I} is a family
S = {Sx : k € I} such that for all k€ I, S : ©px) — {0,1}.

Theorem 4.5 (Goldwasser-Micali) Let P,Q be polynomials, S an easy to
evaluate predicate on the family {8px) : k € I} and C = {Cr : k € I} a
polynomial size circuit such that Cx has P(k) input gates and one outpul gate.
Further, assume that for all but o finite number of k € I, and alln € Ny,

Pr[Ck(n,En(z; M)) = Sk(M)] 2 Pr[Se(M) =1]+ (18)

1
Q(k)’
Then there exists a polynomisl R and an essy to compute decision function
d = {ds :n € Ni,k € I}, where dy : (22)P¥) — (0,1}, such that for all
but a finite number of k € I, and for all n € Nx one can efficiently compute
u,u' € {0,1}F°%) such that

Pan(v) = Pan(s')] > E(IT) (19)

Proof: Let k € I, n € Ni be fixed and let x be the common value of !M‘"l,
where M € Bp(x). Further, put 8 = Bp(;) and 6 = |8. For any M € 8,
and any i € {0,1} let G*(M) be the number of encodings e of A such that
Ci(n,e) =1 ie.

G'(M) = |{En(z; M) : Cx(n,En(z; M)) =i}
Finally let

[ GMM) it Si(M)=1
G(M)f{ GO(M) if Si(M) =0
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It is then clear that

Pr[Ci(n,Ena(z : M)) = S(M)] = x_l"é Y Gm). (20)
ME®

Partition the set © into R(k) = 10- Q(k) sets {©(t) : t = 1,...,R(k)} defined

by .
t—l<G'(M) t

Meo(t) & < < . 21
O zm< > “RHm #1)
Since,
R(k)
EDCIH (22)
t=1
it follows that there exists 1 < ¢ < R(k) such that
[}
|6(t)| > W°

The main part of the proof of the theorem consists of proving the following
Claim: There exist 1 < # + 1 < ¢t < R(k) such that

S 190)] > 7z | (23)

Proof of the Claim: Assume that there are no 1 < 8 + 1 < t < R(k) such
that (23) holds. Then one of the following two cases can occur:

1. There exists exactly one ¢ such that (23) holds for |6(t)|
2. There exists exactly one ¢ such that (23) holds for |8(t — 1)| and |S(t)|.

Put px = Pr[Si(M) = 1]. In case 1, ") cq(;) G(M) is maximum when ¢ =
R(k) and (VM)(Sx(M) =1 = M € 6(R(k))) ; thus, using (18) one can show
that

1 1
p~+Q—(—asﬁ[ Y cm+ ) G(M)]

MES(R(k)) MEB(i),i<R(k)

1 0 1
< — _ = i
-y [0xm+ R(R)? R(k)x] Pt R’
which is a contradiction. In case 2, ¥y eq(i-1) G(M) + Lpeo) G(M) is
maximum when ¢ = R(k) and (VM)(Se(M) = 1 = M € ©(R(k))) and
(VM)(Sx(M) = 0= M € ©(R(k) — 1)); thus, using (18) one can show that

1
Pk‘i‘mﬁ
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;1__0[ Y G+ Y G+ > G(M)]

MEB(R(k)-1) MES(R(k)) MEB(i)i<R(k)=-1

oy [9XPI: +2(1- m)R(k) 1:(7:)] P 2Q08) 2Q(k)

which is a contradlctlon. This completes the proof of the claim.
To define the decision function d, for each k € I, n € Ny let

da(z) = Ci(n, z), where z € {0, 1}"(*).

Let 1 < s+ 1 <t < R(k) be such that (23) holds. Then it is clear that for all
u € 6(s),u’ € 6(t),
G'(v)  G'(v) 5 1
X X R(k)’
Using a Monte Carlo computation one can easily compute u € 8(s),u’ € 8(t).
However,

(24)

1 1(,,!
Pan(u) = S p, (wy =
X X

Thus, the theorem follows from the above equations and inequality (24) o

The following interpretation of the hypothesis of theorem 4.5 will be useful.
Let S = {Si : k € I} be an easy to evaluate predicate on the family {©p() :
k € I} of sets of messages. Call Si true of the message M, where M € Op(k),
if Si(M) =1, and false otherwise. Then Pr[Six(Af) = 1] is the probability that
Six(M) is true on a random message M € 8p(x). Let C = {Cx : k€ I} bea
polynomial size circuit such that Ci has P(k) input gates and one output gate.
Then the quantity
Pr|Ck(n,Ea(z; M)) = S(M)),

is the probability that the polynomial size circuit C guesses correctly the value
of Sy(M) assuming only knowledge of the encoded message E,(z;M). The
hypothesis of the theorem now states:

There exists a polynomial Q, ap easy to compute predicate S, and a poly-
pomial size circuit C such that for all but a finite number of k, Ci guesses the
correct value of Sy (M) from a random encoding E.(z; M) of M with a 1/Q(k)
advantage.

If one recalls that QRA(N) is an abbreviation of the Quadratic Residuosity
Assumption for the family N, takes into account the results in the subsection
on the Quadradic Residue Generator, and combines them with lemmas 4.3, 4.4
and theorem 4.5, it is immediate that

Theorem 4.6 Assuming QRA(N) there 18 no polynomial Q, no easy to com-
pute predicate S, and no polynomial size circust C such that for all but a finite
number of k, Cy guesses the correct value of Sk(M) from a random encoding
Ep(z; M) of M with o l/Q(k) advantage o
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EXERCISES

1: Complete the details of the proof of lemma 4.3.

2: Show that for any two messages M, M € Op(y), [M(9)] = ]—A_l_(e)| Hint:
Show that the mapping En(z; M) — E,(z; M) is one to one and onto.

4.10 BIBLIOGRAPHICAL REMARKS

The recent rapid development of public key cryptosystems followed imme-
diately after the publication of Diffie and Hellman in [DH]. Before this the
security of cryptosystems was based on absolute security criteria (see [Shanl]
and [Kon]). For further general remarks on cryptosystems the reader should
consult [Pe], [Lem], [Bet]. Some recent works which include material on public
key cryptosystems are [Kon|, [D] and [DDDHL).

The RSA system described in subsection 4.3 was developed in [RSA| and
the Rabin system described in subsection 4.5 in [Rab]. The security of RS A bits
and Rabin bits studied in subsections 4.4 and 4.6 respectively is from [GMT].

The Merkle Hellman system is based on knapsacks and was developed in
[MH]. The presentation of the security of the Merkle Hellman system presented
in subsection 4.8 is based partly on [Sham1] and [EL].

The presentation of the Quadratic Residue System presented in subsection
4.9 is a continuation of the presentation of the Quadratic Residue generator and
is from [GM]. '
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5 TOWARDS A GENERAL THEORY
5.1 INTRODUCTION

The present section presents a general theory of pseudo-random generators
and public key cryptosystems. Subsection 5.2 includes two security tests for
pseudo-random generators. The first one, the Blum-Micali Test, is used to
construct unpredictable pseudo-random generators. The second one, Yao's Sta-
tistical Test, is proved in theorem 5.2 to be equivalent to the Blum-Micali Test.
This is important, because it confirms the fact that the security of the pseudo-
random generators constructed via the Blum-Micali Generator theorem do not
depend on the order of the bits produced by the generator.

The second subsection deals with the concept of xoring. This is very im-
portant for the construction of pseudo-random generators satisfying improved
unpredictability properties. The next subsection gives a complete proof of the
XOR lemma. The proof is divided into two parts. The first part gives a heuristic
proof of the lemma, which will be essential to understanding the main formal
proof, which follows next. ' .

The last two subsections deal with three applications of the XOR theorem:
to unapproximable predicates, to pseudo-random generators and to 1 — 1, one
way functions.

5.2 SECURITY TESTS

Let S, = {0,1}™ be the set of sequences of bits of length exactly m. Let
X = {X,n : m > 0} denote a family of nonempty sets such that each X,
is a subset of Sy, let f = {fm : m 2 0} be a family of polynomial time
computable functions such that each fn is a permutation of X, and let B =
{Bm : m > 0} be a family of polynomial time computable functions such that
each B, : X,, — {0,1} is a 0, 1-valued function with domain Xr. Any such
family {Bm : m > 0} of functions is called a predicate on { X, : m > 0}.

As usual, the capital roman letters P,Q with or without subscripts
and superscripts will range over polynomials of degree > 1 with posi-
tive coefficients. All the circuits considered in the present section will
be probabilistic.

Further, it will be very important for the construction of polynomial size
circuits to be able to generate random elements in X,,. To be more exact from
now on and for the rest of this section whenever a family X = {\,, : m > 0}
is considered it will be assumed that there exists an algorithm running in time
polynomial in m which on input m it will output a random element of X,.

Definition 5.1 A polynomial size circuit C = {Cp : m 2 0} P-predicts the
predicate B = {Bp, : m 2 0} if the following statement holds for infinitely many
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Prlz € X : Bn(2) = Cn(2)] 2 5 + s

Definition 5.2 The predicate B = {Bp : m 2> 0} is unapprozimable if
(VP,C)(C does not P — predict B).
Definition 5.3 The family f = {fm : m 2 0} of functions is a friendship

function for the predicate B = {Bpy : m 2> 0} if both of the following two
funclions are computable in time polynomial in m,

1. <m,z>— fm(z)
2'. <m,z>— Bm(fm(z))

Remark: Notice that the function < m,z >— Bp,(z) in definition 5.3
need not be computable in time polynomial in m.

Example 5.1 For any two primcé p,q salisfying p = q = 3 mod4 consider the
following function and predicate:

1. fa :QRy — QR : z — 22 modn

2. B, : QR, — {0,1} : z — B,(z) = par(,/z modn).

Assuming the Quadratic Residuosity Assumption it is easy to see that the above
family satisfies the requirements of definition 5.8.

Example 5.2 For any prime p and any generator g € Z7 consider the following
function and predicate:

1 fp:2; — Z; :z— g* modp

2. By :Z; — (0,1} : z — By(z),

where
B,(z) = 1 if z=PQR(p,g,2* modp)
PRI 1 0 if z=NPQR(p,9,2? modp),

and PQR(p,g,z?> modp), NPQR(p, g, z> modp) respectively denote the princi-
pal, nonprincipal square root of z2 modp. Assuming the Discrete Logarithm
Assumplion it is easy to see that the above family satisfies the requirements of
definition 5.8.
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Definition 5.4 A family G = {Gm : m 2 0} of functions is a pseudo-random
generator, if there exists a polynomisl Q such that

1. For allm, Gpm : Xpm — Sg(m) 6nd

2. <m, 1 >— Gp(z) is computable in time polynomial in m.

To any pseudo-random generator G as in definition 5.4 associate the se-
quence b3 o(z),...,b% o (m)—y (2) of bits generated by G, where for each index

m, b€ () is the i—th bit generated by G, on input z.

v m,s

Definition 5.5 A polynomial size circuit C = {Cm : m > 0} P-predicts the
pseudo-random generstor G = {Gm : m 2 0}, if for infinitely many m, there ~
erists an 1 < Q(m) such that

1
P(m)

Pr [Gml2): Co(b0(2). - s (2)) = b)) 2 5 +

Definition 5.6 4 pseudo-random generator G = {G, : m > 0} passess the
Blum-Micali test, and the lest unll be abbreviated BMT, if the follouwing state-
ment holds,

(VC, P)(C does not P — predict G).

For any function h :Y — Y and any integer n > O recall that A" : ¥ — ¥’
stands for the function defined by induction as follows:

i = | h(2) if i=1
h(’)’{ h(f,--x(,)) ;f :'> 1

The following theorem is very important, because it provides a technique
for constructing pseudo-random generators that pass the Blum-Micali test from
an unapproximable predicate B = {Bn, : m 2 0}, and a {riendship function
S ={/m:m2>0} for B.

Theorem 5.1 (The Blum-Micali Generator Theorem) For any polyne-
mial Q, eny unapprozimable predicate B = {B,, : m 2> 0}, and any friendship
function f = {fm : m > 0} for B the pseudo-random generator GB:/Q =
{GEB/Q: m > 0} defined for 1 € X by :

GBJR(z) =< Bn (/2™ (2)),-.., Bm(JS™(2)),..., Bm(/m(2)) >,

passes the BMT.
Proof: Consider the abbreviation

b8 ;(z) = Bm(f3™~I(2)), for 0 < j < Q(m),
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and assume on the contrary that the pseudo-random generator GB:1Q does not
pass the Blum-Micali test. It follows that there exists a polynomial size circuit
C = {Cm : m 2 0} and a polynomial P such that C, P-predicts the generator
GB/JQ. 1t follows from the definition of GB:/@ that for infinitely many m,
there exists an 5 < Q(m) such that

Pr [Gm(2) : Cm(tC.0(2), -, 0G sy (2)) = 94 (2)] 2 % + ﬁ(—lm—). (1)

Let M be the set of indices m which satisfy inequality (1). Clearly, for each
m € M there exists an integer i,, < Q(m) such that
1

Pr[Gom(2) : Cm(8G o (2)s- - 01 (2)) = 88, (2)] 2 %+ oy

Define a new circuit C' = {C,, : m 2 0} as follows for z € X,

Ci(2) = Con( B (3 (2)), B (S ™2 (2))s- -+ B fm (2)))-
One can then prove that the following claim holds:
Claim: For all me M,
b
P(m)

Proof of Claim: Fix an arbitrary m € M and put i = im, j = i -
Q(m), ' = f?(z), where z ranges over X,,. Then the following statements are
equivalent for each z € X, ’

Pr(Gm(z) : Chl2) = Bn(2)] 2 5 +

Cm(2) = Bm(2)

Cm(Bm(f,';,(z)), B,,,(f,‘n’l(z)),... +Bm(/m(2))) = Bm(2).
Cm (63 o (/2 (2)), 05 1 ([3(2))s -+ -2 b i1 ([ (2))) = 85, i (13 (2))
_C,,.(b‘,‘,’,,o(z'),bﬁ,,(z'),, . 1bg.i—l(z')) = bf.,s(t')- '

However, the mapping z — z' is a permutation of X,,,. Hence, using inequality
(2) one obtains that,
1 1
Pr[Gm(2'): Cm(bf.,o(z')v--»bﬁ,i-l(f')) =5 :(2')] 2 3% Bim)’
which completes the proof of the claim.
But, this is a contradiction since the predicate B is unapproximable. The
proof of the theorem is now complete.o

Definition 5.7 A polynomial size statistical test, abbreviated PSST, for
the pseudo-random generator G = {Gm : m 2 0}, where Gm : Xm — Sq(m)
for some polynomial Q, is a polynomial size 0, 1-valued circuit C = {Cm : m 2
0} which for each m 2 0 has Q(m) input gates.
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Definition 5.8 Let C be o PSST for the generator G. For eachm > 0, consider
the probabilities
p5C = Pr|Gm(z) : Cm(Gm(2)) = 1],

pg'R = Pr|u € Sg(m) : Cm(u) = 1].

Definition 5.9 The pseudo-random generator G passes the PSST C', of for all
but a finite number of integers m,

1
(VP) [l p5C - o5 | < )5—(;"—)] .

Definition 5.10 The pseudo-random generator G passes Yao's statistical test.
sbbreviated YST, if for any PSST C for G, G passes C.

Theorem 5.2 (Yao's PSST Theorem, A. Yao) For any pseudo-random
generator G = {Gm : m > 0}, the following statements are equivalent:

1. G passes t>hYe Blum-Micali Test.

2. G passes the Yao Statistical Test.

Proof: Assume that for each m 2 0, Gm : Xy — Sg(m), Where Q is a
polynomial.

(2)= (1)

Assume, by way of contradiction, that (2) is true, but (1) fails. Let P be
a polynomial, C = {Cy» : m > 0} a polynomial size circuit and M the set of
integers m such that there exists an # < Q(m) so that the following holds:

Pr [Gom(5): Con (G a2 6 cs () = 85,00)) 2 5 + iy (9)
For each m € M let i,, be an integer i < Q(m) that satisfies inequality (3).
Define a new polynomial size circuit C' = {C,, : m > 0}, which for any given
=< Ug,..., UQ(m)-1 >€ Sg(m) is given by the formula

Cri(t) = Crn(toyee s Ui=1) B % B 1.
It is then clear that for all u € Sg(m),
Ch(4) =1 Cmluo,. .\ bipm=1) = Ui,

It is an immediate consequence of definition 5.8 that for all m € M,

1

Pim)’ (4)

, 1
P = PriCm(b5 o(2). - b (2) =0, ()] 2 5 +
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Now it can be proved that

Claim 1: (¥m € M) [p5"C 2 1/2+1/(2P(m))]

Proof of Claim 1: Sinse G passes YST it must also pass the test C’. Thus,
the following inequality holds for all but a finite number of m,

, " 1
c'G _ C'R
It follows from (4) that for all but a finite number of m € M, ‘
1
2P(m)’

R S U SIS N
2P(m) =2 P(m) 2P(m)

C'.R (oie]
Pm’ > Pm

L
2

which completes the proof of claim 1.
Now a contradiction can be derived easily. Indeed,

pf’" = Prlu € Sq(m) : Cm(t0y--- s tip=1) = u, | =

Pr|Cm(uo,- -, Uip—1) = O|ui,, =0]- Prlu;,, = 0]+
PrlCm(u0y-- - 8ipm-1) = lui, =1} Prly;, =0] =

1
E(Pr[C,,.(uo,...,u.-_-l) = Olu.-' = 0]+

Pr[C,,.(uo,...,ug__;) = llu.',_ = 1]) =

1 : 1
-é (Pr[C,,.(uo,...,u.-m_l) = OI +Pr[C,,.(uo,...,u.-m-1) = l]) = §,

a contradiction.

(1) =(2)

Given two sequences u =< t},...,%m, >, ¥ =< v,..., Uy >, of bits, where
m,n > 0, let the concatenation, of u,v, abbreviated u — v, denote the se-
quence < Uy,...,Um,V1,.-.,Us >. The number m is called the length of u,
and is abbreviated ¢(u). The inverse sequence < um,...,u; > obtained from
u by reversing the order of the bits in the representation of u is denoted by
*u. Assume, by way of contradiction, that G does not pass the YST. Let
C = {Cm : m 2 0} be a polynomial size circuit and P a polynomial such that
the following inequality holds for infinitely many m,

1
I Pg'c - PS.'R l 2 -ﬁ(—ﬂ—lj (5)

Let M be the set of integers that satisfy (5). For each i < Q(m), define the
following subsets of Sg(m),

Si={t~<bC . 1(2),...,05 o(2) >: € X, t(t) = Q(m) =i}  (6)
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It is then apparent from definition (6) that
2™ = (Gp(z): 2 € Xm} CSY™-1 C...C 8} C 5% = 50(m)-
‘Also, for each i < Q(m) consider the following probabilities:
pin =Pr[ue Sy, :Cn(u) =1].
It is then clear from definition 5.8 that

p% = pSR and pQ(™) = pCC.

Moreover, using (5), for all m € M one has

Qm)-1
l . .
B Slx{f.'c - PSR =198, - 2™ < ; | Pl = Pl |-

Hence, for each m € M there exists an s < Q(m), call it iy, such that

|pim = pim*?

1 -

l 2 'Q",'mv ( ‘ )
where Q'(m) = P(m) - Q(m). :

The purpose of what follows is to construct a polynomial size circuit CJ,
which will predict the generator G. The idea of the construction of the circuit
C' is the following:

Input: ug,..., 4,1

Step 1: Choose a random v =< vQ(m)=im—1+---,%0 > of length £(v) =
Q(m) = im.

Output:

, _ _ vo if Cp(v—<ug,...,t,-1>)=1
Cm(uo....‘uc...-l)‘ { 19y if Cm(vA< Ugyeoey Uiyl >)..__.0

It is not hard to see that

1
Q'(m)’

The only problem in the above circuit is to show how to choose random
samples of big enough size of such v's so that the Weak Law of Large Numbers
can be applied. For example, if i, = @(m) — 1 this is not possible. The proof
that follows is intended to clarify this situation. To illustrate the last part of
the proof it will be assumed that

Special Case: i, = Q(m) — 1, for infinitely many m € M.

+

PriCo (b o1 (2)s 2080 o(2)) = b3 i ()] 2 (8)

LR
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The general case will be taken up later. The proof in the above special case
runs as follows. Let M’ = {m € M : i, = Q(m) — 1}. Let Ap (respectively
AL, All) denote the events:

Cm(1® ui (2), % =1(2), - ., ¥0(2Z)) # Cen (i n(Z)s im=1(2),- .., u0(2))
(respectively
Cm(1® i (z), ti=1(2),- .. 20(2)) > Cm(1i,(2) ti=1(2),- .., u0(2)),

Crm(1® ui, (2), ti=1(2)s- - 1 20(2)) < Crm(tipm(2), tim=1(2),- -, 20(2))
It is clear from the above definitions that A,, = A}, UA!,. Inequality (7) implies
that forallm € M, :

PrlAm] 2 Q'(m)

The above inequality suggests defining for each bit b the following polynomial
size circuits C? ., C3 .,

1 if Cm(0,%2) > Cm(1,+u)
C? o (v) if Cm(0,#1) < Cm(1,%u)
if Cn(0,3u) = Cpp(1,2u)

and

if Cm(0,%2) > Cpp(1,+1)

if Cm(0,3u) = Cpy(1,%u)
where 4 € Sg(m)-1. It is clear that there exists a bit b such that the following
holds for infinitely many m € M',

: 1 if Cm(0,*u) < Cm(1,2u)
(u) {

Pr[G"'(z) bm t,,.(z) = bI-'A'"] 2 (9)

Let M" denote the infinite set of m € M’ which satisfy the above inequality
(9). For each m € M",

P = Pr[C} (65 0(2)s-- 18551 (2) =855 _(2)] =
Pr[C} (85 o(2),--.,bG ,m_,(z)) =S in(z) and Gm(2) € A+
Pr(Ch (85 o(2)s--- 185 i -1 (2)) = 85 ;.. (2) and Gm(2) & Am]

N'i—‘

However, the definition of Cl’,,, implies that
Grm(z) € Ay = CF  (650(2),- -1 05 01 (2)) = 055, (2),

Gm(2) € Am = C1 (65 (2),-.- 05 i a (2)) = b.
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Consequently,
w2 PrlAn]+

Prlcf.m(brcn.o(z)" .. m u,..-l(z)) - bm 'm(I)l"Am] ) (l - Pr[Am])'
Using (9), this implies that,

Pm 2 PrlAn]+ 5 (l-Pf[Am]) (10)
A repetition of the above proof will show that if

P::. = P"[C'g,m(b (I) m |,..—l(:) = bg,im(r)]

then 1
P 2 Pridt] + 5(1 - PrlAn)). (1)

Adding both sides of the above two inequalities (10), (11) and using Pr[A,] =
Pr|AlL.] + Pr|A},] one obtains that for all m € M",

P+ Pm 21+ Prldn] 2 14+ —— (12)

o
and hence
! + _1_ or phn > 1 + 1
27 2Qm) X Pm =27 2 (m)
It is now easy. using the last inequality, to define nondeterministically a circuit
that (2Q')-predicts G. This completes the proof for the above described special
case.

The rest of the proof will be devoted to the gereral case. Let E,, denote
the event: there exists b € {0,1} and there exists a sequence v of length ¢(v) =
Q(m) - im — 1 such that

either p,, 2

(VU)(C (u -< bm :,,.(z) bm :m—l(z)v""bg,o >) #

Crn(v =< 5,88 i _1(2),...,bS o(2) >)).

For each sequence v of length £(v) = Q(m) — im — 1 let Let E, ., denote the
event: there exists b € {0,1} such that

Cm(v—<b, bg,,-m_,(z). b8 olz) >) #

Crm (v =< b5 i (2):05 i ma (2)r 15 0 (2) ).

It is clear that .
EmCUEms,
v
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and hence using inequality (7)

1
;PT[Em] > Pr [L'J Em,'] 2 Pf[Eml 2 P{m)-0(m)’ (13)

where in the above two inequalities v ranges over all sequences of bits of length
£(v) = Q(m) = im — 1. In the sequel, the following two cases will be considered.
Case 1: There exists a polynomial P’ such that such that

2Q(m)=im=1 < P'(m), for infinitely many m € M.

Let P’ be a polynomial such the inequality in Case 1 holds and let M’ be the
infinite set of all integers m € M which satisfy the correspending inequality.
Since the sum in (13) ranges over at most P'(m) sequences v, for each m € M'
there exists a sequence v(™) of length ¢(v(™)) = Q(m) — im — 1 such that

1
P'(m)P(m)Q(m)’

Now, the proof of the special case described above, applies to the present case.
One need only consider the set A, = E,(m and introduce the parameter v(m)
in the definition of the circuits C?,,,¢ = 1,2. The details are left as an exercise
to the reader (see exercise 1.) ~

Case 2: For all polynomials P’ there exists an integer mo depending on P’
such that for all m € M,

Pr[E"(m)l 2

m > mo = 29(M=im=1 5 P'(m).

In this case the Weak Law of Large Numbers will be applied. This is done
using the circuit C’ defined before inequality (8). The details are left as an
exercise to the reader (see exercise 2.) o

EXERCISES

1: Complete the details of the proof of Case 1 of theorem 5.2. Hint: With
the notation of theorem 5.2, use the idea described in the special case: im =
Q(m) - 1, for infinitely many m € M.

2: Complete the details of the proof of Case 2 of theorem 5.2.

3: Show that the index i, defined in inequality 7 can be computed in
polynomial time via a Monte-Carlo computation. Hint: For each 1 < Q(m)

consider a random sample vf,...,vi of sequences v} each of length £(vg) =

Q(m) —i. On input u of length i. compute the integer R, =|{j: Cm(v} —
u) = 1}|. Choose i such that |Ri, = RiH'| 2 1/(3Q(m)P(m)).
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5.3 XORING

The notion of xor, to be studied below, enables one to construct predicates,
pseudo random generators and public key cryptosystems with improved security
properties.

Definition 5.11 Given the functions B,’-,,,....Bﬁ,, where for each index 1 =
1,...,k, Bi : X\ — {0,1}, the xor By, = B}, ® --- ® Bk, of the predicates
BL....,BX, is defined for each < z,...,2m D€ X}, X --- x X} by

Bm(zy,...,2zx) = Bl (1) ®--- ® BE (7).

Definition 5.12 Given the families of predicates B' = {B), : m > 0}, where
i =0,....k, the xor family of B',...,B*, abbreviated B= B' @ --- & B* ,
is the following family of predicates B = {By, : m 2 0}, defined for each m > 0
by

Bn, =Bl @ --@Bk.

Definition 5.13 Given an infinite sequence B* = {B}, : m > 0}, where i =
1,2...., of families of predicates, and a function g with domain the set of positive
integers and range a subset of the set of positive integers, the g-xor family of
B',B*,..., abbreviated B9 = {BY) : m > 0} , is defined by

BY =Bl & & BY™.

I in the above definition the function g is costant i.e. g(m) = k, for all m, then
the g-xor B'9) will also be denoted by B(¥). '

This and the next subsection will be concerned with answering the following

Question: Given an infinite sequence B' = {B}, : m > 0}, where i =
1,2,..., of families of predicates, and a polynomial size computable function
g with domain the set of positive integers and range a subset of the set of
positive integers, if a polynomial size circuit approximates the g-xor family
B = {Bs,f) : m > 0}, with a certain advantage, do there exist polynomial size
circuits approximating each of the predicates B', B?,... 7 Do the advantages of
the approximations of the predicates B!, B*,... obtained via the approximation
for B'9), amplify the original advantage of B(9) ?

Theorem 5.3 (The Projection Theorem) Let B(9) be the g-zor of the pred-
icates BY, B ..., where g is a function with domain the set of positive integers
and range o subset of the set of positive integers. Let C = {Cp, : m > 0} be s
polynomial size circuit and let {€m : m > 0} be a family of positive real numbers.
if

Priz € X}, x --- x X9{™) : Cpn(z) = B (2)] > % + €m,

then foralli 2> 1,

Prizi € X}, : Ci(zi) = Bl (2:)] 2 % + €.
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Proof: It will be assumed, without loss of generality, that for all m, g(m) =
2. The following picture will be helpful in understanding the proof that follows.

z2 (z2 € X2)

7, (21 € X})

Figure 1: The XOR-predicate

‘Fix m > 0. The assumption of the theorem asserts that for at least a ratio
(1/2)+¢€m of the points in the < z,, z; >-plane, the circuit Cp, correctly predicts
the value of the xor B = B! @ B2. Let

p(z1) = Prlz; € X}, : Cm(21,22) = By, (1) ® B}, (22)],

and
p(z2) = Priz) € X}, : Cm(z1,22) = Bl(z)® Bf,,(zg)]

However, it is true that
Pr|< z),z2 >€ X x Xz, - C,,.(zl,zz) Bm(zl.zg)] =
1
LS )= E e 2 e
l l 1 I I 3
2, €EX), 23€X3,
It follows that there exist points z} € X},,z5 € X2, such that

1
23 +e,,,,p(1'2) > - 3 + €m.

Now, it is easy to see that the following two polynomial size circuits satisfy the
requirements of the theorem:

Cr(z1) = Cml(21,23) ® B,(23),CF(22) = Cml(2],22) ® B (2)0  (14)

p(z}) 2

Theorem 5.3 will be very useful in the sequel, but what makes an XOR
theorem interesting is some amplification of advantage in the passage from an
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approximation of the xor of two predicates to an approximation of each of the
predicates which form the xor. Such a theorem is obtained below.

Theorem 5.4 Let B be an unapprozimable predicate with 8 friendship function
f, on the family X = {Xm : m 2 0}, and g a polynomial tsme computable
function from positive integers Lo positive integers such that for allm,g(m) 2 2.
For each polynomial size circuit C and each u € Xp,, let

pl[C] = Pr [z € (Xm)?(™ : B{¥)(2) = Cm(z)|u = 1 - st component of z]
If there erists polynomials P, P’ and 8 polynomial size circust C such that for
infinitely many m,

l.

X

. 11 1
{vexmsricr2 3+ |2 iy

then for any polynomial Q there exists a polynomial size circuit c' = {C,, :
m > 0} such that for infinitely many m,

_ 1

Q(m)’

Proof: Assume that C,P, P’ are as in the hypothesis of the theorem and
let Q be an arbitrary polynomial. The circuit C' is defined as follows:

Input: u.

Step 1: Put k = 4P'(m)P(m)Q(m)>.

Step 2: For each 1 < ¢ < k let v2,...,% g(m)-1 be a random sample,

where each v, ; € X .
Step 3: For each i = 1,..., k compute

Priu€ Xm:Bm(u) =Cp(v)] 21

‘b-' = C:n(uv Jm(vi2) .-y fm(vi.g(m_)-x )s

Bm(/m(”l.?)) D& Bm(fm(vl,g(m)—l ))
Step 4: Compute

Ll=|{l-<-fsk3bi=l}l.Lo=|{]S{Sk:b‘,_._.o}l‘

Output:
L1 MLy > L
Cm(y) = { 0 ifLo>L,

To show that the above circuit C’ works notice that if B, {u) = 1 then the
above experiment is expected to output Ly = (k/2) + k/P(m) many 1's and
Lo = (k/2) — k/P(m) many 0's. Thus L, > Lo. Similarly, if B, (u) = 1 then
L, < L. Now, the theorem follows from the Weak Law of Large Numbers.o

To give the proofs of the XOR theorems stated below a further property
of the predicates B = {Bn, : m 2 0} considered will be needed, called the
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Random Generation Hypothesis, abbreviated RGH. A predicate B =
{Bm : m 2 0}, where By, : X — {0,1}, satisfies the RGH if there exists an
algorithm running in time polynomial in m which on input m it will output a
random pair < z,y >, where z € X, and y € {0,1} such that B,(z) = y.

Example 5.3 The predicates in ezamples 5.1 and 5.2 satisfy RGH.

From now on and for the rest of this section whenever Yao’s XOR
theorem is applied to a predicate B it will be assumed that B satisfies
RGH. The necessity of this assumption will be become apparent in
the course of the formal proof of the XOR lemma.

The most interesting result on xoring is the following

Theorem 5.5 (Yao’s XOR Theorem, A. Yao) Let M be an infinite set
of integers, let g, h de polynomial time computable functions such that g(m) >
2Mm) > (log, m)'*¢, for some ¢ > 0. Let B = {Bp : m 2 0}, By : Xy —
{0,1} be s famnily of predicates on the family X = {Xm : m > 0}. If there ezists
. @ polynomial Q and a polynomial size circuit C = {Cm : m 2 0} such that for
slilmeM,

1 + 1

2 Q(m)’

then for any polynomial P there ezists a polynomial size circuit C' = {C},
m > 0} such that for all but a finite number of m € M,

Pr [z € (Xm)?™ : BY(z) = C,,,(’u)} >

P(m)’

Pr|z € Xm :Bm(z)=Cl(z)] 21

The above theorem is in fact an immediate consequence of the following

Theorem 5.6 (Yao’s XOR Lemma, A. Yao) Let M be an infinite set of
integers, and let 0 < €p,6m < 1, for ecach m € M. Let B = {B,, : m > 0},
B : Xm — {0,1} be a family of predicates on the family X = {Xp, : m > 0}.
If there ezists o polynomial size circuit C = {Cp : m 2> 0} such that for all
meM,

Pr(< 2,2 >€ Xm X Xm : B{P)(2,2') = Cm(2,7')] 2 _2‘. +ems

then there exists a polynomial size circuit C' = {C}, : m 2 0} such that for all
meM,

Pr|z € Xm : Bm(z) =C,,(2})] 2 % +(1-6m)-
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Proof of the XOR theorem from the XOR lemma: Let B,C,g,Q
satisfy the hypothesis of the XOR theorem. Let P be an arbitrary polynomial.
Put 6, = 1/P(m). Using the projection theorem, it can be assumed without
loss of generality that for all m, g(m) = 2*(™)_ The idea is for each m to apply
the XOR lemma a sufficient number of times, namely h(m)-times. Indeed, fix
m € M; define by induction ¢, » > 0 and circuits C* = {C}, : m > 0} as follows,
fori=1,...,h(m),

1
@m = Qlm)

Assume that the circuits C! = C,C?,...,C" have already been defined. Apply
the XOR lemma to the circuit C* and the xor

(=)

to find a polynomial size circuit C'*? such that

Pr[BE™ e = O (2)] 2 54 (1= bm) 27 i

v Giglm = (1 "ém) ’2-% RVAIR. T

It will be shown that the circuit C' = CH™) satisfies the conclusion of the XOR
theorem. It is clear that

 Prlz € Xm : Bm(z) = CA™ (1)) 2 %+€h(m).m- A

Moreover,
€a(m),m = Tm - Bm - am.,
where . .
-1/2=1/2% = =1 2% ™)
Tm =2 /2-1/ /
141/241/2% 441 /28 m) =2
ﬂm-(l-ém)+/+/++/ ,

9

1/2h ™

am = (5(%7)) . (15)

It is now easy to show that
. 1 .
im Ym = =,8m = (1 = 6m)%, lim ap, =1.
m =00 2 m =00

Hence,
1 2
€h(m)m =~ E(l - 6m)-‘
This determines the values of the sequence ¢;(m) m, and completes the proof of
the reduction of the XOR theorem to the XOR lemma.e
An immediate corollary of the XOR theorem and the projection theorem is
the following
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Theorem 5.7 (Multiple XOR Theorem) Let M be an infinite set of inte-
gers, let g, h be polynomial time computable functions such that g(m) > 2(m) >
(log, m)!*¢, for some ¢ > 0 and let k be a function from the positive integers
to the positive integers. For each i, let B* = {B! : m > 0}, be a family of
predicates. Put B = B9 . If there exists o polynomial Q and a polynomial size
circuit C = {Cp : m 2 0} such that for sllme M, \

-1
Q(m)’

then for any polynomial P there exists polynomial size circuits C',C?,... such
that for all i, and all but a finite number of me M,

Pr [z € XL, x - x X(m . BW(z) = c,,.(u)] >

B =

1

Przi: By, (z:) = Ch(z:)] 21 - m.o

EXERCISES

1: Show that the circuits defined via (14) satisfy the conclusion of the pro-
jection theorem.

2: Show that the general case of the projection theorem follows from the
case: for all m, g(m) = 2.

3: Extend theorem 5.4 to xors of more than one predicate.

4: RGH for a predicate B should not be confused with predicting B. Show
that the predicates defined in examples 5.1, 5.2 satisfy RGH.

5: Show that limpy—oo @m = 1, where a,, was defined in equation (15).
Hint: Use the hypothesis 2*(™) > (log, m)!+<.

5.4 PROOF OF THE XOR LEMMA

This subsection will be divided into two parts. The first part will be con-
cerned with an intuitive, geometric discussion of the proof of the XOR lemma.
The formal aspects of the proof will be discussed in part two.

PART 1: INTUITIVE PROOF OF THE XOR LEMMA

Assume that the hypothesis of the XOR lemma is true. i.e. M is an infinite
set of integers, 0 < €m,0m < 1, for each m € M. Let B = {B,, : m > 0},
Bm : Xm — {0,1} be a family of predicates on the family X = {X,, : m > 0}.
Assume there exists a polynomial size circuit C = {Cy, : m 2 0} such that for
alme M,

Pr[< 2,2 >€ Xp X X : B (2,2') = Cm(z, )| 2 % +em:
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bm €m
fim = (" '~:)'\/?

It is required to find a polynomial size circuit C' = {C}, : m 2 0} such that for
allme M,

Put

Pr|z € Xm : Bm(z) = C},(z)] > + NMm. (10)
For each z € X, let
k(z
k(z) = |{z' € Xm : B 2,2')=Cm (z,r)}l p(z) = i )I
p=rp(z)= K3
17 1'
nm-decision easy points |
|
3+ 0m
% nm-decision difficult points
% =m
nm-decision easy points
r (z€ Xn)
o (

Figure 2: Distribution of the n,,-decision points’

Figure 5.4 pictures the difficulty involved in deciding the values of the pred-
icate B = {B,, : m > 0}. One can distinguish the following two cases.

Case 1: (3z € Xp)(|p(z) = 1/2| 2 npm)-

In other words, in the language of Figure 5.4, in this case there is an n,,-
decision easy point. Call such a point z,. Define a polynomial size circuit as
follows:

c' (:t') - Cm(zOvI') @ BM(IO) if p(:to) 2 l/2+ Nm
mI T | Cml(20.2')® Bm(zo) ®1 if p(z0) < 1/2 - 1

It is easy to see that C' satisfies the requirements of inequality 16. Indeed, on
the one hand if p(zo) 2 1/2 + np, then

p(2o) = Pr|z' € Xm : B (') = Cla(2')] 2 % + 0,
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while on the other hand if p(zo) < 1/2 = nmm then
l-ﬂn)=P4fexmdhuQ=cM5HZ%+nw

Case 2: (Vz)(|p(z) - 1/2| < 7m)-

In this case it will be assumed that t,, is an odd integer. This
restriction however, is only technical and will present no difficulties for the
formal proof. Figure 5.4 describes the distribution of points in the present case.

P
1
[{k(z): 2 € Xp} = {k1,--- kn} |
| ky <ky <...<kn |
Itm = |Xm|,a, = Prlk(z) = k] I
3+ Nm
3
1
2.
%‘nm—
ky (kg kg ky ky
tm |Tm fm tm fm
- a
0 le1 a2 as 8, Gn

Figure 3: Graphof p = %?,a = Pr|z € Xpm : k(z) = K]

Put ty, = |Xm|- For each z € X, b € {0,1}, let
K(z) = {z' € Xm : Cm(z,2') = B¥)(z,2')},
Ku(z) = {z' € Xm : Cm(z,2') = B2 (z,2') @ b},
k(z) = |K(z)], ks(2) = | Kb(2)|-
It is not difficult to show that the following properties must hold for all z € X,
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1. X = }\’0(1') UK, (2) and t,, = ko(r) + k; (I)
2. ]\-(2‘) = KBM(,)(Z) and k(z) = kgm(,)(z').

For each k < t,, define the bucket (k) = {z € X,» : k(z) = k} and put
o(k) = |C(k)|. Figure 5.4 pictures the situation in which the function k(z)
assumes only the values k; < --- < k,, in increasing order. Notice that if
k& {k....,ka} then o(k) = 0. For each k <t let

a(k) = Prlz € Xpm : k(z) = k] = ‘Zt_(_l_‘l

i.e. a(k)is the ratio of points in X, which lie in the bucket T(k). Put a, = a(k,).
0, = o(k,). The r-th rectangle pictured, has a base of length a,, and height
equal to p(z) = k,/tm, for each z € L(k,). It is clear that

tom tm
Y alk)= ) Priz€ Xm:k(z) =k =1 (17)
k=1 k=1 .

The polynomial size circuit C which predicts the predicate B is based on a
comparison of sizes of buckets. To be more specific one defines C;, as follows:
" Input: z
Step 1: Compute k = ko(z)
Output:
' ' _J o ifo(k)2o(tm —k)
Cmlz) = { 1 if o(k) < o(tm — k)

It will now be shown that the circuit defined above satisfies the requirements
of the XOR lemma. It is a consequence of the definition of C' that

Prlz € Xm : Ci(z) = Bm(2)] 2 ) max{a(k).a(tm —k)}  (18)
k>t,/2

Indeed, for + = 0,1 put
pi = Pr{Cm(z) = Bm(z) = 1],

and observe that

Prlz € Xm : Cp(2) = Bm(2)] = po + 1. - (19)
However,
Po= Y.  Prlko(z) = kand Bp(z) =0},
a(k)2o(tm—k)
n= Z Prlko(z) = k and B, (z) = 1.

o(k)<o(tm—k)
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It follows that, ’
Pot+p 2
Y Prlko(z) = k, Bm(z) = 0]+
k>tm/2,0(k)>o(tm—k)

Y Priko(z) = kBn(s) = 0]+

k<tm/2.0(k)>0(tm=k)

> Prlko(z) = k,, Bm(2) = 1]+
k>¢.../2,c(k)§a((..-—k)
> Prlko(z) = k,, Bn(2) = 1],

k<tm/2,0(k)<0(tm—k)

Using the fact (2) (z)
k if Bn(z)=0
k(z) = { t:‘ i ko(z) if B...(:.) =1,

it follows easily that

Priz € Xp : C,,(2) = Bm(2)] 2
Z Prlk(z) = k] + Z Prlk(z) = k| =

k)t,,,/?,d(k))d(l,.—k) k<!m,2.ﬂ(k))0(',,.—k)
Z max{a(k),a(tm - k)},
k>tm/2

which completes the proof of (18).

124

Let {) denote the area under the pictured graph. The area of the r-th
rectangle is equal to a, - (k,/tm). Hence, Q is equal to the sum of the areas of

the n regtangles. It follows that on the one hand
k
0= z,; 7 olk),

and on the other hand

Q=Pr [< 2,7 >€ X X Xpm : B (2,2') = C,,,(z,z')] > %+ em.  (21)

(20)

Let d(k) = k/tm — 1/2 i.e. if the r-th rectangle lies above (respectively below)
the horizontal line of height 1/2 then d(k, ) is the positive (respectively negative)
distance of the heighest point of the rectangle from the horizontal line drawn at

height 1/2. It follows from (20) and (17) that

Q= %+‘L;d(k).a(k)=
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,—i,+ Y dk)-a(k)+ Y d(k)-a(k) =

k>tm/2 k<tm/2

+ Z d(k)a(k)'l' E —d(k).a(tm_k)=

k>tm/2 E>tm/2

+ ) d(k) - (a(k) = otm = k)) <

1/240m>k[/tm>1/2
1
5t m 3 la(k) = a(tm = K)I. 22)
1/240m>k[tm>1/2
It follows from (21), (22) that

Y la(k) - altm - k)| = | (23)

k/tm>1/2

1
2

B

Y
Z la(k) = a(tm = k)| 2 tm _ : _‘;M/n.
1/240m>k/tm>1/2 Nm m/e

Using the fact that

|o = ¢'| = max{a,a'} — min{a,a’},
6 +a' = max{s,a'} + min{a,a'},
1=Y a(k)= D (a(k)+o(tm — K)), (24)
k E>tm/2

it is easy to show that

T max{a(k),altm —K)} = 2+ Y le(k) = altm = K)|.

k>t /2 k>tn/2

L1

Using this, as well as inequalities (18), (23) one obtains that

tm 2 1"”7m~

Y T —6n/2 72

O] -

[T

Prlz € Xm : Cpy(2) = Bm(2)] 2

This completes the intuitive proof.

PART 2: FORMAL PROOF OF THE XOR LEMMA

Assume that the hypothesis of the XOR lemma is true. i.e. M is an infinite
set of integers, 0 < €y, 8m < 1, for each m € M. Let B = {B,, : m > 0},
Bm : Xm — Xm be a family of predicates on the family X = {X, : m > 0}.
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Assume there exists a polynomial size circuit C = {Cy, : m 2 0} such that for
allme M,

g =Pr [< 2,2 >€ Xpm X Xpm : B (2,2') = Cnm(z, z’)] > % +€m.  (25)

Fix m € M and put ¢, = €,8n =5, N = 1. Also, define

log, m 8 °
omz ([22]) s re=r

i.e. & is odd. Throughout the proof below z (respectively y) with subscripts or
superscripts will range over elements of X, (respectively of {0,1}). The circuit
C!, which predicts the predicate B, with an n advantage is defined as follows:

Input: z

Step 1: Let < z;,y1 >,...,< z4,¥e > be a random sample such that
Bp(zi) =y, foralli=1,...,¢L

Step 2: Let < z},41 >,...,< z),y, > be a random sample such that
B (z}) = yj forall j=1,...,a.

Step 3: Compute

K'(zi,5:) = {4 < 8: Cm(2i,2}) = 3 © 45}, K' (2, 4) = | K" (24, %)),

L'(k) = {i S L: K (zi, %) = k}, o' (k) = |Z'(K)].

Step 4:

Case 1: (3i)

fen) 1 (1-9) 5

In this case compute
ky = min{k'(z;,y) asincasel :i=1,...,¢},
io=min{i <¢:i€X'(ky)}, and

o= Cm(Zig,Z) @ ¥io if ks> 1/2
Cm(zio,z) D yi, ®1 if kyfs < 1/2

24« (i-1)

k' = k'(z,0) and

{0 ifo(K)2a(s-k)
n—{ 1 ifo(k') <a(s-k)

Case 2: (Vi)

-

In this case compute

Output: Cp(z)=a
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The rest of this section will be devoted to a proof of
3= Pr(Bm(z) = Calz)] 2 3 + 1. (26)

Let G denote the event C' (z) = Bm(z), A the évent that after execution of
step 3, case 1 occurs in step 4, and let A be the event that after execution of
step 3, case 2 occurs in step 4. It is then clear that

4 =a-Pr[A]+a- Pr[A],

where o = Pr|G|A],@ = Pr[G|A]. \

The proof of the theorem will be divided into two claims. In CLAIM 1 a
lower bound on aPr|A] will be determined and in CLAIM 2 a lower bound on
aPr|4].

CLAIM 1: aPr[4] 2 (1/2+ (1 - $6)\/¢/2)Pr|A] - exp|-/e]

The proof is in several steps. For each z,y put

g(z.y) = Pr IC,,.(Z, z') =Yy @y']

and consider the events

(1520 2)3 (=) <1+ (- %)
R (K3 1) oo (1-8) - st > 3= (- %) 5

It will be shown that
Subclaim 1: Pr|F; U F3] < exp(—22/3).
Since, K'(r,y @ 1) = 8 = K'(z,¥),9(z,y & 1) = 1 = g(z,y) it is clear that for
all z,y, -
<z, y>EF ©<z,y®1>€ Fy,

and hence

P"lF]] = PT[FQ‘

Hence, it is enough to find an upper bound for Pr|F,]. The idea is to think of
k'(z.y) as a Monte-Carlo computation of g(z,y). Let § = (&/4) - Ve/2. Apply
Bernshtein's law of large numbers to obtain

o

F?={<z,y>€F :g(z,y) > 1/4}, F} ={<z,y>€ Fi:g(z.y) S 1/4}.

K'(z,y)

P 9(z,y)

> 9] < 2exp(—267)

Put
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and notice that Pr|F,| = Pr[F] + Pr|F}]. Then, using the definition of s,

Prirt) < Pr[FED e > o] < (27)

’ 2 86%¢ s/4
2exp(—26%) < 2exp -3 < 2exp(-28°/1).

In addition, it is true that
(]
P,[F”SP'-[E__({_'}’_)_ ;— 20].

Thus, applying the previous argument to the right side of the above inequality,
with g(z,y) = 1/4 it follows that
Pr[F}] < 2exp(—e%/4). (28)

Subclaim 1 now follows from inequalities (27), (28).
Consider the events

1

ks

8

k' N
a5 < L ana e otz < 3 - (1-5) V3]

" L=AnN(A, UAz), and L = the complement of L.

A 2> % and (Vi € £(kp)) |9(zi 9:) 2 %+« (1 - g)

4

RO~

to| ™

Now, it will be shown that
Subclaim 2: Pr[A N L] < exp(—/3).
Indeed, Pr[ANI| < PrlAnA;]+ PrlAnA,] <

K 1 . 1 36
042 < ) < - -
Pr[a > 2and (37 <9 (g(z..y.)< 2+( )

S

36

Pr; [k—j’<%and (3 < (g(:i,yi)>%—(l—7) )] <
ePr|Fy| + (Pr|F,] <

2.8 exp (—32/3) < exp(-/3),

which completes the proof of subclaim 2. Consequently,

Pr|G|L] - PrlAN L] < exp(-+/3). (29)
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Now to finish the proof of claim 1, notice that from the definition of C,, on
the one hand,

Pr|G|L, Ay 2 Elg(zi, %)L, Ai] 2 % + (1 - '?) \/g

priciL Al 2 Ell - szl 2 2+ (1-5) /3

and thus using

PrlG|L] = Pr|G|L, A)] - PrlAi|L] + Pr(G|L, A;] - Pr|4;|L]

PriGILI2  + (1 - ?) \f (30)

On the other hand it is clear that

it follows that

o1l ™

aPr|A] = Pr[G|A]|Pr[A] > Pr|G|L|Pr[L] =

Pr[G|L](Pr|A] - PrlAN L)) = Pr|G|L|Pr[A] - Pr|G|L|Pr[ANnL]). (31)
Claim 1 is now a consequence of (30), (31) and (29).

CLAIM 2: aPr[A] 2 (1/2+ (1 - $6)e[2)Prla] = 1/(4<°).

For each i, j consider the £- s independent random variables X, ; defined by

1 if Cml(z,2') = BS)(2,2")

X." ’ ) = -
s(z.7') { 0 if Cmlz,7') # B,‘,;)(I.I'),

and let

) 1 , '
£(z,2') = Y -Z.\.',(r.r )\

[}

1
Qk(fw z,) = 2 °

{1 <i< l:i.\'.‘,‘(r,z') = k}

=1

It is clear that gx is the random variable corresponding to the quantity alk).
Setting dx = k/s¢ — 1/2, and using the fact that s is 0dd, it ia easy to see that

)= 1+ L b (ol ?) - qoeiln))
k>s/2

Let a! be the expectation of the random variable g i.e. o} = E|gx]. a} can be
regarded as a Monte-Carlo computation of gi. It is clear from (25) that for all
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i,7, 8 = E|Xi ] and hence 8 = E[£], using the expectation theorem. It follows
that,

1 1
B=E[¢]= 3t Z di - (e} —ay_y) < 3t E di -lak — oyl (32)
k>e/2 k>s/2

Next the following two cases will be considered
Case 1: There exists k < s such that

azzlsand l:--lqu.

8 2

Let k be as in case 1. Using the Weak Law of Large Numbers one obtains
that .
) sa—-1} 8 1
- < < —.
Pr ['““ %l > = ] SHE-1)2 " 15

Consequently,

1 1 s—-1 i
Pr[q;<;—;]:Pr[qk<6—‘and|a;-qk|> i ]_<_.-_.

It follows that,
1 1
P’IAIZP'[QI‘ZF] ZI-I_,_S‘
Hence, the desired inequality (26) follows easily using the result of CLAIM 1.
Case 2: Forall k<,

1
;‘5.,

k1
;-§|2n=>a£5

Consider the event J defined by
14 ’ l I3 ’ 3
(Vk) (]a,, —al_i| 2 27 = 0k = ok 0k = Qo-k have the same sxgn).

It is an immediate application of the Weak Law of Large Numbers that

1
>1— —
PrlJ] 21 YR (33)

(see exercise 1.) Thus,

aPr[A] = Pr[G|A|Pr[A] = Pr|J|Pr|G|A, J|Pr[A] >

Pr(G|A, JPr[A] - 4_:.2.
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However, (32) and the assumption in Case 2 imply that

1 8
steshs ) i o — ]+ 5 (34)
1/2<k/s<1 /240

It follows from (34) that

T lh-aalz S (35)
1/2<k /o<1 /240 "
Using the definition of J, and (24), one obtains
Pr|G|4,J] > (36)
E max{ay,a,_; }+

1/2<k/s,Ja,=a)_,|21/9?

T {meGhear- 4

1/2<k/s,]a} =0 _,|<1/e?

1
> Y max{aj,a, ) - 2 =
1/2<k/e

-+

1
Z lak = afel = 2’

1/2<k/s

[T
[CIR

This and (35) imply the result in CLAIM 2.
Now the XOR lemma follows easily from CLAIM 1, CLAIM 2.e

EXERCISES
1: Prove inequality (33).

5.5 APPLICATIONS OF THE XOR LEMMA

There are three main applications of the XOR theorem. The first two con-
cern unapproximable predicates and pseudo-random generators, and will be
presented in the present subsection. The third one is the notion of strong (re-
spectively weak) one way functions and will be presented in the next subsection
(5.6).

APPLICATION 1: UNAPPROXIMABLE PREDICATES.
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Definition 5.14 Let P be any polynomial. A predicate B = {B,, : m > 0}
defined on the family X = {Xp, : m > 0} is 1/P unapprozimable, and this will
be abbreviated U PR(X, B,1/P), if there is no polynomial size circuit € = {Cp, :
m 2 0} such that for infinitely many m,

1 1
Pr[ze Xm . Bm(Z) = Cm(Z” 2 5 + m.
Definition 5.15 Let P be any polynomial. A predicate B = {B,, : m > 0}
defined on the family X = {X,, : m 2 0} is (1/2 — 1/P)-unapprozimable, and
this will be abbreviated UPR(X, B,1/2 — 1/P), if there is no polynomial size
circuit C = {Cp : m 2 0} such that for infinitely many m,

1

Pr|z € Xm : Bm(z) =Cm(z)] 21 - Bim)’

Remark: Notice that the above definition of B is 1/P unapproximable is
~ equivalent to (VC)(C does not P-predict B) in definition 5.2.
An immediate application of the XOR theorem is the following

Theorem 5.8 Let g be a positive integer valued function such that for some
€ >0, g(m) 2 [log, m|]'*<. Then for all X, B the following hold:

1. (3P)UPR(X,B,1/P) = (VP)UPR(X,B,1/2-1/P).
2. (3P)UPR(X,B,1/2-1/P) = (YP)UPR(X,B'9,1/P). o

APPLICATION 2: PSEUDOM-RANDOM GENERATORS.

Recall the definition of pseudo-random generator on the family X = {Xm:
m 2 0} given in definition 5.4. To any such pseudo-random generator G asso-
ciate the sequence b ((z),... 18S o(m)-1(2) of bits generated by G, where for
each m, bC , is the i—th bit generated by G, on input z € X,p,.
Definition 5.16 Let P be a polynomial and G = {Gm : m > 0} a pseudo-
random generator on the family X = {Xpm : m 2 0}. The generator G, P-passes
the 1/P Blum-Micali Test, and this will be abbreviated BMT(X,G,1/P), if for
all polynomial size circuits C = {Cp : m > 0} the following cannot hold for
infinitely many m: there ezists an i < Q(m) such that

pr[c...(z):c.,.(bg,o(z),...,bg,,._,(,,))=bm".(,)]2% + 7"(17) _

Definition 5.17 Let P be a polynomial and G = {Gp, : m > 0} a pseudo-
random generator on the family X = {Xm : m 2 0}. The generator G, P-passes
the 1/2~1/P Blum-Micali Test, and this will be abbreviated BMT(X,G,1/2 -
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1/P), if for all polynomial size circuits C = {Cpm : m 2 0} the following cannot
hold for infinitely many m: there exists an i+ < Q(m) such that

Pr [Gm(z) : Co (G (2, 8G 41(2) = bms(2)] 21 = }—D—‘—.
(m)
Remark: Notice that the above definition of G is 1/P unapproximable is
equivalent to (YC)(C does not P-predict G) in definition 5.4.
Let G be any pseudo-random generator and let b3 4(z), ... G o(m)-1 (2) be
the sequence of bits generated by G on input z. For any positive integer valued
function g let {8C'7 : m > 0} denote the g-xor of the predicate {t3, ,: m > 0}.

The g-xor G'9) of the generator G is such that

1. Forallm, G : (Xm )™ — Sg(m) and

(o) (0
2. G\ (u) =< bS ¢ (u),--. vb,cy.,'Q(m)—l(y) >

The following XOR theorem is proved exactly like theorem 5.5.

Theorem 5.9 (XOR Theorem for Generators) Let M be an infinite se!
of integers, let g, h be polynomial time computable functions such that g(m) >
2h(m) > (log, m)!*¢, for some ¢ > 0. Let G = {Gm :m 2 0}, Gm : Xm —
So(m) be s pseudo-reandom generator on the family X = {Xm :m 2 0}. If
there ezists a polynomial P and & polynomial size circuit C = {Cpm : m 2 0}
such that for allm € M there ezists an i < Q(m) such that

[

leildl ledld) _ Gt _l_ __l__
Pr [Cm(bm,o (u)""’bm.i-l(u)) - bm.i (u)] ->- 2 + P(m)'

then for any polynomial P' there eziste a polynomial size circuit C' = {Cp, :
m > 0} such that for all but 6 finite number of m € M, there exists ani < Q(m)
such that

1

PrCi(tS o(u), ... 85 ima(v)) = 85 i (w)] 21 - oy

Now, an immediate consequence of the XOR theorem for pseudo-random
generators is the following

Theorem 5.10 Let g be o positive integer valued function such that for some
¢> 0, g(m) > [log, m]'*¢. Then for all X,G the following hold:

1. (3P)BMT(X,G,1/P) = (YP)BMT(X,G,1/2 - 1/P).
2. (3P)BMT(X,G,1/2 - 1/P) = (YP)BMT(X,G\9,1/P). o
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5.6 ONE TO ONE, ONE WAY FUNCTIONS
The present subsection includes the third application of the XOR theorem.

Definition 5.18 A polynomial sise circuit C = {Cp, : m 2 0} weakly
(respectively strongly) P-inverts the family J if for infinitely many m,

Pr(z € Xm :Cm(/m(2)) = 2] 2 P—(l_nT) '
(respectively

Pr(z€ Xm :Cm(fm(z)) =2] 21— _P_(im_)

Definition 5.19 f = {fm : m > 0} is weak (respectively strong) 1 -1, one
way, if the following holds:

(VP,C)(C does not weakly (respectively strongly) P — invert f).

Theorem 5.11 If the function f = {fm : m 2 0} is a friendship function for
the unapprozimable predicate B = {Bm : m > 0}, then [ = {fm : m 2 0} is
weak,1 — 1, one-way.

Proof: Assume that the hypothesis of the theorem is true for the unapprox-
imable predicate B and its friendship function f, but that the conclusion fails.
Let C = {Cm : m > 0} be a polynomial size circuit such that the following
statement holds for infinitely many m,

1
Priz € Xm : Cm(fm(2)) = 2] 2 Pim)’
Let M be the set of integers m which satisfy the above inequality. For each bit
b€ {0,1} let C%, be the following polynomial size circuit (due to Mike Fischer),
Input: z (z € Xm).
Step 1: Compute y = Cr(2).

Output: )
i _ [ Bm(z) if fmly) =2
o= {3 G 07

Then the theorem will follow from the following
Claim: For all m € M there exists b € {0,1} such that

1 1
E : Bm = 4 > - —_—
Pr(z € Xm : Bm(z) = Cp(2)] 2 2+2P( )
Proof of the Claim: Let m € M, and choose a bit b € {0,1} such that

Prlz € Xm : Bm(2) = b fm(Cm(2)) # 2] 2 %
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Put
p=Prlz€Xn: Jm(Cml2)) = 7).

Then it can be shown that
Prlz € Xm : Bm(z) = cl(z)) =
Pr|Bm(z) = Ch(z) and fm(Cm(z)) = 7]+
Pr|Bm(z) = Chy(2) 20d [m(Cm(2)) # 2] =
Pr{fm(Cm(2)) = 7]+
Pr[Bm(z) = C(2)|fm(Cm(2)) # 2] Prl/m(Cm(2)) # 7] =
p+ Pr|Bm(z) = Co(2)|fm(Cm(2)) # 2] - (1 - p) 2

i

1 1
pt5ll- Pl=5
Since by assumption
1
= Ny > —

it follows that

1
2P(m)’

Prlz € Xp:Bn(z) = Ch(s)] 2 5 +

and the proof of the claim is complete.
Since the set M is infinite, it follows from the claim that there exists a bit
b€ {0,1} and an infinite subset M’ of M such that for each m € AM',

N B O
Pr [z €Xm: Bm(I) = C,,,(I)] 2 2 =+ "’P(m)‘ .
Then the circuit

c'={Ct :m20},

(2 - P)-predicts the predicate B, which is a contradiction.e
The following theorem is very important because it can be used in conjunc-
tion with theorem 5.1 to construct secure pseudo-random generators.

Theorem 5.12 (Yao’s One Way Function Theorem, A. Wao) The fol-
lowing three statements are equivalent:

1. There is o strong, 1 — 1, one-way function.

2. There is ¢ weak, 1 — 1, one-way function.
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3. There is an unapprozimable predicate B = {Bp, : m 2 0} end a friendship
function [ = {fm : m 2 0} corresponding to it.

Proof: (3) = (2)
This was proved in detail in theorem 5.11.
(2)=(1) '

This is immediate from definition 5.18.

(1) = (3)

Let f = {fm : m 2 0} be a strong one to one, one-way function such that
fm : Xm — Xpm is one to one, and onto. Let B, : X, — {0,1} be the
function defined by

z — B; m(z) = the i — th bit of f~!(2).
Further, let By, : (Xm)™ — {0,1} be the following predicate
(Z1y.+ev2Zm) — Bm(z1,...,Zm),

where .
Bm(zlv---yzm) = Bi,m(zl) D@ Bm,m(zm)-

It will be shown that the function g = {gm : m > 0}, where g, : (Xpm)™ —
(Xm)™ is defined through

Im(Z1y-- 2 Zm) =< fm(z1)s oo s Om(2Zm) >,

is a friendship function for the predicate B. Indeed, both conditions of definition
5.3 are easy to verify e.g. to prove condition 2. notice that

‘ Bm(9m(Z1,---1Zm)) =
(1 - st bit of z,) ® (2 — nd bit of ;) & --- ® (m — th bit of z,,).

It remains to show that the predicate B is unapproximable. Assume on the
contrary that there exists a polynomial size circuit C' = {C}, : m > 0} and a
polynomial P such that the following property holds for infinitely many m,

1

Pr|z € (Xm)™ : Bm(z) = C,(2)] 2 % + Pim)’

Let M’ be the set of indices m € M that satisfy the above inequality. The
multiple XOR theorem implies that there exist polynomial size circuits {C; m, :
m 2> i 2 1} such that the following property holds for infinitely many m,

(Vi < m) (Pr [t € Xm : Bim(u) =Cim(u)] 21- 1 ) .

mP(m)
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It will be shown that the circuit
Cm (1) =< Cim(t)y-- . Cmm(u) >

strongly P-inverts the function f. Indeed, for each m € Af' it can be shown
that
Pr [u € Xm : Cm(u) # f,,',](u)] <

. . . < ——— —
Z',:l Prlu€ Xm: Cim(v) # Bim(u)] < E‘____l mP(m) P(m)
It follows that for all m € A,
;o _ -1 _ 1
Pr{s€Xm:Cm(u)=fn (v)) 21 o)’

which is a contradiction. This completes the proof of the theorem.e

Recall that in theorem 5.12 the passage from a strong one way function to
a friendship function and its associated unapproximable predicate was accom-
plished by passing to a space of higher dimension, namely (X,)™. However,
the answer to the following question seems to be open.

Question: Is every weak or strong one way function the friendship function
of an unapproximable predicate?

EXERCISES
" 1: Show that the predicate B defined in the course of the proof of (1) = (3)
of theorem 5.12 satisfies RGH.

2: The circuit C' considered in the course of the proof of theorem 5.11 was
defined nondeterministically. Show that if the function f = {fm : m > 0} is
a friendship function for the unapproximable predicate B = {Bm : m 2 0}
and satisfes Pr|Cm(fm(z)) = z] 2 1/2 + 1/P(m) for infinitely many m, then
the deterministic circuit pictured below satisfies the conclusion of the claim in
theorem 5.11:

z—+ Cm *Bm o fm ""Bm(fm(Cﬂl(’)))

5.7 BIBLIOGRAPHICAL REMARKS

Most of the results of this section are the work of A. Yao and are outlined in
cite [Y1]. The formal proof of the XOR lemma is partly based on [Y2]. Theorem
5.1 can be found in [BM]. Additional information on the security of public key
cryptosystems as well as a different approach to the proof of the xor lemma can
also be found in the unpublished [Rac].
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